
AT721 Section 2:

The Radiative Transfer Equation

Although we can find a number of different forms of radiative transfer equation in the literature, each
are merely an expression or approximation of energy conservation.

2.2 Volumetric Energy balance
Perhaps the most instructive way to consider radiative transfer is in terms of the energy balance of a

small, elemental volume of ’medium’ in which processes occur to both created and destroy radiation. The
mathematical details of these processes is addressed later.

Figure 2.1 caption here.

For now, imagine an elemental volume of cross-sectional area dA located at a point in space as defined by
the general position vector ~r (Fig. 2.1). Suppose the quantity:

dIν(~r, ξ̂)dAdΩ(ξ̂)dνdt (2.1)

represents the difference in the radiative energy after a beam has passed through the volume crossing
the surfaces dA(~r) and dA(~r + d~r) at each end of the volume element (Fig. 2.1) after traversing a path
ds. From the definition of spectral intensity (1.5), this change can be interpreted as the energy contained
within a time interval dt centered about t and in the frequency interval dν centered about ν, and further
confined to an element of solid angle dΩ oriented in the direction ξ̂ which defines the direction the radiation
is propagating. Suppose Sν(~r, ξ̂) represents the net gain per unit path length of radiative energy as the
beam traverses this volume element along ds. Then the quantity

Sν(~r, ξ̂)dsdAdΩ(ξ̂)dνdt (2.2)
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is the net elemental gain (i.e. sum of losses and gains) of radiative energy by the beam confined as it
traverses a cylindrical element of volume dAds. Equating (2.1) and (2.2) produces

dIν(~r, ξ̂)
ds

= Sν(~r, ξ̂). (2.3)

We can further write (2.3) as1
dIν(~r, ξ̂)

ds
= ξ̂ · ∇Iν(~r, ξ̂) = Sν(~r, ξ̂). (2.4)

Equation (2.4) is a very general statement of energy balance expressed in differential form and, so far, is
independent of any coordinate system. In the cartesian system

ξ̂ · ∇ = ξ̂ · [̂i ∂

∂x
+ ĵ

∂

∂y
+ k̂

∂

∂z
]

= cos φ sin θ
∂

∂x
+ sinφ sin θ

∂

∂y
+ cos θ

∂

∂z

and the general differential form of radiative transfer becomes

cos φ sin θ
∂Iν(~r, ξ̂)

∂x
+ sinφ sin θ

∂Iν(~r, ξ̂)
∂y

+ cos θ
∂Iν(~r, ξ̂)

∂z
= Sν(~r, ξ̂) (2.5)

Many problems in radiative transfer, and the majority of those considered in this book deal with media
that are stratified and horizontally uniform such that

∂Iν(~r, ξ̂)
∂x

,
∂Iν(~r, ξ̂)

∂y
= 0

1 If c is the speed of propagation of radiation within the medium, the distance ds traversed by the beam
is ds = cdt. Then (2.3) becomes:

1
c

dIν(~r, ξ̂)
dt

= Sν

where d
dt is the material derivative:

dIν(~r, ξ̂, t)
dt

=
∂Iν

∂t
+ cξ̂ · ∇Iν .

Therefore it follows that
dIν(~r, ξ̂, t)

ds
=

1
c

∂Iν

∂t
+ ξ̂ · ∇Iν .

and since c � 0,
dIν(~r, ξ̂, t)

ds
≈ ξ̂ · ∇Iν .
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and

cos θ
dIν(z, µ, φ)

dz
= Sν(z, µ, φ) (2.6)

which is referred to as the plane-parallel form of radiative transfer equation

2.3 Sources and sinks of radiation
To complete the derivation of transfer equation, the specific components of Sν are now defined. In

so doing, we restrict the discussion to media that absorb, emit and scatter radiation and formulate these
with respect to small volume of ’medium’ illustrated in Fig. 2.1. Two processes remove radiation from
this volume as the beam traverses it and the combined losses are referred to as extinction. One process is
the absorption of radiation and the second is that due to scattering of some fraction out of the traversing
beam. By contrast, processes that add radiation to the beam are referred to as emission and there are
two forms of emission (Fig. 2.2b). One is the real thermal emission usually considered under condition of
local thermodynamic equilibrium and the is a ’virtual emission’ arising from the scattering of all radiation
that impinges on the volume from all directions into the direction of the beam ξ̂.

2.3.1 Extinction

Extinction is expressed as a change in intensity dIν when a beam propagates along a path of length ds.
This change is empirically related to the incident intensity of the radiation via Lambert’s law of extinction

dIν = −σextIνds (2.7)

where σext is the proportionality constant known as the extinction coefficient. This extinction may occur as
a result of scattering by particles or molecules in the atmosphere, by absorption by particles and molecules
in the atmosphere or by a combination of both (although the molecules that scatter radiation are, on the
whole, different from the molecules that absorb radiation). Thus we can write

σext = σsca + κν (2.8)

where σsca and κν are the scattering and absorption coefficients. In equating (2.7) to (2.x), we obtain

Sν(~r, ξ̂) = −σext(~r)Iν(~r, ξ̂) (2.9)

2.3.2 Thermal Emission

For the majority of radiative transfer problems encountered in the atmospheric sciences consider that
the emission of radiation occurs under the assumption of local thermodynamic equilibrium (LTE). In
media that are in a state of LTE, the emission from any small volume element within the medium is
characterized by its local temperature T (~r). In such situations

Sν(~r, ξ̂) = −κν(~r)B(T (~r)) (2.10)

where the emission is specified in terms of the Planck black body function B(T (~r)) .

