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In chapter 12 we hinted at how we might select the best or optimal solution from a large number of
possible solutions of an ill-posed inverse problem. As a step in designing these optimal inverse methods it
is important that the general characteristics of retrievals be understood in order to decide which properties
are most appropriate to optimize. A retrieval method without characterization and error analyzes is of
little value. By characterization we mean the sensitivity of the retrieved state to the true state and by
error we mean the sensitivity of the retrieval to all sources of error associated with the transfer function
introduced below.

13.1 Characterization of the retrieval problem

The basic function of an observing system can be described in terms of the observing system transfer
function as presented in Fig 13.1. The transfer function determines the relationship between a given input
of the system and the desired output of the system. The system connects the input signal x(t) that varies
with time in some manner to the actual measured quantity y(t), satellite radiances for example, which
are then connected to the output signal of the system x̂(t) which, under ideal circumstances identically
reproduces the input signal. Here we use the circumflex to indicate estimated quantities, differing in reality
from actual quantities in ways that can be analyzed with methods described in this chapter. The input
may be taken to be a given geophysical parameter whose measurement over some prescribed time T is the
objective of the observing system.

There are two basic parts to the observing system that require characterization. The first is hidden
from view in Fig. 13.1 and has to do with the space-time sampling characteristics of the observing system
which introduce a class of errors to the measurements y(t) that too can vary in time as the sampling
properties of the system vary. These sampling errors or errors of representation are discussed more fully
in chapter 16 and are generally imposed on the system by the chosen orbit of the satellite platform.

The second basic component of the observing system deals with the two main elements of the transfer
function as shown in Fig. 13.1. One element is the forward function as expressed by the forward model
and the second is the inverse model or retrieval system. The remainder of this chapter is concerned with
the characterization and error analysis of these two aspects of the transfer function.

13.1.1 The forward Model

We can express the general forward problem in the following heuristic way

y = F (x,b) + ε (13.1)
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Fig. 13.1 A climate observing system presented in the form of a transfer

function (outer box) and component transfer functions (the two inner boxes).

This system produces an output Z’ that differs from the input Z due to the

internal parameters of the observing system. One of the goals of this system

is to reconstruct the time variability of Z from the time variability of Z’.

where the forward function F (x,b) describes the complete physics of the measurements and for most
observing systems, and especially those flown on satellites, this forward model represents various forms of
radiative transfer theory as discussed in the first section of this book. Such theory relates the state x to
the measured signal y. The vector b are those parameters that influence the measurement but are not
intended as quantities to be retrieved. The uncertainty attached to the latter parameters contribute to the
total uncertainty. The error term ε is the measurement error and includes contributions such as detector
noise and will be referred to this as ’measurement noise’.

13.1.2 The retrieval method

The inversion of (13.1) may also be expressed heuristically as

x̂ = R(y, b̂,xa, ĉ) (13.2)

where again for emphasis the circumflex represents an estimated quantity. b̂ is our best estimate of b. As
mentioned above characterization of the observing system refers to the sensitivity of the retrieved state x̂
to the true state x, i.e. to the quantity ∂x̂/x and by error analysis we mean the sensitivity of the retrieval
to all sources of error. The vectors xa and c comprise parameters that do not appear in the forward
function but affect the retrieval. xa is the a priori state vector and the vector c is a catch all for any
parameters used in the retrieval (such as convergence criteria) and is referred to as the retrieval method
parameter vector.

For many problems the a priori is the information that matters most yet for other problems b̂ dominate
the retrieval process. Some methods use explicit a priori, while others do not and yet others claim not to
use any such information where in reality such information is concealed in the method.

13.2 Linearization of the transfer function

Substituting (13.1) into (13.2) yields

x̂ = R(F (x,b) + ε, b̂,xa, ĉ) (13.3)
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The forward model itself often represents a significant source of difficulty in retrievals yet many published
retrieval studies overlook this source of error. The difficulty with the forward model may arise from the
fact that the physics of the problem is too complex, such as the case of complexities introduced in the
case of 3D radiative transfer, or that the physics is itself uncertain. For whatever reason, an approximate
forward model f is invariably used, namely

F (x,b) ≈ f(x,b,b′) (13.4)

where b is decomposed into a set that contains b′ that represent model parameters now required specifically
by the approximate form of the forward model. Substituting into (12.3) yields

x̂ = R(F (x,b) + ∆f(x,b,b′) + ε, b̂,xa, ĉ)

where
∆f(x,b,b′) = f(x,b,b′)− F (x,b) (13.5)

is the model error.
To obtain the basic sensitivities of the transfer function we now linearize our transfer function about

the states x = xa,b = b̂

x̂ = R(F (xa, b̂) + K(x− xa) + Kb(b− b̂) + ∆f(x,b,b′) + ε, b̂,xa, ĉ) (13.6)

where

K =
∂F (x,b)

x
and

Kb =
∂F (x,b)

b
and K is the Jacobian matrix. Note that this is the derivative of the forward model with respect to x.

