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So far we have assumed that the measurements all provide information and further we have a clear idea
about what state information x can be extracted from these measurements. However, for many modern
observing systems that yield, for example, hundreds or thousands of spectral measurements of radiances,
it is not always obvious how many of these measurements actually contribute to the retrieved state and
how many are really redundant. Furthermore, it is often not even obvious that our predetermined notion
of the state vector x is the optimal choice for a given observing system. These issues underly the topic of
this chapter, namely the topic of information content.

14.1 Sensitivity Analysis

14.2 Measurement Redundancy

Another step toward an understanding of the information content inherent in any measurement lies in
determining how many measurements add significantly to a retrieval of the state x. This naturally leads
to the posing of the following question:
given N measurements yi, i . . . N with uncertainty εi, i . . . N will additional information accrue with the
additional of more measurements?
As we have seen throughout, the kernel and related measurement error are two quantities instrumental
in characterizing the inverse problem and these two quantities are crucial for understanding measurement
redundancy.

At first thought, we might suppose that we can get a clue at what measurements are unnecessary by
examining, for example, the relationship between yi and i (which might be thought of as wavelength λi).
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Consider the following hypothetical data:
i yi
...

...
4.0 20.01
4.5 17.98
5.0 16.02
...

...

Provided we are only concerned with 3 figure accuracy, yi is exactly linearly related to the index and
there seems no point adding further measurements (at least between i = 4.0 and i = 5.0 as they can be
easily predicted with equivalent accuracy provided our measurements cannot be made better than this 3
figure accuracy. We are however left with a quandry- is this linear relationship merely happen chance such
that more measurements either outside or inside the range 4 <⊂< 5 will actually deviate from the linear
relationship implied from the 3 measurements given or is it robust. Suppose that the kernels are linearly
related,

K(i = 4.5, x) =
1
2
K(i = 4, x) +

1
2
K(i = 5, x)

and that this relation applies over the entire interval of x then for all x, y(i = 4.5) = 1
2y(i = 4)+ 1

2y(i = 5)
and the redundancy of the middle measurement at i = 4.5 is not accidental.

14.2.1 Interdependence of Kernels

The search for measurement redundancy can be thought of as looking for at the possibility of writing
any kernel as a linear combination of others. By supposition we suppose that for the measurement at lth
wavelength

Kl =
∑

j 6=l

ajKj(x) (14.1)

then
yl =

∑

j 6=l

ajyj(x) + δl (14.2)

where δl is the error associated with this representation of the measurement and, by supposition, is just
the accumulation of all measurement errors

δl =
∑

j 6=l

ajεj(x) (14.3)

. If the error of this ’synthetic measurement’ is less than the error εl of an actual measurement then this
actual measurement is totally redundant since it can be replace with a synthetic quantity written entirely
as a linear combination of other measurements and thus is entirely ineffective in determining the retrieval
state x.

It would be useful to know the theoretical conditions under which the kernels are completely linearly
dependent kernels as this determines a baseline to establish how many measurements might be independent.
The condition ∑

j

ajKj(x) = 0 (14.4)
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obviously implies any kernel Ki is linearly related to all other kernels

Ki = a−1
i

∑

j 6=i

ajKj(x) (14.5)

However, to avoid the trivial condition that

∑

j

aj = 0 (14.6)

some constraint must be applied to the a’s and we lose no generality in choosing

∑

j

a2
j = 1 (14.7)

which has the effect of placing a bound on the error

| δ |2=|
∑

j

ajεj(x) |2≤
∑

j

a2
j

∑

j

ε2j (14.8)

according to the Schwartz inequality (Twomey, 1977). Given (14.7), we obtain an upper bound | δ |2≤∑
j ε2j which for independent randomly distributed errors, | δ |2≤ N | ε |2.

In principle (14.4) is ideal and errors in the formulation will invariably effects how close the condition
(14.4) really applies. For practical cases, we want to make (14.4) a minimum, i.e. determine that set of
as such that

∑
min ajKj(x) given the constraint

∑
j a2

j = 1. It turns out that the solution to this problem
coincides with the smallest eigenvalue of the matrix KKT with the choice of a being the normalized
eigenvector associated with this minimum eigenvalue.

