
AT721 Section 1:

Elementary Concepts

1. Introduction
Transport theory that accounts for the major radiation processes in the Earth’s atmosphere (scattering,
absorption and emission) including multiple scattering is one specific case of a more general class of
problems (Table 1.1). The radiative transfer equation is equivalent to Boltzmann’s equation used as the
basis of the kinetic theory of gases and in the transport of neutrons. The same theory is used in a host
of applications – such as underwater visibility, marine biology, optics of paint, papers, and photographic
emulsions, radiation propagation in planets, stars and galaxies and in the optics of biological material such
as blood, viruses and others.

1.2. Scope
This book deals with both forward and inverse problems of radiative transfer as typically encountered

in the Earth–atmosphere sciences. The stage for these topics, and the scope of this book, can be broadly
set in the context of the following expression:

y = F (x, b) + εy (1.1)

where x is the vector representing the physical properties of the atmosphere (temperature, moisture, par-
ticle information, etc.,) that we wish to infer from the measurements y which is a vector generally of
radiometric quantities, εy is the measurement error including all instrument factors (noise and calibration
uncertainties for example), and F is the forward function connecting the measurements to the physical
properties of the atmosphere. For the topics of this book, F describes the processes of radiative transfer
and formally represents the solution of the radiative transfer equation. b is a vector of other parameters
that define F and will be assumed to be known. For example, b might represent appropriate spectro-
scopic information on gaseous absorption, refractive index properties or other information about particle
scattering, etc.

In general the function F is imperfectly known to us and approximations have to be introduced to
establish it. These approximations depend on the types of radiative transfer problems that characterize
our problem. For instance, F may be the solution to (multiple) scattering processes when visible radiances
are measured or F might be defined by emission and absorption in the far IR. The first portion of this
book deals largely with the formulation of the radiative transfer equation for these different problems and
the corresponding methods of solution.

The second half of the book is concerned with the inversion of F , in various approximate forms,
to arrive at an estimate of x. In practice most problems of these inversion problems are ill-posed and
significantly affected by errors in f as well as errors in the measurements themselves. This places a certain
onus on evaluating the solutions to the radiative transfer equation. Typically we overcome these problems
by introducing some form of constraint, usually in the form of a constraint on x via a priori information.
Practically all inversions, simple or complex, use constraints either explicitly or implicitly. An example
of the explicit use of constaints is in sounding retrievals in which profile information is used as an initial
guess in retrievals of temperature or moisture. This error source is not a major concern if it is known that
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a priori data does not propagate into the final retrieval. Unfortunately, it is generally not understood just
how much this sort of information is retained in the finalretrieval.

1.3 Geometry and direction
Before developing the details of radiative transfer and its solutions, we must first consider the relevant

quantity around which the theory is constructed. As we will soon see this quantity is the spectral intensity
or spectral radiance and it has at its cores, a geometric construct. The intensity defines the flow of energy
along a specific collection of directions and before considering this quantity in more detail, we must first
establish what we mean by a direction and how we represent integration over direction. To do so requires
the introduction of a reference coordinate system. Most generally, this is the Cartesian system specified
by three orthogonal axes x, y, and z and their corresponding unit vectors î, ĵ, and k̂ respectively. Two
examples of such a system in common use in Earth sciences are shown in Fig. 1.1. We refer to either one
as a terrestrial frame of reference. What distinguishes these two systems from each other is the way the
x and z axes are anchored relative to each other. In both cases, the z axis is parallel to the local vertical
but in one case z increases in a direction opposite to the direction of k̂. Another special property of the
two reference frames shown is that the x axis is aligned so the x − z plane contains the sun. This is a
special situation and such a frame is known as a sun–based frame of reference.

A general reference point within a Cartesian frame of reference may be indicted by the position vector
~r such that

~r = (x, y, z),

where (x, y, z) defines the coordinates of the tip of this vector. We can also define a direction vector in
terms of a general unit position vector (ξ̂) which has its base at the origin and tip at the point (a, b, c)
where this point lies on the unit sphere that surrounds the origin. In this case

√
a2 + b2 + c2 = 1. The

unit direction vector may also be defined in terms of a general point (x, y, z) by

ξ̂ = ~r/ | r |= (x, y, z) /
(
x2 + y2 + z2

) 1
2 .

A more trigonometrical interpretation of the direction vector follows by considering Fig. 1.2a. A
point (a, b, c) on the unit sphere, has the coordinates

a = ξ̂ · î = cos φ sin θ

b = ξ̂ · ĵ = sinφ sin θ

c = ξ̂ · k̂ = cos θ = µ,

where θ is the zenith angle and φ is the azimuth angle. The latter, in this case, is measured positive
counter clockwise from the x axis. Since ~ξ = (a, b, c), then

ξ̂ = (cos φ sin θ, sinφ sin θ, cos θ) (1.2)

and it often proves convenient to replace ~ξ with the angle pair (θ, φ) where the latter means (1.1). We
will also use µ for cos θ throughout the book and will hereafter interchangeably use ξ̂,(θ, φ) or (µ, φ) to
represent a direction.

