
AT721 Section 10: 

Introduction to Inverse Radiation Problems:  
 
Inspection of the canonical solution of the radiative transfer equation (xx,yy,zz) reveals 
an integral equation of the form 

                                                        (10.1) 
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where  are the ‘data’ or measurements (typically radiances ( )y z Iλ ), ( , , ')K z zχ  is the 
kernel of the solution equation and ( )zα is some known function (like the transmittance 
from the surface to atmosphere). ( , ')x zχ is the source function and  might be 
thought of as coordinates. χ may be considered either a parameter that influences the 
values of  both K and the source vector 

, 'z z

( , ')x zχ  (such as the single scatter albedo, 
asymmetry parameter or other properties that are not retreived) or  a vector quantity 
representing desired information to be retrieved.  
 
The mathematics of the inverse radiation problem can be classified according to: 
 

• ( ) 0zα =   - (10.1) is an integral equation of the first kind 
• ( ) 1zα =      (10.1) is an integral equation of the second kind 
• a,b are constants, (10.1) is of a Fredholm type (first or second depending on 

( )zα ) 
• a=constant, b=z, (10.1) is of a Volterra type. 

 
Inverse problems can be further classified depending on the focus of attention. If x(χ, z’) 
is the desired information, such as it is for temperature retrieval problems, then the 
inversion problem is linear. If, however, the vector  χ is desired, as it is in the example of 
constituent retrievals where χ is related to the concentration of the attenuating species, 
then the problem is non linear. We will be concerned with inversions of (10.1) of both 
linear and non-linear types of problems. 
 
 
10.1The nature of the inverse problem  
 
Certain characteristics of both linear and non-linear inverse problems can be highlighted 
with th following example. We start with the linear form of (10.1)  

  (10.2a) ( ) ( , ') ( )
b

a

y z K z z x z dz= ∫
 
and we can always introduce some type of quadrature to discretize this in the form  
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 ≈y Kx  (10.2b) 
 
where y is a column vector of n measurements, x is a column vector of n source functions 
and K is an nxn matrix.  (10.2b) is now in the form of a linear discrete inverse problem in 
contrast to its the continuous inverse problem form of (10.2a). The solution of this 
discrete problem then takes the form   
 -1Kx = y  
In this way, the linear inverse problem apparently reduces to a straight forward matrix 
inversion but the problem is more complicated than this. We can begin to appreciate 
some of then issues with the following problem Suppose we make two measurements  

2.0
4.0001
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

y  

and determine that for our problem the Kernel has the values 
1.0 1.0
2.0 2.0001
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

K  

then we can determine that the solution to the pair of equations implied in (10.2) is  
1.0
1.0
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

x  

However, consider the situation where a small error is introduced to one of the 
measurements  

  
2.0
4.0

ε
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

y +

then the solution now becomes  

  
2.0
0.0
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

x

Therefore a small error in the data leads to a substantial change in the solution. Readers 
without practical experience might be left with the impression that there is no 
fundamental problem here because of a misguided belief that errors in the data can 
always be made vanishingly small. This belief is misguided for two reasons. 

(i) The severity of instabilities in many problems we deal with is so great that the 
gain in information on x obtained from improvements in data accuracy is 
small. 

(ii) The representation of the observing system in the from of (x) always contains 
inescapable sources of uncertainty, including the errors associated with 
discretization of a continuum field.  

 
A related characteristic of the inversion problems we deal with is a consequence of the 
inherent instability – that is that there are many solutions that represent the data and 
model used to define the solutions as shown in Fig. 10.x.  
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10.2 Further characteristics of inverse problems  
 
Underdetermined problems: When the equation  fails to provide enough 
information to determine uniquely (although not stably) all the elements of x, the problem 
is said to be underdetermined. These problems arise where there are more unknowns that 
data, i.e. when y is an n column vector of data and x is a m column vector of the 
unknowns where m>n. 

Ky = x

 
Even determined problems: In this case there is exactly enough information to determine 
the required information (as in our simple 2x2 problem introduced above).  
 