13.2 Error analysis

Next linearize (13.3) with respect to y. We write (13.6) as

x̂ = R[F (xa, b̂) + ∆y, b̂,xa, ĉ]

where
∆y = K(x− xa) + Kb(b− b̂) + ∆f(x,b,b′) + ε (13.7)

such that
x̂ = R[F (xa, b̂, b̂,xa, ĉ] +

∂R

∂y
∆y

and thus
x̂ = R[F (xa, b̂), b̂,xa, ĉ] +

∂R

∂y
[K(x− xa) + Kb(b− b̂) + ∆f(x,b,b′) + ε]

with rearrangement becomes

x̂− xa = R[f(xa, b̂), b̂,xa, ĉ]− xa bias error
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+A(x− xa) smoothing error

+Dyεy retrieval error (13.8)

The first term is the bias error that results from a simulated retrieval using a simulated error free measure-
ment of the a priori state computed with the forward model. This error can be analyzed via simulation
using synthetic data and it should be zero by construction.

13.2.1 Smoothing Error

The second term represents the way the observing system smooths information about the state x.
We can better understand this by rearranging (13.8) in the form

x̂− xa = A(x− xa) + Dyεy (13.9)

where we have introduced Dy = ∂R/∂y and

A = DyK (13.10)

and further write
εy = Kb(b− b̂) + ∆f(x,b,b′) + ε) (13.11)

Suppose for the sake of discussion that εy is negligibly small, then it follows that

x̂ = Ax + [E−A]xa (13.11)

and thus for this ideal case, the retrieval is characterized by

∂x̂
∂x

= A (13.12)

Ideally the matrix A should be a unit matrix if the system were perfect. In reality, however, this matrix
differs from the unit matrix and further examination of the properties of the matrix is required. To fix
ideas, suppose our state vector x is a set of temperatures where each element represents a layer temperature
and where the vector represents a piece-wise continuous temperature. Then the retrieved temperature for
an individual layer follows as

x̂i =
N∑

j=1

Aijxj (12.13)

where the retrieved layer temperature x̂i are in a sense related not just to the corresponding actual layer
temperature xi but also to the entire profile weighted according to Aij . Thus the rows of A indicated
the extent that the real temperature information is spread across layers, and thus A acts to smooth the
profile. This is highlighted in Fig 13.2 showing examples of the A matrix derived for an observing system
defined by a forward model of IR radiances, an a priori temperature constraint of varying strengths and a
temperature retrieval procedure based on (12.x). The precise details of the retrieval system do not matter
for this illustration. What is highlighted in this figure is how the constraint broadens the structure of the
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Fig. 13.2 Examples of the smoothing Kernels derived for the retrieval

of temperature from IR radiances assuming different amounts of constraint.

Note how adding constraints smears information but makes the matrix much

smoother.

A matrix deviating from a diagonal form more characteristic of the ideal case. Without the constraint, we
can see how oscillations appear in the matrix symptomatic of instabilities discussed previously.

By contrast, the columns of A give the response of the retrieval to a delta function perturbation in
the state vector. This column thus represents ho variation in the real state at a given level is spread across
the retrieved state vector by the retrieval process.

The magnitude of the elements of the A matrix contain yet further information about the observing
system that helps us characterize it. Consider (13.8) in the form

x̂ = Ax + [E−A]xa + Dyεy (13.14)

and again suppose for now that εy is small, then the closer are the magnitudes of the diagonal elements
to unity, the less the a priori information creeps into the solution and the more the actual observations
contribute to the retrieval.

Figure 13.3 offers an example of the diagonal values of the A matrix taken from the work of Engelen
and Stephens (1999) as it applies to the retrieval of water vapor.