Consider the general forward problem

yl + εl =
∫

Kl(x)f(x)dx (14.9)

and suppose that
Kl = a−1

l

∑

j 6=l

ajKj(x) (14.10)

where it is convenient to consider al as being the numerical largest of the as which means it must be at
least of value N−1/2 and this also avoids the problem of choosing al which has a zero value. The condition
that

∑
j ajKj(x) = 0 is sufficient and necessary for a measurement yl to be exactly predictable from other

measurements, namely

yi = −a−1
l

∑

j 6=l

aj

∫
Kj(x)f(x)dx = −a−1

l

∑

j 6=l

ajyj (14.11)

The vanishing of
∑

j ajKj(x) to exactly zero rarely occurs but it often approaches a small value and the
minimum eigenvalue approaches a small value and thus the prediction (14.11) has some (small) error

Kl =
∑

j 6=l

(−aj/al)Kj(x) + δ(x) (14.12)
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Inserting (14.12) into (14.9) yields the following

yl =
∫ ∑

j 6=l

(−aj/al)Kj(x)f(x)dx +
∫

δ(x)f(x)dx− εl (4.13)

In thinking about the errors associated with this yl, it is first convenient to scale the problem as follows:

αyl + αεl =
∫

α

β
Kl(x)βf(x)dx

where alpha and β are arbitrary scale factors. We select α so the measurements yl are order unity so εl are
percentage errors and if the rms relative error is e, then | ε |2= Ne2 We choose β so that | f(x) |2 is order
unity. Given this relative scaling, then we can relate the different components of error by considering the
equivalent of (4.13) in scaled form

yl = y′l +
∫

δ(x)f(x)dx−
∑

j

(aj/al)εj (14.14)

The interpretation of each term follows
•a component y′l that is entirely predictable from other measurements
•a component

∫
δ(x)f(x)dx that is not predictable and depends on the unknown f(x). As such this

component identifies new information provided by making the measurement.
•The error term: resulting in our experimental determination of y.

If the second term exceeds the first term, then making the measurement offers new information
otherwise we can calculate y′l and obtain an estimate of yl closer to than we can measure it. That
independence implies that ∫

δ(x)f(x)dx >
∑

j

(aj/al)εj

and when proper scaling is done, the minimum eigenvalue λmin is the upper bound to the square norm
of the left hand side, and N−1 | ε |2 is the upper-bound on the error term (Twomey, p 194) so that the
important result emerges:
Provided the system is properly scaled, the independence of N measurements in the presence of a relative
error of measurement | ε | is assured if λmin > N−1 | ε |2. This is an important result and can be
extended more generally owing to the orthogonality of the eigenvectors of KKT . This general state is that
if there are m eigenvalues that are less than | ε |2, then there are m redundant measurements that can be
predicted as well as they can be measured.

14.2.2 A simple Example

Consider the example of Twomey
K`(x) = xe−`x (14.15)

such that the maximum of function occurs at x = `−1 ranges from 0 and 1. For each N , N kernels are
constructed so the maxima uniformly spread between between x = 0 and 1, e.g.

K(x) = xe−x
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K(x) = xe−4x/3

K(x) = xe−2x

K(x) = xe−4x

(and see Fig. 14.1) and are normalized to unit area under the curves so that

∫ 1

0

xe−`xdx = `−2[1.− e−` − `e−`]

Fig. 14.1 Kernels for the ’standard problem’ with the maxima distributed

through the normalized range of x.

The eigenvalues of the N order covariance matrix

C = ‖
∫ 1

0

Ki(x)Kj(x)dx‖

were then calculated as shown in Fig 14.2. The eigenvalues are shown as a function of the number of
’measurements’ N which are introduced in this example by increasing the number of ` values over a fixed
interval 0 < x < 1. For smaller values of N all eigenvalues are plotted but for larger values of N some
values are too small to appear in the figure. The number of pieces of useful information is given by the
number of eigenvalues that exceed a fixed value that depends on the accuracy of the measurement. The
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Fig. 14.2 The eigenvalues of the correlation matrix as a function of the

number of measurements

dashed line shows the limit for a 1% measurement error. The figure illustrates that merely increasing the
number of observations N does not achieve much increase in information.