Overdetermined problems: When there is too much information contained in  for 
it to possess an exact solution, the problem is said to be overdetermined. These problems 
typically have more equations than unknowns, m<n 

Ky = x

 
Determining whether a problem is under or overdetermine, is however, not quite as 
obvious suggested by these comments. Many problems that appear to be over-determined 
in fact are underdetermined owing to that fact that the data (such as radiances measured 
at different wavelengths) do no contain independent information and thus are not 
independent of one another. This is illustrated in the simple 2x2 example above where we 
note that closeness of the Kernel values representing each of the ‘measurements’. This is 
a sign of lack of independence and is the root cause for the solution instability.  
 
Therefore most problems that arise in practice are neither completely overdetermined or 
underdetermined. (give example). These are referred to as mixed determined problems 
and ideally we would like to sort the unkown model parameters into two groups – those 
that are overdetermined and those that are underdetermined (TBD later).  
 
10.3 Properties of vectors and matrices 
 
We have seen by this example how small changes in the measurements lead to large 
changes in the resultant solution of a very simple 2x2 system (2 equations and 2 
unknowns). However, many of our problems are posed for much larger systems and it is 
crucial that we have some way of understanding how uncertainties behave for these 
larger systems. These systems are also not always even determined and thus not 
necessarily square – i.e. the K matrix is often non-square. 
 
The introduction of the matrix transpose allows us to apply methods to non square 
matrices that are only valid for square matrices. The transpose  of a matrix K is 
obtained by interchanging rows of matrices with columns of the matrix. The diagonal 
elements are thus unaffected. A symmetric matrix has the property and the 
product  is referred to as the symmetric product since it results in a symmetric and 
square matrix even when K is asymmetric and non square. This product is encountered 
frequently in following chapters. The inverse of the square matrix  

TK

=TK K
TK K

TK K
 1( )−=T -1 -1 T(K K) K K  
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so 
  (10.3) 1( )−=-1 T TK K K K
 
that is a simple post-multiplication of  by  yields KT -1(K K) TK -1. Since K can be non-
square, this procedure enables any real matrix to be inverted. The inverse of K as given 
by (10.3) will also be frequently encountered below. 
 
Length and square norm of a vector:  (length of x)2=   which is also referred to as the 
dot product of vectors, or scalar product.  is the square norm of the vector x. 

Tx x
Tx x

 
Orthogonality of two vectors:  The property of orthogonality is important for many 
applications. Two arbitrary vectors u and v are orthogonal when uTv=0 
 
The quadratic form of K:  Any square (general) matrix K can be represented uniquely as 
a sum of a symmetric matrix and a skew-symmetric matrix – the latter has the 
elements . This representation follows as ;   0ij ji iik k k= − =

 1 1( ) (
2 2

= +T TK K + K K - K )  

where the first term is the symmetric part and the second is the skew-symmetric part. If 
we consider to column vectors x, y then the product xTKy is called the bilinear form. For 
x=y, the product xTKx is the quadratic form and this depends only on the symmetric 
portion of K 

 1 ( )
2

=T T Tx Kx x K + K x  

 
10.4 Eigenvalues and eigenvectors  
 
If u is a vector and K is a (square) matrix, then the product Ku produces another vector y 
which, in general, has no simple relation to u. It is natural to ask that for any arbitrary 
(square) matrix K there is a choice or choices of x that make Ku a simple scalar multiple 
of u, namely 
 λKu = u  
When the relationship of this sort is satisfied, the vector x is designated as the eigenvector 
and the scalar quantity λ is the eigenvalue (the expression characteristic vector and 
characteristic value is also encountered. This expression implies that there is a single 
eigenvector and a single eigenvalue but a general NxN matrix will possess N 
eigenvectors and N eigenvalues. This follows from the fact that the matrix-vector 
equation system is a system of N scalar equations in N unknowns components of u and a 
single unknown λ.  
 
If K is symmetric and non-singular the eigenvectors  and the eigenvalues 1, nu uK

1, , nλ λK categorize K completely. If K is not symmetric, there is a second eigen-equation  
 λTK v = v  
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which has the same eigenvalues as the first. 
 