1.3.1 The example of the Scattering angle
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Figure 1.1 Two sun–based terrestrial frames of reference commonly used

in studies of the scattering of radiation in the earth’s atmosphere.
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Figure 1.2 (a) Angle and direction definitions defined with respect to a

unit sphere. (b) Scattering geometry and the scattering angle on the unit

sphere.
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The scattering angle Θ is an important parameter in the mathematical description of the scattering
process. This angle is defined as the angle between the direction of incident radiation ξ̂ and the direction
of scattered radiation ξ̂′,

cos Θ = ξ · ξ̂′. (1.3)

which can also be schematically represented on a unit sphere as shown in Fig. 1.2b. It follows from (1.2)
and (1.3) that Θ can be stated in terms of the two pairs of angles (µ′, φ′) and (µ, φ)

cos Θ = µµ′ +
(
1− µ2

) 1
2

(
1− µ′2

) 1
2 cos (φ′ − φ) (1.4)

and, on occasions, it will prove convenient to replace cos Θ with the notation (µ, µ′, φ, φ′).

1.1.1 The example of ..
add other examples

1.4 Solid angle and hemispheric integrals
Practically all radiative transfer problems, and those dealing with scattering in particular, require some
type of angular integration. This requires the notion of solid angle and a convenient way to think about
both these angular integrals, and the concept of solid angle specifically, is to imagine that a point source
of light is located at the center of our unit sphere and that there exists a small hole of area A on its surface
allowing light to flow through it. This light is contained in a small cone of directions which is represented
by the solid angle element

Ω = area of opening on unit sphere Ξ,

that is
Ω =

A

r2

where Ξ symbolically represents the unit sphere and where r is the radius of this unit sphere. The area of
the opening is then

r2Ω = r2

∫
A

dΩ = r2

∫ ∫
A

dadb = r2

∫ ∫
A

sinθdθdφ

where an r2 factor is dropped since r = 1 for the unit sphere. Therefore, the solid angle element dΩ, which
has units of steradian,is related to θ and φ according to

dΩ = sin θdθdφ.

Example 1: The solid angle of sphere, hemisphere
Example 2: The solid angle of the sun

The solid angle of a spherical segment is

Ω =
∫ θ2

θ1

sinθdθ

∫ 2π

0

dφ = 2π[cos θ1 − cos θ2]

The solid angle of a spherical cap defined by the angle θ is

Ω =
∫ 2π

0

dφ

∫ θ

0

sinθdθ = 2π[1− cos θ]
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and for small θo,→ cos θo → 1− θ2
o/2 + . . . and

Ω� ≈ πθ2
o

which defines the he solid angle of the sun. To a good approximation θo ≈ r�/RS and thus

Ω� ≈ π

(
0.7× 106

1.5108

)2

≈ 0.684× 10−4

1.5 Spectral Intensity and angular moments

Figure 1.3 Geometry and symbols used in the definition of intensity.

The monochromatic intensity (or radiance) is the fundamental quantity around which radiative trans-
fer is constructed. To define this quantity, consider an element of surface dA located at ~r and oriented
with a unit normal n̂ as illustrated in Fig 1.3. Let dEν be the amount of radiative energy in the frequency
interval between ν and ν+dν, confined to an element of solid angle dΩ around the direction of propagation
ξ̂ streaming through the element of surface dA during the time interval t, t + dt. Let θ be the polar angle
between the normal n̂ and the direction of propagation ξ̂. The monochromatic intensity Iν(~r, ξ̂) as follows:

dEν = Iν(~r, ξ̂)dA cos θdΩdνdt (1.5)

or
Iν(~r, ξ̂) =

dEν

dA cos θdΩdνdt
(1.6)

where dA cos θ = dAξ̂ ·n̂ is the projection of the surface dA normal to the direction of flow ξ̂. In words,
the spectral intensity is the amount of energy streaming through unit area perpendicular to the direction
of propagation ξ̂, per unit solid angle around the direction ξ̂, per unit frequency about the frequency ν,



7 Chapter 1

and per unit time about the time t. The units of spectral radiance hereafter are Wm−2.ster−1.f−1 where
f here symbolically represents a measure of the spectral region of interest, either as a unit of frequency
(Hz), a unit of wavelength (m) or a unit of wavenumber (m−1). Hereafter it is taken to be understood
that the spectral intensity is a function of this frequency measure as indicated by the subscript ν and this
dependence will often be dropped for convenience. Also, the time dependence ...

