A little geometry

Frame of reference is required:

We assume a cartesian coordinate
system and orientate this such that
the x-axis points to the sun

We will encounter two forms of this
'sun-based' frame of reference - one
that assumes the z-axis to be altitude
(I.e increasing upwards) and another
with z increasing downwards (and thus
a measure of depth).

We can specify any position in this space
as given by a general position vector ¢
by the coordinates of its tip (x,y,z)

The unit vectors j j k are the unit vectors
defined along the x,y, and z axes

Two angles are also elementary to our
considerations - the zenith angle 6 and
azimuth angle ¢ (measured from the x axis)
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Direction

Consider a hypothetical unit sphere about
some origin. We define the direction vector
as that unit vector that extends from the
origin to some point (x,y,z) on that sphere.
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‘r‘ (X2 +y2 +Z2)1/2

For a vector of unit length (‘r‘ =1):

X=re®i=cos¢sin0
y=re®j=sin¢sin0
o Important application - angle
z=rek=cosb=p formed between two directions
e c0s@ =E°*E’
So that we can express a unit direction
vector cos@ = MM +

(1-p")"(1-p")" cos(@ - )

E = (cos ¢sin 8,sin ¢sin 6, cos 0)




Solid Angle

Consider a unit sphere with some opening
of area dA as as shown:

solid angle = area of the opening
subtended by on the unit sphere Solid angle Q defined
. by curve C and point P
the opening at
or‘igin Sphere radius = R

Small element of area is
da x db = sin6db x d¢ = dQ

Projection of
curve C on
sphere of radius R

_I_

Establish this unit sphere
Horizontal relative fo some direction,
surface such as local vertical -
establishes two
- hemispheres (upper and
lower)



Solid Angle Examples

Example 2.2: Solid Angle

e The solid angle of a spherical cap defined by the angle 6 is
4 27
QD) = / sin6dd [ do
0 0
= 27[1 — cos 6]
For small §, cosf — 1 —6%2/2+... and

QD) = nh?
For 6 = —m, the solid angle of a sphere is
Q(D) = 4n.

e The solid angle of a spherical segment is

' QD)= /:2 sin0d0/jw d¢

= 27[cos 6; — cos 6]

¢ The solid angle of the sun is
Q@ =T 02

where as we shall see later, § ~ ro/Rs,, and

0.7 x 108
1.5 x 108

Qe = n( )2 =~ 0.684 x 10™* steradian




Radiant flux - a basic quantity”

Radiant flux along Fr Photon speed

P(r) =hvxn(r)x c@
PO N

Photon Photon # Area element
energy density orthogonal to F

W(um)!

F=P/dA=n(r )c hv
n(r)c=F/hv

For F=0.1 Wm=2(um)!, A=0.5 um, c=3X108 ms"!, h=6.6X10-3Js/photon, then
n(r)c=0.1x0.5x10°/(6.6x103* x 3x10%)=2.5 x 1017
photons of A=0.5 um flow per second through a unit area producing 0.1

Watt of power per (um)!

* but one not directly measurable




Basic measurement concepts -radiance

Two quantities thus follow from P(r):
Area density radiant flux:

Fy=P(r)dA(§) Wm?(um)'

Solid angle density

F,=P(F)/dQ (g )  Wster! (um)!

p——

Basic quantity measured 1s the radiance

I=P/T Wm-=ster! (um)-! T S
. adiance or intensity is

Where.T— dA x d€2 fundamental since

1s the instrument throughput. we can measure it and

all other relevant
parameters of interest
to us derive from it.




Basic measurement concepts -radiometer

Key point: radiance is a ‘field’ quantity
being independent of the distance
between the instrument and source
assuming the FOV is uniformly filled.
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Problem: a simple radiometer is pointed at a wall as shown.

The radiant flux received by a detector D of area A, at the base

of a black tube of length X and aperture area A as shown is P. Assuming
Ay << X2 and A, <« R? what is the averaged radiance of the wall?

Solution: The solid angle subtended by the entrance aperture at the
center of the detector is A /X?
The radiance is P/(Ay A,/ X?)

Note: (i) the area of the field of view (tfarget area) is A, at the point p. The
total area as seen by the whole detector is A, which is larger than A;,. (ii) The
radiance is independent of R.



From radiance to irradiance (flux)

We call F the flux
or irradiance

- The radiance along direction él is

Pl
dA dQ

I, =

* The projection of dA, onto the surface
perpendicular to Il is

dA =dA n°E

coso

- The total energy throagh dA per unit area

P " AN
F= - IdQ(El) Wm2 (um)!

For n sources of radiance I; j=1..n along the n directions E. j=1..n
illuminating the surface, the total rate of energy flow per um’r area
through the surface dA is just the superposition of each individual

source



From radiance to irradiance (flux)

For n sources /11 = I(gl)

F() = T = 13 £ 4Q(E )+ 1+ E.dQE ) + .

F() = [1(E)i E'dQ(E)
Consider now the special case

with fi = k
dQ = sin 6d0d¢ /

27 7t/ 2

F* = !)' do { 1(6,¢) cos Osin 6d6

A —_—

(k*E =cos0)

2n 0
F- =fd<|) fI(G,(l))cosGsinGdG

0 -n/2




Scattering phase function

Consider an experiment that places a detector

at some distance from a scattering volume. We
seek to measure the scattered intensity at all

such points located around an imaginary sphere that

surrounds the scatterer
power received by detector

dW =I_,dA=TI_r’dQ

As before:
S(e
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_ —ikz+iot
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Examples of phase function
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Points to note: the extent of forward scattering & how it increase with x
Optical phenomena like rainbow and glory and where they appear

Smoothing of scattering function for polydispersions

Anticipate the effects of particle absorption http://members.tripod.com/~

regenbogen/indexe.htm
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Properties of the phase
function

+1
g = % _fl P(cos®)cos®dcos®

asymmetry parameter

g=1 pure forward scatter
g=0 isotropic or symmetric
(eg

Rayleigh)
g=-1 pure backscatter



Other properties of the
phase function

Define forward scatter &
backscatter as

1 21 1
f= i {dq) {P(e,q))d coso

1 2n 0
- P(o 0
b 4n{d¢£ (6,¢)dcos

f +b =1 (normalization condition)

For a simple delta phase function
2n 1

1
g= E_Ofdd)__flp(e,(b)cosedcose -f-b

1 Other (mathematical) :
b~ E(l -9) forms of phase function Legendre polynomlal
f= %(1 +9) P(cos®) = iX‘P‘ 050) éxpansion

a par‘TiculaE form of fu
20+1) ,
¢ = (—;)9
and with N =1 Legendre Polynomial
3 of degree /
P(cos®) = (1 + Egcos 0)




