
AT721 Section 11:

Introduction to Inverse Problems

Inspection of the canonical solution of the radiative transfer equation (xx,yy,zz) reveals an integral
equation of the form

y(z) = α(z)x(χ, z) +
∫ b(z)

a(z)

K(χ, z, z′)x(χ, z′)dz′ (11.1)

where y(z) are the ’data’ or measurements (typically radiances Iλ ),K(χ, z, z′) is the kernel of the solution
equation and α(z) is some known function (like the transmittance from the surface to atmosphere). x(χ, z′)
is the source function and z, z′ might be thought of as coordinates. χ may be considered either a parameter
that influences the values of both K and the source vector x (such as the single scatter albedo, asymmetry
parameter or other properties that are not retrieved) or it may be a vector quantity representing desired
information to be retrieved.

The mathematics of the inverse radiation problem can be classified according to:
•α(z) = 0 – (11.1) is an integral equation of the first kind
•α(z) = 1 –(11.1) is an integral equation of the second kind
•a, b are constants – (11.1) is of a Fredholm type (first or second depending on α(z))
•a =constant, b = z – (11.1) is of a Volterra type.

Inverse problems can be further classified depending on the focus of attention. If x(χ, z′) is the
desired information, such as it is for temperature retrieval problems, then the inversion problem is linear.
If, however, the vector χ is desired, as it is in the example of constituent retrievals where χ is related
to the concentration of the attenuating species, for example, then the problem is non linear. We will be
concerned with inversions of (11.1) of both linear and non-linear types of problems.

11.1 The nature of the inverse problem

Certain characteristics of both linear and non-linear inverse problems can be highlighted with the
following example. We start with the linear form of (10.1)

y(z) =
∫ b

a

K(z, z′)x(z′)dz′ (11.2)

and by introducing some type of quadrature to discretize this in the form

y ≈ Kx (11.3)

where y is a column vector of N measurements, x is a column vector of N source functions and K is an
N ×N matrix. Equation (11.3) is now in the form of a linear discrete inverse problem in contrast to its
the continuous inverse counterpart (11.2). The solution of this discrete problem then takes the form

x ≈ K−1y (11.4)
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In this way, the linear inverse problem apparently reduces to a straight forward matrix inversion but the
problem is more complicated than this. We can begin to appreciate some of the issues with the following
problem. Suppose we make two measurements such that

y =
(

2.0
4.0001

)
(11.5)

and suppose our problem is characterized by the Kernel of the form

K =
(

1.0 1.0
2.0 2.0001

)
(11.6)

then we can determine that the solution to the pair of equations implied in (11.2) is

x =
(

1.0
1.0

)
(11.7)

However, consider the situation where a small error is introduced to one of the measurements

y + ε =
(

2.0
4.0

)
(11.8)

then

x =
(

2.0
0.0

)
(11.9)

Therefore a small error in the data leads to a substantial change in the solution. Readers without practical
experience might be left with the impression that there is no fundamental problem here because of a
misguided belief that errors in the data can always be made vanishingly small. This belief is misguided
for two reasons.
(i) The severity of instabilities in many problems we deal with is so great that the gain in information on
x obtained from improvements in data accuracy is small.
(ii) The representation of the observing system in the from of (11.1) or its approximate form (11.3)al-
ways contains inescapable sources of uncertainty, including the errors associated with discretization of a
continuum field.

A related characteristic of the inversion problems we deal with is a consequence of the inherent
instability - that is that there are many solutions that represent the data and model used to define the
solutions as shown in Fig. 10.x.

11.2 Further characteristics of inverse problems

Underdetermined problems: When the equation fails to provide enough information to determine uniquely
(although not stably) all the elements of x, the problem is said to be underdetermined. These problems
arise where there are more unknowns that data, i.e. when y is an N column vector of data and x is a M
column vector of the unknowns where M > N .

Even determined problems: In this case there is exactly enough information to determine the required
information (as in our simple 2x2 problem introduced above).
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Overdetermined problems: When there is too much information contained in y = Kx for it to possess
an exact solution, the problem is said to be overdetermined. These problems typically have more equations
than unknowns, M < N .