Introduce and discuss AIRS water vapor results

14.3 Shannon’s information content

Sensitivity analysis like that described above provides insight into what state variables most influence
the measurements and thus are a measure of information. However, the ultimate utility of the observations,
also depends on other factors such as instrumental characteristics that include signal-to-noise ratios and
calibration accuracy. With this in mind, we now consider more specific and quantitative measures of
information that take these additional factors into consideration. The approach to information theory
used here is that according to Shannon and Weaver (1949) as applied to satellite radiance measurements
by Rodgers (2000).

We will introduce three measures of information, each defined relative to a given state of prior knowl-
edge: (i) the number of independent measurements made to better than measurement error - this is referred
to as the degrees of freedom for signal; (ii) the singular values of a scaled weighting function matrix that
tells us how many pieces of information about the physical system can be extracted over and above the
inherent noise level of the system; and (iii) the Shannon information content of each independent mea-
surement and the total Shannon information content which broadly characterizes the resolution of the
observing system.
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Fig. 14.3 The AIRS example.

14.2.1 Theory

The information content of a set of observations can be defined by the change in the logarithm (base 2)
of the number of distinct possible states of the system being measured. First we define the possible states
x of a system by a probability distribution function P (x). In both the statistical and thermodynamical
context, entropy is the logarithm of the number of distinct internal states of a system consistent with the
measured (macro-)state and therefore is a measure of the information of that system. The entropy S(P )
of the system follows as

S(P ) = −k

∫
P (x) ln P (x)dx (14.15)

If we assume that Gaussian statistics represent the probability distributions function of the (vector) state
x of dimension n, namely

P (x) =
1

(2π
n
2 |Sx| 12

exp{−1
2

(x− x)TS−1
x (x− x)} (14.16)

Sx is the covariance matrix that characterizes our knowledge of the system relative to the true state x ,
then the entropy follows as

S(P ) =
1
2

ln |Sx| (14.17)

Thus the entropy is the logarithm of the volume of state space occupied by the probability density function
defined by the covariance matrix.
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In the context of an observing system, if P1(x) describes our knowledge of the system before a
measurement is made (the prior distribution and characterized by the a priori error covariance matrix
Sa), and P2(x) describes knowledge after the measurement (the posteriori distribution as represented by
the retrieval error covariance matrix Sx), then the information content provided by the measurements may
be formally defined as the reduction of entropy:

H = S(P1)− S(P2) (14.18)

which becomes
H =

1
2

ln |SaS−1
x | (14.19)

In this way, we interpret H as a reduction in volume of the prior probability function after making the
observations. If we consider the ’atmospheric state’ as defined by the retrieval vector x then of all the
possible atmospheric states within the space defined by the a priori covariance matrix a number of 2H

states can actually be distinguished by the observations. Thus H provides some measure of the resolving
power of the observing system. For example, and in the context of the present study, H = 1 implies a
very coarse observing system that is only able to identify two different states over and above our prior
knowledge - that is it can only differentiate (say) between a state that is optically thinner or thicker than
the a priori state.

Another useful measure of information is the degrees of freedom for signal. While the total degrees
of freedom of a set of observations is equal to the number of observations, only a selection of these total
degrees of freedom is independent and significant with respect to the measurement noise. The degrees
of freedom for signal are therefore defined as the number of independent pieces of information in a set
of measurements that can be observed above the noise of the observations. This does not equate to a
practical measure of how many parameters might be extracted from the measurements, it merely tells
us about the number of useful measurements. Using the above covariance definitions, we can write the
degrees of freedom for signal, d, as the trace of the same matrix product as is used in the definition of the
Shannon information content namely:

d = Tr(In − SaS−1
x ) (14.20)

where In is a n×n identity matrix.
The third piece of information about the observing system can be conveniently introduced considering

a general observing system expressed in a linear in form,

y = Kx (14.21)

where K is the weighting function matrix constructed from the sensitivities of the kid discussed in the
previous sections. Given a constraint in the form of an a priori covariance matrix Sa, we can write the
retrieval error covariance matrix as (see Rodgers, 2000; also Part II)

Sx = (S−1
a + KTS−1

y K)−1 (14.22)

where Sy is the measurement plus model error covariance matrix. Here it is useful to introduce the scaled
weighting function matrix

K̃ = S−1/2
y KS1/2

a (14.23)

such that the singular values λi of this matrix are a direct measure of the signal-to-noise ratio taking into
account our prior knowledge of the atmospheric state. Thus, singular vectors with singular values exceeding
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unity contain usable information about the atmospheric state, while singular vectors with a singular values
smaller than unity are more likely dominated by the measurement noise. Therefore the number of singular
vectors with associated singular values exceeding unity equates to the number of different parameters we
might usefully extract from the measurements to define the state x. If we find there are four pieces of
information about the state that can be so determined, this may or may not mean that our predetermined
set of 4 parameters, such as τ,$o,mr and re, or combinations of them, optimally define the state. Closer
study of the singular vectors gives some sense for which combination of parameters best represents the
information in the measurements.

