IPCC-AR5 Chapter 6:
Carbon

and Other Biogeochemical Cycles




Radiative forcing of climate between 1750 and 2011 ...
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CO2, CH4 and N20O are the biggest GHGs. Uncertainty in black carbon. (CFCs) They all have important biogeochemical cycles, which complicates things.
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There is a “near-zero lag between the deglacial rise in CO2 and averaged deglacial Antarctic temperature. Previous studies estimating temperature lead

of 800+600 years ... probably overestimated.” “High-confidence that GHGs are an important feedback.”
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Drivers of CO2 change during deglaciation.

Circles are model estimates, bars represent expert opinion.

Ocean warms, CO2 is less soluble.

Sea level rises, less salty, CO2 is more soluble.

Sea level rises, less alkaline, CO2 is more soluble.

Ocean was more stratified in glacial period, less upwelling. Limited role of ice-cap.

Glacial was much dustier, promoted productivity in current HNLC regions.

Calcium carbonate is more soluble at lower temp, warming increases CO2(aq).

Shift from deep-water deposition to shallow, more CaCO2, less HCO3, more CO2; similarly more coral.
del13C indicates Land storage of 300 PgC between 11-5 ka.

Volcanic CO2 emissions to the atmos between 12-7 ka were estimated to be two to six times higher than during the las millennium, of about 0.1 PgC/yr.

(Low confidence.)
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20 ppm rise during pre-industrial era. Land use, and agriculture? Similar variation is seen in previous inter-glacieal

Rice domesticated 8-13 ka, rapid spread 3 ka.

. Still. (As likely as not human.)
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1600? Maunder minimum or volcanic, cooling>uptake? Temp records disagree with each other. Might be depopulation of the Americans following
European contact leading to forest regrowth.

Methane has high variability in natural and antropogenic sources. Rise begins before CO2.

Sodium nitrate mining in Chile in 1823. Haber 1913.
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Seasonal cycles illustrate N.Hem land. CO2 increases causing O2 to decrease.

Hemispheric gradient of CO2 indicates anthropogenic impact; curves diverge, its growing. Fossil fuels were biogenic, more C12, lowers ratio over time.
Methane growth slowed or stopped, but now increasing again.

N20O, Ireland and Tazmania.



828 PgC in the atmosphere, 390.5 ppm in 2011.

396.33 ppm in July 2014, up from 394.39 in 2013.

There are large stocks in soils, particularly wetland soils and in permafrost.
Balance of biologic fluxes on land? River export.

Oceans in balance. Solubility pump, biological pump, carbonate pump.

Long-term balance with the weathering of silicate rocks.
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Wetland methanogenisis. Pyrogenic and geologic fluxes. Fossil fuel extraction. Hydrates. Archer 2007 corrected estimate in 2009, 1,600 - 2,000 PgC .
Destroyed by rxn with hydroxyl. Consumed in soils. Also reacts in strat to form water.
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Twice as much fertilizer production as natural terrestrial fixation of nitrogen.

Mostly, it re-mineralizes.



Some of it is reactive, problem for ozone.
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A little bit forms Nitrous Oxide.



CO; (ppm)

$RER NN

#
'
i
$
;
!
i
:
}
3
¥
il
’
L

8 g3

NO (peb)

$1 330 80Es

S
. n @ 0N
...“.......'.”’-n-,o~wma - e Yoo

b R T

.
-
o'um
F)
O N
..q" \ Ot; B ” o .oo..... >
\.'o' P . Ny ® 00 ® 0" N i
. L
0 500 1000 1500 1750 1800 1900 2000 2020




12 1980 1990 2000 2010

10
—~ 08
06
=04

02

00
SON
GON
45N

30N
15N

La

155

305

455

605
90S

1980 1985 1990 1995 2000 2005 2010
Year

0.0 05 10 15
(peb yr')

Food production is likely responsible for 80% of the increase in atmospheric N2O, via the application of fertilizers. Destroyed by rxn with O(1D), therefore

of importance to strat. chemistry. (Is ozone depletion therefore why its growing faster in the S. Hem?)
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Methane growth rates. They are declining. ENSO spike. Natural sources are the main driver, in response to climate, with high confidence. 9.1+0.9 year

lifetime. Reaction with OH consumes 90% of surface emissions, 9% of total burden. Other sinks are three orders of magnitude smaller. Little change in OH

concentrations over time 1-3% inter annual variation.
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Growth rate of CO2. Globally, always positive. Local decreases seen sometimes.