Determining whether a problem is under or overdetermine, however, is not quite as obvious as sug-
gested by these comments. Many problems that appear to be over-determined in fact are underdetermined
owing to that fact that the data (such as radiances measured at different wavelengths) do no contain in-
dependent information and thus are not independent of one another. This is illustrated in the simple 2x2
example above where we note that closeness of the values of the Kernel matrix representing each of the
’measurements’. This is a sign of lack of independence and is the root cause for the solution instability.

Therefore most problems that arise in practice are neither completely overdetermined or underdeter-
mined. (give example). These are referred to as mixed determined problems and ideally we would like to
sort the unkown model parameters into two groups - those that are overdetermined and those that are
underdetermined (TBD later).

11.3 Properties of vectors and matrices

We have seen by this example how small changes in the ’measurements’ lead to large changes in the
resultant solution of a very simple 2x2 system (2 equations and 2 unknowns). However, many of our
problems are posed for much larger systems and it is crucial that we have some way of understanding how
uncertainties behave for such large systems. These systems are also not always even determined and thus
not necessarily square - i.e. the K matrix is often non-square.

The introduction of the matrix transpose allows us to apply methods to non square matrices that
are only valid for square matrices. The transpose KT of a matrix K is obtained by interchanging rows of
matrices with columns of the matrix. The diagonal elements are thus unaffected. A symmetric matrix has
the property KT = K and the product KT K is referred to as the symmetric product since it results in a
symmetric and square matrix even when K is asymmetric and non square. This product is encountered
frequently in following chapters. The inverse of the square matrix KT K

(KT K)−1 = K−1(KT )−1

so
K−1 = (KT K)−1(KT )−1 (11.10)

that is a simple post-multiplication of (KT K)−1 by KT yields K−1. Since K can be non-square, this
procedure enables any real matrix to be inverted. The inverse of K as given by (11.10) will also be
frequently encountered below. Other matrix/vector properties encountered include:

Length and square norm of a vector: (length of x2)= xT x which is also referred to as the dot product
of vectors, or scalar product. xT x is the square norm of the vector x2.

Orthogonality of two vectors: The property of orthogonality is important for many applications. Two
arbitrary vectors u and v are orthogonal when uT v = 0.

The quadratic form of K: Any square (general) matrix K can be represented uniquely as a sum of
a symmetric matrix and a skew-symmetric matrix - the latter has the elements kij = −kji; kii = 0. This
representation follows as

K =
1
2
(K + KT ) +

1
2
(K−KT )

where the first term is the symmetric part and the second is the skew-symmetric part. If we consider to
column vectors x,y then the product xT Ky is called the bilinear form. For x = y, the product xT Kx is
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the quadratic form and this depends only on the symmetric portion of K

xT Kx = xT 1
2
(K + KT )x (11.110

11.4 Eigenvalues and eigenvectors

If u is a vector and K is a (square) matrix, then the product Ku produces another vector y which,
in general, has no simple relation to u. It is natural to ask that for any arbitrary (square) matrix K if
there is a choice or choices of u that make Ku a simple scalar multiple of u, namely

Ku = λu (11.12)

When the relationship of this sort is satisfied, the vector u is designated as the eigenvector and the
scalar quantity λ is the eigenvalue (the expression characteristic vector and characteristic value is also
encountered. This expression implies that there is a single eigenvector and a single eigenvalue but a
general N × N matrix possesses N eigenvectors and N eigenvalues. This follows from the fact that the
matrix-vector equation system is a system of N scalar equations in N unknowns components of u and a
single unknown λ.