We will encounter the notion of the eigenvector and eigenvalue throughout this book, In 
the context of inverse problems, one of the important aspect of the 
eigenvalue/eigenvector decomposition of K follows be considering a vector defined as a 
linear combination of eigenvectors   1, nu uK

 1 2 nξ ξ ξ+ +1 2 ny = u u uK  
Then the repeated pre-multiplication of x by K produces 
 1 1 2 2

m m m
n nλ ξ λ ξ λ ξ+ +m

1 2K y = u u uK n  
From this expression we note that the inverse K-1 involves the division by the 
eigenvectors  

1 1 1
1 1 2 2 n nλ ξ λ ξ λ ξ− − −+ +-1

1 2K y = u u uK n  
The smallest eigenvalue thus tends to dominate the inversion. Now we begin to the 
difficulty with the direct inversion of our matrix K. If the smallest eigenvalue is very 
small  its reciprocal is very large. If a small error in y creeps into the measurements, as it 
always does, then the error in the inversion -1K y gets greatly magnified. 
 
Returning to our simple 2X2 example,  
 

1.0 1.0
2.0 2.0001
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

K  

then λ1=0.00033 and λ2=3.0007. The smallness of the first eigenvalue could have been 
anticipated give the intrinsic instability of our simple problem.  
 
Two important points drawn from this discussion warrant emphasis  
 

(i) The fundamental nature of the inversion problem, its stability, uniqueness, and 
as we will see later, the information content characteristic of the problem is 
governed by the K matrix. As we will see below and may have anticipated 
previously, this K matrix is in turn directly related to the radiative transfer 
equation and the physical processes it represents.  

(ii) The characteristics of the matrix K are fully expressed in terms of the 
eigenvalues and eigenvectors of this matrix.  

 
 
10.5 Least Squares Solution  
 
One reaction to the instability problem we have raised here is to seek more data in hopes 
that this will alleviate the difficulty. Clearly this will not solve our problem as the 
instability is an intrinsic property of K. Nevertheless, solutions to overdetermined 
problems are common and the most popular approach to solving over-determined 
problems is by invoking the least squares solution. We will also see that a number of  
other inversion methods derive from this most common approach. 
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Least squares provides a solution whereby we obtain the vector x of length N that 
minimizes the norm of the residual . The square norm, which gauges the 
magnitude of  can be written  

Kx - y
Kx - y

 

2 ( (

ij j j ik k kK x y K x y

=

⎡ ⎤ ⎡ ⎤
− −⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦
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T

N M M

i j k

Kx - y) Kx - y)

       =

l

 

With expansion and some rearrangement 

 2 2
M M M M N N

j k ij ik j ij i i i
j k i j i i

x x K K x K y y y− +∑∑ ∑ ∑ ∑ ∑=l  

This square norm may be thought of in some sense as an error between a model 
prediction Kx and the data y. We can derive x to minimize this error from 

 
2

0
∂

=
∂x
l

 

which implies that  
 0T TK Kx - K y =  
or  
 T -1 Tx = (K K) K y  
This is the least squares solution. Its geometric interpretation is illustrated in Fig. 10.2. If 
Kx is the closest point to y in the whole column space of A, then the line from y to Kx is 
perpendicular to that space.  
 
 
 
 
 

Fig. 10.2 A geometric interpretation of the least squares solution 
 
10.5.1 Constrained Least Squares 
 
The least squares solution does not overcome the inherent instability we frequently 
encounter in inverse problems. The solution is no better than that governed by direct 
inverse – in fact the elements of (KTK)-1 tend to be even larger that those of K-1. Clearly 
this does nothing to improve the situation –rather it tends to exacerbate the problem since 
the root cause for the existence of small eigenvalues of K is not addressed.   
 