Rate of CO2 emissions from fossil fuel burning and land use change was almost exponential, and the rate of CO2 increase in the atmosphere was also

almost exponential and about half that of the emissions.
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Variations in the inter-hemispheric gradient are linearly related to the difference in fossil fuel combustion between the hemispheres.
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Very high confidence that the increase in CO2 emissions from fossil fuel burning and those arising from land use change are the dominant cause of the
observed increase in atmospheric CO2 concentration.

Not all of the emissions can be found in the air and oceans. Of the 55+85 PgC emitted, the ocean has stored 155+30 PgC; meaning 160+90 PgC has
accumulated in the biosphere. Nearly compensating for carbon emitted from land use change, estimated as 180+80 PgC.

Quite a bit of variability in the land-sink, sign changes sometimes.

CO2 fertilization, nitrogen deposition and favorable climate change. (Likely, [which?]) Forest regrowth, and increased biomass density as well.

Fossil emissions have an estimated uncertainty of £8%, and is increasing as more emissions occur in developing economies.
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TRANSCOM. Orange, number of models. Blue, oceans; green, land exchange. 1-sigma spread. ENSO shaded, bar for Pinatubo. Eruption increases

uptake! Medium to high confidence that the sink is primarily in the terrestrial tropics.
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3 - w——  Houghton et al. (2012) —
~—— Process models (Table 6.2)

E Satellite-based methods (see legend)
- = Average of four models (see Secton 6,3,2.2)

Net Land Use Change CO, emissions (PgC yr')

CO2 emissions from land use change are estimated at 1.5 declining to 1.1+0.8 PgC/yr. This is smaller than in the previous report.
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Deforestation has been declining, and is mostly in Central and South America.
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Again, 15530 PgC has been added to the ocean. Positive anomalies are increases in ocean-uptake. Variations are small.
Uptake decreases with temp. by 4.23% per degree.
Fertilization from runoff, between 0.1-0.4 PgC/yr.

Worry about parameterizations of eddies and brine and of biological models, which only simulate lower trophic levels.
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Warming (and possibly the CO2 fertilization effect) has also been cor- related with global trends in satellite greenness observations, which resulted in an

estimated 6% increase of global NPP, or the accumulation of 3.4 PgC on land over the period 1982-1999.

Changes in the physical climate from increasing GHGs as well as in the diffuse fraction of sunlight are likely to be causing significant changes in the carbon

cycle.

DGVMs underestimate land sink compared to inversions.




An inter-comparison of 10 process-based models showed increased NPP by 3% to 10% over the last three decades, during which CO2 increased by ~50
PpmM.

These results are consistent within the broad range of responses from experimental studies (see Box 6.3). However, Hickler et al. (2008) suggested that
currently available FACE results (largely from temperate regions) are not applicable to vegetation globally because there may be large spatial

heterogeneity in vegetation responses to CO2 fertilization.
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From estimates of inter-annual variations in the residual land sink, 1°C of positive global temperature anomaly leads to a decrease of 4 PgC yr-1 of the
global land CO2 sink.



0 0% 020
(10" hgC m' gpm ™)

B Land
=== Ocean

- G T
: (30" kgt m* K)
-1 L5 ] 0s 1 hec
(gCm' K7)

The two basic effects of increased CO2 on the biosphere. Carbon fertilization, and warming. In the CMIP5.
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CMIP5 is concentration driven, CAMIP is emissions driven.
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Sensitivities in the CMIP5 and C4MIP in the 1% CO2 increase scenario. CAMIP puts more CO2 into the atmosphere than CMIP5 due to warming, this

compensates for a greater fertilization effect; leading to a greater climate response to CO2
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Fossil-fuel emissions can be diagnosed in the CMIP5 models. These are compared with the emissions from the economic models used to create the

1500 -

concentration scenarios. (I think.)
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Compiled results from coupled climate carbon models, including the C4MIP. Individual models are dots. Bars are the mean responses.