If K is symmetric and non-singular the eigenvectors u1, . . . ,un and the eigenvalues λ1, . . . , λn cate-
gorize K completely. For non symmetric K, there is a second eigen-equation

KT v = λv

which has the same eigenvalues as the first.
We will encounter the notion of the eigenvector and eigenvalue throughout the remainder of this book,

In the context of inverse problems, one important aspect of the eigenvalue/eigenvector decomposition of
K follows be considering a vector defined as a linear combination of eigenvectors u1, . . . ,un

y = c1u1 + c2u2 + . . . + cnun

Then pre-multiplication of y by K produces

Ky = c1Ku1 + c2Ku2 + . . . + cnKun

and it follows from (11.12) that

Ky = c1λ1u1 + c2λ2u2 + . . . + cnλnun

and by inference m premultiplications yield

Kmy = c1λ
m
1 u1 + c2λ

m
2 u2 + . . . + cnλm

n un

Thus the inverse K−1 follows given m = −1 and thus involves the division by the eigenvectors

K−1y = c1λ
−1
1 u1 + c2λ

−1
2 u2 + . . . + cnλ−1

n un (11.13)



5 Chapter 9 – Anisotropic scatter: the eigenmatrix solution

and furthermore reveals how the smallest eigenvalue tends to dominate the inversion. This now puts us in
a position to understand the difficulty with the direct inversion of our matrix K. If the smallest eigenvalue
is very small, approaching zero, then the reciprocal of this eigenvalue is very large. If a small error ε in
y creeps into the measurements or even the model (i.e. K itself, as it always does, then the error in the
inversion gets greatly magnified.

Two important points can be drawn from this discussion:
(i) The fundamental nature of the inversion problem, its stability, uniqueness, and as we will see later,

the information content characteristic of the problem is governed by the K matrix. As may have been
anticipated previously, this K matrix is in turn directly related to the radiative transfer equation and the
physical processes it represents. (ii) The characteristics of the matrix K are fully expressed in terms of
the eigenvalues and eigenvectors of this matrix.

11.4.1 Hypothetical Illustrations

We considered here two examples that underscore these important points. Consider first our simple
2X2 example,

K =
(

1.0 1.0
2.0 2.0001

)
(11.6)

for which λ1 = 0.00033 and λ2 = 3.0007. The smallness of the first eigenvalue could have been anticipated
give the intrinsic instability of our simple problem.

Another hypothetical example is taken from Twomey (1977), chapter 6. Consider the retrieval problem
defined as follows

y =
∫ 1

0

te−ktx(t)dt

for the function x(t) = 1 + 4(t− 1/2)2. By introduce quadrature, we have

yi ≈ Kijxj

where xj = x(tj) and Kij are the values of the function tje
−kitj determined for discrete values of tj . Table

11.1 lists values of y obtained from this integral derived both analytically (labelled ’exact’) and using a
trapeziodal quadrature scheme (labelled ’quadrature’) for different values of k. Table 11.2 lists results of
the inversion

x = K−1y

where x is a vector of values of x(tj) for discrete values of tj and is obtained both using exact values of
yi and approximate values derived from quadrature. Both results are bad when compared to the original
x(t) yet the values obtained for y when using either one is very close to the original y as indicated in Table
11.1.

11.5 Least Squares Solutions

One reaction to the instability problem we have raised here is to seek more data in hopes that this
will alleviate the difficulty thereby creating an overdetermined problem. Clearly this will not solve our
problem as the instability is an intrinsic property of K and thus an intrinsic property of the physical basis
of the remote sensing problem itself. Nevertheless, overdetermined problems are common and the most
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popular approach to solving over-determined problems is by invoking the least squares solution. We will
also see that a number of other inversion methods derive from this most common approach.

Least squares provides a solution whereby we obtain the vector x of length N that minimizes the
norm of the residual Kx− y. The square norm, which gauges the magnitude of Kx− y can be written

‖`‖2 = (Kx− y)T (Kx− y)

=
M∑

i

[
M∑

j

Kijxj − yj ][
M∑

k

Kikxk − yk]

With expansion and some rearrangement

‖`‖2 =
M∑

j

M∑

k

xjxk

M∑

i

KijKik − 2
M∑

j

xj

N∑

i

Kijyi +
N∑

i

yiyi

This square norm may be thought of in some sense as an error between a model prediction Kx and the
data y. We can derive x to minimize this error from

∂‖`‖2
∂x

= 0

which implies that
KT Kx−KT y = 0

or
x = (KT K)−1KT y

This is the least squares solution. Its geometric interpretation is illustrated in Fig. 10.2. If Kx is the
closest point to y in the whole column space of K, then the line from K to Kx is perpendicular to that
space.