Rodgers (2000) shows that the singular values can be used to calculate the degrees of freedom for
signal

d =
∑

i

λ2
i

(1 + λ2
i )

(14.24)

and the information content

H =
1
2

∑

i

ln(1 + λ2
i ) (14.25)

Therefore, by calculating the singular values of K̃ we are able to determine the two other pieces of
information. We now consider these measures of information first in relation to a simple model of sunlight
reflected by aerosol and then in application to the A-Train observing system.

14.3 Example 1: The CO2 retrieval

A simple example can show the use of the above-defined measures of information in an observation.
Assume we want to retrieve the true value of the CO2 concentration (x) from a direct flask observation
(y) given some a priori guess of xa. If the observation includes an error ε , we have the following relation
between x and y:

y = x + ε

and therefore K = 1. We can then calculate the retrieval error from (14.22) given the measurement error
and the a priori error from

σ2
x = [σ2

a + σ2
y]−1

where standard deviations are used to represent the errors.
The information content and degrees of freedom for signal can then be calculated from (x) and (y),

respectively. Table 14.1 shows the results for 2 cases: (i) a small measurement error case (measurement
error is 0.25 ppmv and a priori error is 4 ppmv), and (ii) a large measurement error case (measurement
error is 4 ppmv and a priori error is 0.25 ppmv).

Although the retrieval error σx is the same for both retrievals, the degrees of freedom and the in-
formation content are very different. In the case with small measurement error, the degrees of freedom
for signal is almost 1, while in the case with large measurement error the degrees of freedom for signal is
almost zero. As expected, the information content of the low noise measurement is much larger than the
information content of the high noise measurement. The low observational noise retrieval can distinguish
24 = 16 values within the a priori variance of 4 ppmv, which in this scalar case is equal to the signal-to-
noise ratio defined by σa/σa. In other words, while the retrieval error does not distinguish between the
low and high noise case, the degrees of freedom and the information content differentiate between the two
cases and identify the better measurement system.
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14.3.1 Application to HIRS and AIRS observing systems

Engelen and Stephens (2004) calculated the information content with respect to atmospheric CO2
for observations by TOVS/HIRS and AIRS observing systems. Models of the measurements (brightness
temperatures) of HIRS and AIRS were developed (Engelen et al. 2001). For AIRS, a spectral resolution
of 1 cm-1 for the band between 500 cm-1 and 2500 cm-1 was assumed, whereas HIRS spectral channels
1 - 7 and 15 - 17 (e.g. Smith et al., 1979) were modelled with a half width of the instrumental response
functions, which is about 15 cm-1 for the long-wave channels and about 25 cm-1 for the shorter-wave
channels. The measurement covariance matrix for both instruments was specified as a diagonal matrix
with standard deviations of 0.5 K on the diagonal elements. This error includes uncertainties in the
temperature profile, which acts in this simple set-up as an input for the radiative transfer model. These
temperatures could come from the Advanced Microwave Sounding Unit (AMSU) or a weather forecast
model. The above assumptions for the measurement covariance matrix are optimistic, especially because
errors in the assumed temperature profiles will introduce correlations. Also, the value of 0.5 K is rather
small. Therefore, we will also use a value of 1.0 K in one of the experiments. The a priori covariance
matrix has, in our first example, diagonal elements of 16 ppmv2 (i.e. a standard deviation of 4 ppmv) and
off-diagonal elements specified as follows:

Sij = σ2
a exp(−|zi − zj |/H)

where the linear scale height H is set to 25 km and where the minimum vertical correlation is set to 0.5.
The lowest 2 km, which represent the boundary layer, was decoupled from the rest of the atmosphere
by setting the correlations to zero. This covariance matrix setup, including the uncertainty estimate of
4 ppmv, was based on hourly output of CO2 profiles from a GCM simulation. Although the uncertainty
at individual levels is 4 ppmv, the uncertainty in the column averaged mixing ratio is 3.1 ppmv (using
equation (12)) due to the correlations between the levels.