Nitrogen limits land response.
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With very high confidence, for all four RCP scenarios, all models project continued ocean uptake throughout the 21st century, with higher uptake
corresponding to higher concentration pathways. For RCP4.5, all the models also project an increase in land carbon uptake, but for RCP2.6, RCP6.0 and
RCP8.5 a minority of models (4 out of 11 for RCP2.6, 1 out of 8 for RCP6.0 and 4 out of 15 for RCP8.5; Jones et al., 2013) project a decrease in land
carbon storage at 2100 relative to 2005.
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The RCP2.6 scenario achieves this negative emission rate through use of large-scale bio-energy with carbon-capture and storage (BECCS). It is as likely as

not that sustained globally negative emissions will be required to achieve the reductions in atmospheric CO2 in the RCP2.6 scenario.
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The dominant cause of future changes in the airborne fraction of fossil fuel emissions (see Section 6.3.2.4) is the emissions scenario and not carbon cycle

feedbacks.



RCP4.5 compatible fossil-fuel emissions
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Fossil fuel emissions for the RCP4.5 scenario (top) in the presence (red) and absence (blue) of the climate feedback on the carbon cycle, and the difference
between them (bottom). Multi-model mean, 10-year smoothed values are shown, with 1 standard deviation shaded. This shows the impact of climate

change on the compatible fossil fuel CO2 emissions to achieve the RCP4.5 CO2 concentration pathway.
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QA = [Ca+2][CO32-])/Ksp, where Ksp is the solubility product for the metastable form of CaCO3 known as aragonite; a value of QA <1 thus indicates
aragonite undersaturation). This aragonite undersaturation in surface waters is reached before the end of the 21st century in the Southern Ocean as
highlighted in AR4, but occurs sooner and is more intense in the Arctic (Steinacher et al., 2009). Ten percent of Arctic surface waters are projected to
become undersaturated when atmo- spheric CO2 reaches 428 ppm (by 2025 under all IPCC SRES scenarios). That proportion increases to 50% when
atmospheric CO2 reaches 534 ppm.

Undersaturated conditions will be reached first in winter.
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It is very likely that global warming will lead to declines in dissolved O2 in the ocean interior through warming-induced reduction in O2 solubility and
increased ocean stratification.
A potential expansion of hypoxic or suboxic water over large parts of the ocean is likely to impact the marine cycling of important nutrients, particularly

nitrogen. The intensification of low oxygen waters has been suggested to lead to increases in water column denitrification and N2O emissions.
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Regional to global scale model simulations suggest a strong effect of climate variability on inter-annual variability of land N2O emissions (Tian et al., 2010;
Zaehle et al., 2011; Xu-Ri et al., 2012). Kesik et al. (2006) found for European forests that higher temperatures and lower soil moisture will decrease future

N20O emissions under scenarios of climate change, despite local increases of emission rates by up to 20%.

Modelling results (Stocker et al., 2013) suggest that the climate and CO2-related amplification of terrestrial N2O emissions imply a larger feedback of 0.03
to 0.05 W m-2 °C-1 by 2100.
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There is low confidence in the projection of future Nr deposition fluxes, particularly in regions remote from anthropogenic emissions.
For the ensemble of CMIP5 projections under the RCP 8.5 scenario, this implies a lack of available nitrogen of 1.3 to 13.1 PgN which would reduce
terrestrial C sequestration by an average of 137 PgC over the period 1860-2100, with a range of 41 to 273 PgC among models. This represents an

ensemble mean reduction in land carbon sequestration of 55%.

None of the CMIP5 models include phosphorus as a limiting nutrient.
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Overall, there is medium confidence that emissions of CH4 from wetlands are likely to increase in the future under elevated CO2 and warmer climate.

But there is low confidence in quantitative projections of future wetland CH4 emissions.

Methane models are of differing complexity. WETCHIMP, assesses their sensitivity. Bars represent CH4 emission changes associated with temperature-only

changes (T), precipitation only (P), CO2 only (CO2) or combinations of multiple factors.

There is high agreement between land surface models that permafrost extent is expected to reduce during the 21st century, accompanying particularly

rapid warming at high latitudes (Chapter 12). However, estimates vary widely as to the pace of degradation (Lawrence and Slater, 2005; Burn and Nelson,
2006; Lawrence et al., 2008). The LPJ- WHyMe model projected permafrost area loss of 30% (SRES B1) and 47% (SRES A2) by 2100 (Wania, 2007).
Marchenko et al. (2008) calcu- late that by 2100, 57% of Alaska will lose permafrost within the top 2 m. For the RCP scenarios, the CMIP5 multi-model

ensemble shows a wide range of projections for permafrost loss: 15 to 87% under RCP4.5 and 30 to 99% under RCP8.5 (Koven et al., 2013).

There is low confidence in modelling abilities to simulate transient changes in hydrate inventories, but large CH4 release to the atmo- sphere during this

century is unlikely.
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