2.3.3 Diffuse Scattering as a virtual source of Radiation
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Photons flowing along a given direction are removed by single scattering. This process is contained
within eh extinction formula (2.7). However, these photons can also reappear again along that same
direction when scattered a multiple of times. In fact, many of the scattering media of interest to studies
of the atmosphere are multiple scattering media, that is media containing a sufficient number of scatterers
that photons traversing it are likely to be scattered more than once. The whiteness and brightness of
clouds is a result of multiple scattering as is the non-uniform color of the clear sky. Reflection of visible
and microwave radiation from various surfaces is also largely influenced by multiple scattering. Multiple
scattering is relevant to a myriad of topics and the mathematical description of how we account for it
occupies much of the first half of this book.

Figure 2.2 Add fig from LITE Miller and Stephens, 1999.

For now we are concerned only indirectly with multiple scattering in the sense that we wish to account
for its effects on a beam of monochromatic radiation as it flows through a volume taken to be small enough
that only single scattered photons emerge from it along a direction ξ̂ defined by the beam that illuminates
it. The incremental increase in intensity along the direction ξ̂ due to the scattering of a beam incident
from the direction ξ̂′ is, by virtue of the definition of the phase function,

δIν(~r, ξ̂) = σsca(~r)ds
Pν(~r, ξ̂ · ξ̂′)

4π
Iν(~r, ξ̂′)dΩ(ξ̂′) (2.10).

where the wavelength dependence on all quantities is understood. The total contribution to Iν(~r, ξ̂) by
scattering of the complete diffuse field surrounding the volume is given by the integral of (2.10), namely

dIν(~r, ξ̂) = σsca(~r)ds

∫
4π

Pν(~r, ξ̂ · ξ̂′)
4π

Iν(~r, ξ̂′)dΩ(ξ̂′) (2.11).

which leads to the following definition

J(~r, ξ̂) = $o(~r)
∫

4π

Pν(~r, ξ̂ · ξ̂′)
4π

Iν(~r, ξ̂′)dΩ(ξ̂′) (2.11).



5 Chapter 1

Figure 2.3 Geometry for scattering of diffuse light. ξ̂ the unit vector

that defines the direction of the flow and ~r is the vector that specifies the

position of the volume element relative to an origin point.

where $o = σsca

σext
≤ 1 is the single scattering albedo. Thus

Sν(~r, ξ̂) = σscaJ(~r, ξ̂)

We also make note here of an important property that derives from the definition of the phase function,

1
4π

∫
4π

Pν(~r, ξ̂ · ξ̂′)dΩ(ξ̂′) = 1 (2.12)

which merely states that the amount of energy totally scattered out of a beam is equal to the amount of
energy removed from the forward direction by scattering.

2.4 The equation of transfer revisited
We are now able to bring together the three components of S(~r, ξ̂) to arrive at the following general

form of radiative transfer equation for an absorbing, emitting and scattering medium;

dIν(~r, ξ̂)
ds

= −σext(~r)[Iν(~r, ξ̂)− J(~r, ξ̂)] + κνB(T (~r)) (2.13)

or
dIν(~r, ξ̂)

ds
= −σext(~r)Iν(~r, ξ̂) + σsca(~r)

∫
4π

Pν(~r, ξ̂ · ξ̂′)
4π

Iν(~r, ξ̂′)dΩ(ξ̂′) + κνB(T (~r)) (2.14)

Consider now a number of special cases:
• The sourceless medium , J(~r, ξ̂), B(T (~r)) = 0. In this case,

dIν(~r, ξ̂)
ds

= −σext(~r)Iν(~r, ξ̂) (2.15)
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and the solution to this equation is straightforward and expresses Beer’s law, namely

Iν(~r(s′′), ξ̂) = Iν(~r(s′), ξ̂) exp[−
∫ ~r(s′′)

~r(s′)

σext(~r(s′)ds′] (2.16)

where the exponential factor is the transmission function.

• Absorbing-emitting atmosphere, $o = 0, J(~r, ξ̂) = 0, σext(~r) = κν(~r).