Figure 14.x shows the singular vectors and their corresponding singular values for both HIRS and
AIRS with an a priori standard deviation of 4 ppmv. Only singular values that are larger than 1 are
significant with respect to the measurement error. HIRS has no significant vectors, while AIRS has two
significant vectors. The first two AIRS singular vectors represent broad vertical patterns without much
vertical resolution. The third AIRS singular vector adds some vertical resolution, but is not significant.
The degrees of freedom and the Shannon information content for this setup are shown in Table 2. The total
degrees of freedom for HIRS is only 0.22. The total Shannon information content is 0.18, which means
that only different atmospheric states can be detected. This means that within the a priori uncertainty
of 4 ppmv less than two different atmospheric states can be distinguished. For AIRS, however, the total
degrees of freedom is 1.6 and the total Shannon information content is 2.3, which translates into five
distinguishable atmospheric states within the a priori uncertainty. The retrieval error of the column
averaged mixing ratio is 2.8 ppmv for HIRS and 1.2 ppmv for AIRS. Clearly, while there is some CO2
signal in the HIRS radiances, it is not enough to observe atmospheric CO2 concentrations better than 4
ppmv. On the other hand, radiances observed by AIRS will be capable of providing significant atmospheric
CO2 information, especially total column values as is shown by the first two singular vectors. What is
also quite interesting to note is that the singular vectors for HIRS and AIRS are very similar. Apparently,
there is not a great difference in what structures both instruments can observe; the difference is in the
signal to noise ratio reflected by the information content. If we increase our a priori uncertainty to 10
ppmv (with a column averaged uncertainty of 7.6 ppmv), which is close to the seasonal amplitude of
atmospheric CO2 concentrations, the HIRS radiances have a clearer signal, as shown in Table 3. The
singular vectors are the same as in Figure 1, but the singular values, and therefore the degrees of freedom,
and the Shannon information content have changed. HIRS now has one significant singular vector, and the
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degrees of freedom have increased to almost 1. The total Shannon information content is now 0.78, which
represents almost two different atmospheric states. This means that HIRS is able to estimate a column
averaged CO2 concentration as represented by the first singular vector when our priori knowledge is on
the order of 10 ppmv. AIRS still has two significant singular vectors. The total amount of atmospheric
states that can be detected by AIRS has increased to 32. The column averaged retrieval errors are now 5.1
ppmv for HIRS and 2.2 ppmv for AIRS. This shows that AIRS can significantly improve over the a priori
estimate, while HIRS does not reach an uncertainty that would be small enough to have a significant effect
in CO2 inversions. Our estimate of the effect of errors in the assumed temperature profile on the forward
radiative transfer model is quite conservative. We assumed an error of 0.5 K, but it could easily be as large
as 1 - 2 K. Table 4 shows the retrieval statistics for an a priori error of 4 ppmv and a total measurement
and forward model error of 1 K for both HIRS and AIRS. As before, HIRS does not have any significant
singular values and its degrees of freedom dropped to 0.06 with 1.0 distinguishable atmospheric state. The
retrieval error of the column-averaged volume mixing ratio is 3.0 ppmv. The AIRS retrievals also degrade,
but there is still one significant singular value. The total degrees of freedom is now 0.95 and the number
of distinguishable atmospheric states is 2.1. The retrieval error of the column-averaged volume mixing
ratio is 1.8 ppmv. For the case with a 10 ppmv a priori error specification, similar degradation results
are obtained. Although our specification of the a priori covariance matrix is an estimate based on model
output, we now show the role of well-specified vertical correlations in the covariance matrix. Figure 2 and
Table 5 show the results of the first experiment, but now with a diagonal a priori covariance matrix that
contains no vertical correlations at all. Because the levels are completely uncorrelated, errors at different
levels start to compensate when we calculate the column-averaged uncertainty. For the diagonal a priori
covariance matrix here specified the column-averaged uncertainty is 0.98 ppmv. Both HIRS and AIRS
show singular vectors with more vertical structure, but the singular values have decreased significantly.
HIRS does not have any significant singular vectors at all, while the number of significant singular vectors
for AIRS is also reduced to zero. The number of distinguishable atmospheric states is now 1.0 for HIRS
and 1.4 for AIRS. The column-averaged uncertainty for HIRS is 0.97 ppmv, which is basically equal to
the a priori uncertainty. The column-averaged uncertainty for AIRS is 0.87 ppmv. So, although the
non-diagonal a priori covariance matrix seems to constrain the retrieval more than the diagonal a priori
covariance matrix, the amount of information that can be retrieved from the observations is actually
higher for the non-diagonal matrix. The reason for this is that the weighting functions see only large-
scale structure. The non-diagonal covariance matrix constrains the small-scale structure, but has a larger
variance at the larger scale, therefore allowing retrieving more information about the large-scale structure
than the pure diagonal covariance matrix. All analyses in this section have been carried out for individual
profiles. However, to reduce the retrieval error spatial and temporal averaging could be applied rendering
CO2 distributions on spatial and temporal scales useful for current inversion studies. Most recent CO2
inversion studies have used monthly mean observations and a transport model grid of the order of 5 -
10 (e.g., Gurney et al. 2002; Kaminski et al. 2002; Rdenbeck et al. 2003). Most areas with significant
cloudiness would allow the averaging of at least several satellite observations on these space and time
scales. However, although averaging will reduce the random component of the observation error, any
systematic errors in the retrieved values will remain in the averaged product. These systematic errors
arise from biases in the a priori estimates, biases in the radiative transfer modeling, and biases in the
temperature field. Furthermore, most of these biases are spatially heterogeneous, which will create errors
in the horizontal gradients of the averaged CO2 fields. Therefore, a proper characterization of especially
these systematic errors is crucial for a correct interpretation of the results.