Fig. 13.3 The diagonal values of the for the retrieval of layer water vapor

from the surface-700mb and 500-300 mb.

discuss
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13.2.2 Retrieval Error

Further re-arranging of () and () leads to the error in x of the form

x̂− x = [A−E](x− xa) smoothing error

+GyKb(b− b̂) model paramter error

+Gy∆f(x,b,b′) forward parameter error

+Dyεy retrieval noise (13.15)

Because the true state x is not usually known, we cannot estimate the actual smoothing error. What
is needed is the statistics of the error and this may be deduced from ensembles of states and could be
described by Sa

The total retrieval error, as given by covariance matrix (12.x) is

S−1
x = KT S−1

y K + S−1
a (13.16)

which can also be written as
Sx = GySyGT

y + GySaGy (13.17)

where the first term of the rhs represents the combined errors of models and measurements, and the second
term is the error that is projected into the solution by uncertainties that are attached to the a priori state.
The first term can be further written

GySyGT
y = Gy[Sb + Sf + Sε]GT

y (13.18)

where we write Sb for the error covariance matrix that represents the model parameter error term [Kb(b−
b̂)], Sf for the forward model error term [∆f(x,b,b′)] and Sε for the measurement noise ε

13.3 Examples of Retrieval Error

1. Water vapor retrieval
2. Lidar example
12.2.1 Measurement Noise
Random - discuss the different forms o f measurement noise viz-a-viz Philip’s notes

13.4 Representing Covariances

Errors of vector x are expressed by the covariance matrix Sx. The diagonal elements of Sx are the
familiar error variances of the elements of the x and the off diagonal elements indicate the degree of
correlation of errors between elements of x. The error covariance matrix is defined as

Sx(i, j) =
1
N

N∑

k=1

[εi − 〈ε〉]k[εj − 〈ε〉]k (13.19)

where εi = x̂i − xi and 〈〉] is the average error or bias in the data and the summation is over N data sets.
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13.4.1 Microwave rainfall example

L’Ecuyer and Stephens (2002) apply this to define the model error covariance associated with the
forward model simulations of the TMI microwave radiances. They define this covariance error for three
rain rate regimes, 0 < R < 5 mmhr−1, 5 < R < 20 mmhr−1 and R > 20 mmhr−1. They separate this
into two independent sources of error - a surface emission error (SR

SFC ) based on the difference between
simulated clear sky microwave radiances and measured radiances under clear sky conditions and radiative
transfer model errors inferred from comparisons with other models under raining conditions (SR

RT ). They
combine these errors

SR = SR
SFC + SR

RT

and provide examples of these covariance matrices, expressed in the form correlation matrices

Cij =
SR

ij

σiσj

as shown in Figs. 13.4a and b. Clearly the model errors of different microwave radiometer channels are
correlated, especially as the rain rate increases but the errors are much less correlated for simulations of
emission (P) and scattering (S) indices defined as

P =
TbV − TbH

TbV,0 − TbH,0

S = PTbV 0 + (1− P )Tc − TbV

where Tc = 273K . TbV , TbH are the horizontally and vertically polarized brightness temperatures
and the subscript ’0’ are the respective brightness temperatures in the absence of clouds or precipitation.

Fig. 13.4 covariance matrices

13.4.2 Error correlations in the temperature sounding problem

In general we can find a basis for which the errors are independent by diagonalizing the covariance
matrix - which as we have seen previously require finding the eigen-values and eigen-vectors of Sx, according
to

Sxui = λiui (13.20)
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Since the covariance matrix is symmetric, the eigenvectors are orthogonal and these in a sense can be
thought of as representing the ’error patterns’ in the sense that the total error can be expressed as a sum
of the individual patterns

εx =
N∑

i=1

aiui

where the relative weighting of these patterns is determined by the magnitude of the respective eigenvalues.
Consider the example introduces by Rodgers (ch 3) where he proposes

Sa,ij = σ2
a exp(− | i− j | δz/H) (13.21)

as an approximate form for the a priori covariance error matrix characteristic of temperature sounding
problem. This form broadens the matrix about the diagonal in a way representing the broadening of the
error matrix due to the effects of the spreading weighting function. The values of δz/h are chosen to
characterize the width of typical temperature weighting functions.

Fig. 13.1 An example of the ten most significant error patterns (eigen-

vectors) of the a priori covariance matrix (13.21).
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An example of a Lidar observing system
in tenuous media
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Courtesy, Andersen et al

Backscatter-to-extinction (k)

single value (large 
uncertainty)

or introduce yet
further parameters into the
observing system (e.g. T as
in the case of cirrus) to 
reduce uncertainty

estimate uncertainty σk based 
on ∂f/ ∂k and ∆k 

Courtesy, Platt and Austin



Rayleigh Calibration

Raw LITE Counts
0 200 400 600 800 1000 1200 1400 1600 1800 2000

R
ay

le
ig

h 
B

ac
ks

ca
tte

r (
km

-1
)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Calibration and multiple 
scattering

estimate uncertainties 
σy , 
σb , 
ση

which are determined from 
∆b and related  quantities
∂f(b)/ ∂b



Extinction (km-1)

0.00 0.05 0.10 0.15 0.20

A
lti

tu
de

 (k
m

)

-2

0

2

4

6

8

10

12

14

Illustrative example of retrieval
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