The ambiguity can be removed by imposing an additional condition or citerion that may 
be evaluated with the measurements but one that is not derivable from the measurements. 
The purpose of this additional condition is to enable the selection of one x from a set of 
possible values. In many applications, this new condition is somewhat arbitrary whereas 
in other applications this new condition might represent our state of knowledge about the 
acceptable range of values x might take. 
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One constraint frequently used is the constraint that seeks to obtain a smooth distribution 
of x. Suppose that q(x) is a non-negative scalar measure of the deviations of smoothness 
in x, then x can be varied such that q(x) becomes a minimum (and zero if x is completely 
smooth). We incorporate this into the least squares procedure such that [ ] [ ]TKx - y Kx - y  

is not minimized but rather [ ] [ ] (T qγ+Kx - y Kx - y x)  where γ is a parameter that can be 
somewhat arbitrarily varied from zero to infinity. Obviously with γ → ∞ , minimization  
leads to q(x) =0 and a perfectly smooth solution as judged by the measure q. With 0γ = , 
we obtain the least-squares solution. Since the solution x that minimizes 
[ ] [ ]TKx - y Kx - y  does not in general minimize q(x), the solutions obtained with non zero 
values of γ will produce different kinds of solutions that occur at larger values of the 
square norm than for the least squares solutions.  
 
There are a number of different measures of smoothness we might adopt (see Twomey, 
1997), but one measure is given by the relationship  
 

2
N

i
i

q x=∑  

or alternatively as 
  Tx Ix
where I is the identity matrix. The minimization of  
 [ ] [ ]T γ+ TKx - y Kx - y x Ix  
leads to  
 γT -1x = (K K + I) KTy  
This is one equation for the constrained linear inversion. Since γ is arbitrary, the usual 
approach is to choose several values of γ and post facto decide the most appropriate value 
for γ. As an example, consider our simple 2x2 case where we have 

2.0
4.0
⎛ ⎞

= ⎜
⎝ ⎠

y ⎟  and  
1.0 1.0
2.0 2.0001
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

K

noting that the measurement error is included in y. Suppose we assert a smoothness 
constraint such that γ=1, then 

  
0.9
0.9
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

x

which is a perfectly smooth solution and close to the actual solution which too is 
perfectly smooth.  
 
10.5.2 Inversion with a priori constraints 
 
For many real inversion problems we have some general expectation of what the 
solutions should be drawn from accumulated knowledge of the physical problem being 
inverted. For example, many times the physical parameters represented by x need to be 
non-negative. We would thus like to accommodate this knowledge in some way so we 
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can discriminate between those solutions that give mathematically acceptable results but 
physically implausible results from these that are mathematically and physically 
acceptable. As we have seen, some problems give too broad a range of plausible results 
and a priori constraints can also be used to restrict this range to a smaller set of 
reasonable solutions.  
 
It only requires the incorporation of these expectations into the constraints to push the 
solutions toward the constraint. There are a number of ways the expectation could be 
included – for example we could use the departure of x not from some smooth function 
but from certain statistical properties about x. This could be an average value derived 
from climatological data base. It is relatively straightforward to account for the 
tendencies that exist in past data and constrain the solution in some way to these 
tendencies. A simple way to do so is to derive a mean value for x, say xa, and use the 
quadratic form  

[ ] [ ] ( )T γ+ T
a aKx - y Kx - y x - x (x - x )  

and obtain x from the extremum of this relationship. It follows that 
 

)γ γT -1 T
ax = (K K + I) (K y + x  

 
When there is a reasonable basis for selecting xa and γ, then this approach gives 
reasonable results. Consider again our simple 2x2 example as above with γ=1, and with  

1.2
1.1
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

ax  

then the solution becomes  
1.06
0.96
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

x  

which (by design) more closely resembles the actual solutions.  
 
 
10.5.3 Weighted least squares 
 
 

 8


	AT721 Section 10:
	Introduction to Inverse Radiation Problems:
	If u is a vector and K is a (square) matrix, then the produc
	When the relationship of this sort is satisfied, the vector x is designated as the eigenvector and the scalar quantity ( is the eigenvalue (the expression characteristic vector and
	which has the same eigenvalues as the first.
	Then the repeated pre-multiplication of x by K produces