14.4 Example 2: Aerosol retrieval
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For this problem, we seek to retrieve aerosol optical depth τ from a direct observation of reflected
sunlight given some a priori guess of τa. A simple model of this reflectance, and one that provides the
basis of a number of different operational aerosol algorithms, is

I = Isurf + Iatm (14.26)

where Isurf is the contribution by surface reflection αsfc according to

Isurf = αsfc
F¯
π

µ¯(1−mτ) (14.27)

and Iatm is the atmospheric scattering term given by

Iatm =
F¯
4πµ

$oP (µ¯, µ)τ (14.28)

which implies only single scatter and that the aerosol optical depth τ < 1. P (µ¯, µ) is the scattering phase
function. The airmass factor m = µ−1 + µ−1

¯ and F¯ is the (normal) solar flux incident on the aerosol.
When expressed in terms of reflectance R = πI/µ¯F¯, (21) follows as

R = αsfc + (b−mαsfc)τ + ε (14.29)

where
b =

1
4µµ¯

$0P (µ¯, µ) (14.30)

and where we now include an observation error ε. Assuming this error is Gaussian with a variance σε,
and further assuming errors in the model parameter b and αsfc defined by a variance σb and an a priori
error σa, then the retrieval error follows

σ2
x = (σ−2

a + K2σ−2
y )−1 (14.31)

where K is the weighting function parameter

K =
dR

dτ
= (b−mαsfc) (14.32)

and σ2
y contains both the forward model plus measurement errors

σ2
y = σ2

ε + σ2
b (14.33)

The information content and degrees of freedom for signal can then be calculated from (14) and (15),
respectively given Sa = σ2

a and Sx = σ2
x.

Table 14.1 presents results of this analysis applied to this simple model. The parameters used to create
these results are as follows: the phase function is defined using the parameters re = 0.2µm, ve = 0.4, and
mr = 1.4, and the other parameters are τ = 0.2, αsfc = 0.1 and 0.3 and µ = 1 and µ¯ = 0.866.
Results are presented for several cases: (i) a small measurement error case (measurement error is 5%,
σε = 0.05 × RT ), a large a priori error (100% error, σa = 1 × τa) and no forward model error (σb = 0).
(ii) A large measurement error case (measurement error is 100%, σε = 1×R), a small a priori error (5%,
σa = 0.05 × τa), and no forward model error (σb = 0). (iii) same as case (i) but we introduce a forward
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model error (σb 6= 0). (iv) same as case (i) but we consider ten measurements corresponding to 10 different
geometries in the solar plane (θ = 80o to −10o in steps of 10o).