1.5.1 Angular integrals
Most radiative transfer problems require some integration of the intensity Iν(~r, ξ̂), over some set of

directions defined by some solid angle Ω(ξ̂) which may be taken as centered about ξ̂. The integral

h(ξ̂) =
∫

Ω(ξ̂)

Iν(~r, ξ̂)dΩ(ξ̂)

defines a flux quantity (units of Wm−2.f−1). For the case that Ω = 4π, then the quantity

Īν =
1
4π

∫
Ω(ξ̂)

Iν(~r, ξ̂)dΩ(ξ̂) =
1
4π

∫ 2π

0

dφ

∫ 1

−1

Iν(~r, µ, φ)dµ (1.6)

is referred to as the mean intensity.
Consider now an integral performed with respect to some fixed surface element dA oriented in such a

way that the unit vector n̂ is the normal to the surface. According to (1.5)

dEν = Iν(~r, ξ̂′, t)dAn̂ · ξ̂dΩ(ξ̂)dνdt

is the energy that flows through the surface dA. The total energy confined to solid angle Ω(ξ̂) that flows
through dA is

dAdνdt

∫
Ω(ξ̂′)

Iν(~r, ξ̂, t)n̂ · ξ̂dΩ(ξ̂′)

and the quantity

F (ξ̂) =
∫

Ω(ξ̂)

Iν(~r, ξ̂, t)n̂ · ξ̂dΩ(ξ̂)

is referred to as the spectral flux and has units of Wm−2.f−1. Consider the specific form of this flux
quantity defined for horizontal surfaces, i.e. n̂ · ξ̂ = cos θ, to illustrate the idea. In this case n̂ · ξ̂ = cos θ.
For an integral performed over a full hemisphere, Omega(k̂) = 2π, then

F =
∫ 2π

0

dφ

∫ 1

0

I(µ, φ)µdµ. (1.7)

is the hemispheric flux (defined with respect to the horizontal surface whose normal is k̂). The net flux is

F =
∫ 2π

0

dφ

∫ 1

−1

I(µ, φ)µdµ. (1.8)

Add other moments Other moments - mean intensity,
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provide some simple integral examples, azimuthal symmetric; isotropic, etc ...
Example 3: The intensity and flux from the sun

The sun radiates approximately as a blackbody. This radiation is isotropic and we set this as a value
of I�. However, at Earth, this is confined to a very small solid angle Ω�. The flux from the sun on a
surface perpendicular to the flow (say this surface is aligned along k̂) is this

F� = I�Ω�

1.6 Selected Theorems
Theorem 1: The radiance Invariance Law

Theorem 1: The m2 law for radiance

Fig. 1.4 The geometric setting for the n2 law.

Consider the situation shown in Fig. 1.4 flowing onto a surface defined by a discontinuity in refractive
index m. At the surface

P1

A1
= F1 = F2 =

P2

A2

Schnell’s law predicts that

m1 sin θ1 = m2 sin θ2 (θ1, θ2 small by hypothesis)

m1θ1 = m2θ2

and it follows that
m2

1Ω1 = m2
2Ω2

where we make use of our small cap approximation Ω = πθ2. Since

Ω1I1 = F1 = F2 = I2Ω2
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we obtain
I1

m2
1

=
I2

m2
2

Thus we take I/m2 as the intensity when we are interested in propagation through a medium in which m
is varying. The radiance from one m environment (like the atmosphere) to another m environment (like
the ocean) thus needs to be adjusted by this m2 factor.



 
Nuclear Reactors Determination of neutron distributions in reactor cores 

Shielding against intense neutron and gamma radiation 
 

Astrophysics Diffusion of light through stellar atmospheres (radiative transfer) 
Penetration of light through planetary atmospheres 
 

Rarefied gas dynamics Upper atmosphere physics 
Sound propagation 
Diffusion of molecules in gases 
 

Charged particle transport Multiple scattering of electrons 
Gas discharge physics 
Diffusion of holes and electrons in semiconductors 
Development of cosmic ray showers 
 

Transport of electromagnetic 
radiation 

Multiple scattering of radar waves in a turbulent atmosphere 
Penetration of X-rays through matter 
 

Plasma physics Microscopic plasma dynamics 
Microinstabilities 
Plasma kinetic theory 
 

Other Traffic flow (transport of vehicles along highways) 
Molecular orientations of macromolecules 
The random walk of undergraduates during registration 
 

Table 1.1:  Applications of Transport Theory 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 



 

 
 
 
 
 



 
 
 
 

 
 