• The plane parallel equation
In cartesian coordinates, the plane-parallel of (2.14) becomes

µ
dIν(z, µ, φ)

dz
= −σext(z)Iν(z, µ, φ) +

σsca(z)
4π

∫ 2π

φ′=0

∫ 1

µ′=−1

Pν(z, µ, φ, µ′, φ′)Iν(z, µ′, φ′dµ′dφ′

+κν(z)B(T (z)) (2.17)

Many radiative transfer problems adopt a (vertical) coordinate defined by the quantity

dτ = −σextdz (2.18)

which is referred to as the optical depth. Of note is the ’-’ sign which implies the optical depth increases
downwards from the top of the atmosphere opposite to z which increases upwards from the surface. The
consequence of this follows when combining (2.18) into (2.17), to produce

µ
Iν. (τ, µ, φ)

dτ
= Iν(τ, µ, φ)−$o(τ)

4π

∫ 2π

φ′=0

∫ 1

µ′=−1

Pν(τ, µ, φ, µ′, φ′)Iν(τ, µ′, φ′dµ′dφ′−[1−$o]B(T (τ)) (2.19)

where a (subtle) sign change to the individual terms on the right hand side of (2.19) now appears.

• Diffuse-direct radiation; It is desirable to develop some way of dealing separately with collimated sources
of radiation, such as the direct radiation from the sun. For these problems it proves to be practical to
separate the radiation along the direction of this source (we call this the direct beam) from the radiation
in all other directions (which we refer to as the diffuse field as it arises from scattering of the direct beam).
In making this distinction, then we need to consider two distinct virtual emission sources, one arising from
scattering of the diffuse field and a second due to scattering of the direct beam. Consider the intensity
field as follows

I = I0 + I1 + I2 + · · · In + · · · =
∑

n

In (2.20)

where for short–hand the ~r, and ξ̂ dependencies have been dropped. here we have decomposed the intensity
field into a sum of all orders of scattering and there is much more discussion on this approach in chapter
x. We write this decomposition in the form

I = I0 + I∗ (2.21)

where I∗ is the total diffuse intensity I∗ =
∑

n=1 In and I0 is the unscattered radiation (i.e. the radiation
we associate with penetration of a collimated source into the medium. The radiative transfer equation
that defines the variation of I0 is simply Beers law which can be written in differential form

µ�
dI0

dz
= −σextI

0
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for the beam travelling along the direction (µ�, φ�) and has the solution

I0(z) = I� exp[−τ/µ�] (2.22)

where I� is the source incident at the top of the medium. Introducing (2.22) in (2.19) leads to the following
equation for µ 6= µ�

µ
dI∗(z, µ, φ)

dz
= −σext(z)I∗(z, µ, φ) +

σsca(z)
4π

∫ 2π

0

∫ 1

−1

P (z, µ, φ, µ′, φ′)[I∗(z, µ′, φ′) + I0(z, µ′, φ′)]dµ′dφ′

+κν(z)B(T (z)) (2.23)

where we make specific provision for scattering of I0 from the direction (µ′, φ′) into the direction (µ, φ).
For a collimated (or near collimated source), the direction (µ′, φ′) is constrained about a small sub–set of
the Ω–space such that the term

σsca(z)
4π

∫ 2π

0

∫ 1

−1

P (z, µ, φ, µ′, φ′)I0(z, µ′, φ′)dµ′dφ′ =
σsca(z)

4π

∫
4π

P (z, ξ̂, ξ̂′)I0(z, ξ̂′)dΩ(ξ̂′)

=
σsca(z)

4π

∫
Ω�

P (z, ξ̂, ξ̂′)I0(z, ξ̂′)dΩ(ξ̂′)

where Ω� is a small but finite solid angle characteristic of the near-collimated beam. Since Ω� is small,
it follows that

σsca(z)
4π

∫
Ω�

P (z, ξ̂, ξ̂′)I�(z, ξ̂′)dΩ(ξ̂′) ≈ I0(z)Ω�

4π
σsca(z)P (z, ξ̂, ξ̂�)

and from (2.x) it follows that the source of diffuse intensity due to scattering of a collimated
source at the level specified by τ is

F�
4π

σsca(z)P (z, ξ̂, ξ̂�) exp[−τ/µ�]

where F� = I�Ω� is the flux of radiation incident at cloud top. Combining this with (2.22) leads to

µ
dI∗(z, µ, φ)

dz
= −σext(z)I∗(z, µ, φ) +

σsca(z)
4π

∫ 2π

0

∫ 1

−1

P (z, µ, φ, µ′, φ′)I∗(z, µ′, φ′)dµ′dφ′

+
F�
4π

σsca(z)P (z, µ, φ, µ�, φ�) exp[−τ/µ�] + κν(z)B(T (z)) (2.24)

Hereafter we will omit the superscript ‘*’ and take it to be understood that I in equations of the form of
(2.24) refers to the diffuse intensity. The alternative form of (2.24) is

µ
dI(τ, µ, φ)

dτ
= I(τ, µ, φ)− $o(τ)

4π

∫ 2π

0

∫ 1

−1

P (τ, µ, φ, µ′, φ′)I(τ, µ′, φ′)dµ′dφ′

−F�
4π

$o(τ)P (τ, µ, φ, µ�, φ�) exp[−τ/µ�]− [1−$o](τ)B(T (τ)) (2.25)



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 

 
 
 
 
 
 
 
 
 



 