The degrees of freedom and information content for both cases (i) and (ii) are very different as
expected. For the case of small measurement error, the degrees of freedom is almost 1, whereas in the case
of large measurement error the degree of freedom is almost zero. As expected the information content is
highest when the measurement error is least. Case (i) distinguishes 23.8 ' 14 values of τ within the a-priori
variance of 0.3, which in this scalar case is equal to the signal-to-noise ratio R(σa)/σy, whereas case (ii)
distinguishes only one value being the a-priori value. The retrieval error is smaller for case (ii) than case
(i), serving to demonstrate that this error does not distinguish between the low and large noise cases and
thus does not necessarily provide a measure of the best observing system. The degrees of freedom and
information content together provide a means of differentiating which is the better observing system.

Table 14.1 also shows the effect of adding forward model error on the information content analysis
(case (iii)). For this example we considered a more realistic 20% error on both surface albedo and phase
function, although it could be argued that these phase function errors are too optimistic. As expected
the information content and degrees of freedom decrease and the retrieval system is now degraded. The
observing system now distinguishes only 22.6 ' 6 states. Also noteworthy is the increase of the information
content as the number of observations from the multi-viewing instruments increases (case (iv)). For a
system that provides measurements at ten different viewing geometries, the number of distinguishable
states is 25.5 ' 45, highlighting the obvious advantage of multi-viewing measurements, like MISR or
POLDER, over methods that retrieve using only a single view.

The analysis of cases (i) and (ii) was repeated and the results are shown as a function of varying αsfc

in Fig. 9 This figure presents an unexpected result. For small surface albedo, H decreases as αsfc increases
and then increases as αsfc increases beyond a value of 0.05. The decrease in H reflects the fact that for
dark surfaces, the information about the aerosol optical depth derives from the atmospheric scattering
term. As αsfc increases from zero, this source of information is systematically reduced being replaced by
the surface term that adds information via the process of two-way attenuation.

14.5 Optimizing an observing system

14.5.1 Atmospheric soundings from spectrometer measurements

14.5.2 Cloud property retrievals
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Figure 6. Sensitivity of the polarized reflectance (left panel) and the total reflectance (right

panel), to aerosol microphysical and optical parameters, as a function of the scattering angle.

The sensitivities correspond to an aerosol layer composed of small particles (re = 0.1µm, top

panel), an aerosol layer composed of medium sized particles (re = 0.2µm, mid panel) and an

aerosol layer composed of large particles (re = 0.5µm, bottom panel).
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Table 1: Retrieval error, degrees of freedom for signal, and information content for 

a simple measurement. 

 Small measurement error Large measurement error 
σy (ppmv) 0.25 4.0 
σa (ppmv) 4.0 0.25 
   
σx (ppmv) 0.235 0.235 
ds 0.94 0.06 
H 4.09 0.089 
 

Table 2: Singular values and the contribution of each singular vector to the degrees 

of freedom and information content for HIRS and AIRS with a priori CO2 errors of 

4 ppmv and observation errors of 0.5 K. The total degrees of freedom and the total 

information content are shown in the bottom row. 

 

 HIRS  AIRS 

i λi ds H  λi ds H 

1 0.4937 0.1960 0.1573  3.0561 0.9033 1.6850 

2 0.1573 0.0242 0.0176  1.0212 0.5105 0.5153 

3 0.0386 0.0015 0.0011  0.2643 0.0653 0.0487 

4 0.0206 0.0004 0.0003  0.2643 0.0653 0.0487 

        

Total  0.2220 0.1763   1.5677 2.3157 

 
 



Table 3: Singular values and the contribution of each singular vector to the degrees of freedom and 

information content for HIRS and AIRS with a priori CO2 errors of 10 ppmv and observation errors 

of 0.5 K. The total degrees of freedom and the total information content are shown in the bottom 

row. 

 HIRS  AIRS 

i λi ds H  λi ds H 

1 1.2342 0.6037 0.6676  7.6401 0.9832 2.9459 

2 0.3933 0.1339 0.1037  2.5531 0.8670 1.4552 

3 0.0964 0.0092 0.0067  0.7529 0.3618 0.3240 

4 0.0516 0.0027 0.0019  0.6606 0.3038 0.2612 

        

Total  0.7496 0.7800   2.5496 5.0109 



Table 4: Singular values and the contribution of each singular vector to the degrees of freedom and 

information content for HIRS and AIRS with a priori CO2 errors of 4 ppmv and a observation error 

of 1K. The total degrees of freedom and the total information content are shown in the bottom row. 