Fig. 10.2 A geometric interpretation of the least squares solution

11.5.1 Constrained Least Squares Solutions

The least squares solution does not overcome the inherent instability we frequently encounter in
inverse problems. The solution is no better than that governed by direct inverse - in fact the elements of
(KT K)−1 tend to be even larger that those of K−1 and in some sense creating an even worse solution.
Clearly this does nothing to improve the situation -rather it tends to exacerbate the problem since the
root cause for the existence of small eigenvalues of K is not addressed.

The ambiguity can be removed by imposing an additional condition or citerion that may be evaluated
with the measurements but one that is not derivable from the measurements. The purpose of this additional
condition is to enable the selection of one x from a set of possible values. In many applications, this new
condition is somewhat arbitrary whereas in other applications this new condition might represent our state
of knowledge about the acceptable range of values x might take.

One constraint frequently used is the constraint that seeks to obtain a smooth distribution of x.
Suppose that q(x) is a non-negative scalar measure of the deviations of smoothness in x, then x can be
varied such that q(x) becomes a minimum (and zero if x is completely smooth). We incorporate this into
the least squares procedure such that (Kx− y)T (Kx− y) is not minimized but rather (Kx− y)T (Kx−
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y)+γq(x) where γ is a parameter that can be somewhat arbitrarily varied from zero to infinity. Obviously
with γ →∞, minimization leads to q(x) = 0 and a perfectly smooth solution as judged by the measure q.
With γ = 0, we obtain the least-squares solution. Since the solution x that minimizes (Kx−y)T (Kx−y)
does not in general minimize q(x), the solutions obtained with non zero values of γ will produce different
kinds of solutions that occur at larger values of the square norm than for the least squares solutions.

There are a number of different measures of smoothness we might adopt (see Twomey, 1977), but one
measure is given by the relationship

q =
N∑

i

x2
i

or alternatively as xT Ex where E is the identity matrix. The minimization of (Kx−y)T (Kx−y)+γxT Ex
leads to

x = (KT K + γE)−1KT y

which is a solution for a constrained linear inversion. Since is γ arbitrary, the usual approach is to choose
several values and post facto decide the most appropriate value. As an example, consider our simple 2x2
case as defined by (11.6) and (11.8), noting that the measurement error is included in the specification of
y. Suppose we assert a smoothness constraint such that γ = 1, then

x =
(

0.9
0.9

)

which is a perfectly smooth solution and close to the actual solution which too is perfectly smooth.

11.5.2 Inversion with a priori constraints

For many real inversion problems we have some general expectation of what the solutions should be
drawn from accumulated knowledge of the physical problem being inverted. For example, many times the
physical parameters represented by x need to be non-negative. We would thus like to accommodate this
knowledge in some way so we can discriminate between those solutions that give mathematically acceptable
results but physically implausible results from these that are mathematically and physically acceptable.
As we have seen, some problems give too broad a range of plausible results and a priori constraints can
also be used to restrict this range to a smaller set of reasonable solutions.

It only requires the incorporation of these expectations into the constraints to push the solutions
toward the constraint. There are a number of ways the expectation could be included - for example we
could use the departure of x not from some smooth function but from certain statistical properties about
x This could be an average value derived from climatological data base. It is relatively straightforward
to account for the tendencies that exist in past data and constrain the solution in some way to these
tendencies. A simple way to do so is to derive a mean value for x, say xa, and use the quadratic form

(Kx− y)T (Kx− y) + γ(x− xa)T (x− xa)

and proceed as above to obtain the solution for x from the extremum of this relationship. It follows that
this solution has the form

x = (KT K + γE)−1(KT y + γxa)

When there is a reasonable basis for selecting xa and γ , then this approach gives reasonable results.
Consider again our simple 2x2 example as above with γ = 1, and with

xa =
(

1.2
1.1

)
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then the solution becomes

x =
(

1.06
0.96

)

which (by design) more closely resembles the actual solutions.

11.5.3 Weighted least squares solutions