 HIRS  AIRS 

i λi ds H  λi ds H 

1 0.2468 0.0574 0.0427  1.5280 0.7001 0.8688 

2 0.0787 0.0062 0.0045  0.5106 0.2068 0.1671 

3 0.0193 0.0004 0.0003  0.1506 0.0222 0.0162 

4 0.0103 0.0001 0.0001  0.1321 0.0172 0.0125 

        

Total  0.0641 0.0408   0.9477 1.0657 



Table 5: Singular values and the contribution of each singular vector to the degrees of freedom and 

information content for HIRS and AIRS with a priori CO2 errors of 4 ppmv and observation error of 

0.5 K, but for a diagonal a priori covariance matrix without any vertical correlations. The total 

degrees of freedom and the total information content are shown in the bottom row. 

 HIRS  AIRS 

i λi ds H  λi ds H 

1 0.1420 0.0198 0.0144  0.8497 0.4193 0.3921 

2 0.0529 0.0028 0.0020  0.3360 0.1014 0.0772 

3 0.0286 0.0008 0.0006  0.2260 0.0486 0.0359 

4 0.0127 0.0002 0.0001  0.1425 0.0199 0.0145 

        

Total  0.0236 0.0171   0.5983 0.5262 
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Figure 1. The constellation of satellites forming the Aqua-train.

Table 1. Microphysical specification of aerosol models used in our simulation

model 1 2 3 4 5 6 7 8 9 10 11 12
re (µm) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2
ve 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
mr 1.4 1.4 1.4 1.4 1.55 1.55 1.55 1.55 1.4 1.4 1.4 1.4
mi 0.02 0.007 0.0 0.0 0.02 0.007 0.0 0.0 0.02 0.007 0.0 0.0
$0 0.773 0.908 0.85 0.95 0.856 0.944 0.85 0.95 0.865 0.949 0.85 0.95
k 0.282 0.335 0.316 0.353 0.305 0.345 0.315 0.352 0.147 0.176 0.167 0.187
S (sr) 44.6 37.5 39.8 35.6 41.2 36.4 39.9 35.7 85.5 71.4 75.2 67.2

model 13 14 15 16 17 18 19 20 21 22 23 24
re (µm) 0.2 0.2 0.2 0.2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
ve 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
mr 1.55 1.55 1.55 1.55 1.4 1.4 1.4 1.4 1.55 1.55 1.55 1.55
mi 0.02 0.007 0.0 0.0 0.02 0.007 0.0 0.0 0.02 0.007 0.0 0.0
$0 0.90 0.962 0.85 0.95 0.873 0.95 0.85 0.95 0.876 0.95 0.85 0.95
k 0.198 0.248 0.242 0.271 0.102 0.149 0.163 0.182 0.341 0.539 0.607 0.678
S (sr) 63.5 50.7 51.9 46.4 123.2 84.3 77.1 69.0 36.8 23.3 20.7 18.5

Table 2. Retrieval error, degrees of freedom for signal and information content for a simple

measurement case
Small measurement error Large measurement error

σa 100% 5%
σε 5% 100%

αsfc 0.1 0.3 0.1 0.3
Number of geometry 1 10 1 1 1

σb 0% 20% 0% 0% 0% 0%
H 3.8 2.6 5.5 4.25 0.0003 0.0006
d 0.995 0.975 0.999 0.997 0.0004 0.0008
στ 0.021 0.05 0.007 0.016 0.015 0.015

Table 3. Singular values of K̃, together with contribution of each vector to the degrees of

freedom and information content for the case of a more elaborate multi-viewing polarimeter.

re = 0.1µm re = 0.2µm re = 0.5µm

i λi di Hi (bits) λi di Hi (bits) λi di Hi (bits)
1 240.1 0.999 7.91 194.7 0.999 7.60 139.8 0.999 7.13
2 22.9 0.998 4.52 9.8 0.989 3.30 7.0 0.980 2.82
3 2.9 0.899 1.65 3.6 0.929 1.91 1.8 0.776 1.08

totals 2.897 14.08 2.918 12.81 2.756 11.03
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Figure 9. Information content computed as a function of surface albedo for the simple model

described in the text.
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