A little geometry

Frame of reference is required:

We assume a cartesian coordinate system and orientate this such that the x-axis points to the sun

We will encounter two forms of this 'sun-based' frame of reference - one that assumes the z-axis to be altitude (I.e increasing upwards) and another with z increasing downwards (and thus a measure of depth).

We can specify any position in this space as given by a general position vector **r** r by the coordinates of its tip (x,y,z)

The unit vectors $\hat{\mathbf{i}}$, $\hat{\mathbf{i}}$, $\hat{\mathbf{k}}$ are the unit vectors defined along the x,y and z axes $\hat{\mathbf{i}}, \hat{\mathbf{j}}, \hat{\mathbf{k}}$

Two angles are also elementary to our considerations - the zenith angle θ and azimuth angle ϕ (measured from the x axis)

Direction

Consider a hypothetical unit sphere about some origin. We define the direction vector as that unit vector that extends from the origin to some point (x,y,z) on that sphere.

$$
\vec{\xi} = \frac{\vec{r}}{|\vec{r}|} = \frac{(x, y, z)}{(x^2 + y^2 + z^2)^{1/2}}
$$

For a vector of unit length ($|\mathbf{r}| = 1$):

$$
x = \vec{r} \cdot \hat{i} = \cos \phi \sin \theta
$$

$$
y = \vec{r} \cdot \hat{j} = \sin \phi \sin \theta
$$

$$
z = \vec{r} \cdot \vec{k} = \cos \theta = \mu
$$

So that we can express a unit direction vector

$$
\vec{\xi} = (\cos \phi \sin \theta, \sin \phi \sin \theta, \cos \theta)
$$

Important application - angle formed between two directions $(1 - \mu^2)^{1/2} (1 - \mu'^2)^{1/2} \cos(\phi' - \phi)$ $cos \Theta = \mu \mu' +$ $\cos \Theta = \xi \bullet \xi'$

Solid Angle

Consider a unit sphere with some opening of area dA as as shown:

the opening at origin

solid angle $=$ area of the opening subtended by on the unit sphere

Small element of area is da x db = sin θ dθ x dφ = dΩ

Establish this unit sphere relative to some direction, such as local vertical establishes two hemispheres (upper and lower)

Solid Angle Examples

\n- \n The solid angle of a spherical cap defined by the angle
$$
\theta
$$
 is\n
$$
\Omega(D) = \int_0^\theta \sin \theta d\theta \int_0^{2\pi} d\phi
$$
\n
$$
= 2\pi [1 - \cos \theta]
$$
\n For small θ ,\n
$$
\cos \theta \to 1 - \theta^2 / 2 + \ldots
$$
\n and\n
$$
\Omega(D) = \pi \theta^2
$$
\n For $\theta = -\pi$, the solid angle of a sphere is\n
$$
\Omega(D) = 4\pi.
$$
\n
\n- \n The solid angle of a spherical segment is\n
$$
\Omega(D) = \int_{\theta_1}^{\theta_2} \sin \theta d\theta \int_0^{2\pi} d\phi
$$
\n
$$
= 2\pi [\cos \theta_1 - \cos \theta_2]
$$
\n
\n- \n The solid angle of the sun is\n
$$
\Omega_{\odot} = \pi \theta^2
$$
\n where as we shall see later, $\theta \approx r_{\odot} / R_{SE}$,\n and\n
$$
\Omega_{\odot} = \pi \left(\frac{0.7 \times 10^6}{1.5 \times 10^8}\right)^2 \approx 0.684 \times 10^{-4}
$$
\n steradian\n
\n

 \rm{Fo}

Example 2.2: Solid Angle

 \bullet

 \bullet

 \bullet

 \mathbf{w}

Radiant flux - a basic quantity*

* but one not directly measurable

Basic measurement concepts -radiance

Two quantities thus follow from $P(\vec{r})$: Area density radiant flux: \vec{r} $\frac{1}{2}$

$$
F_A = P(\vec{r})/dA(\xi) \qquad Wm^{-2} \text{ (µm)}^{-1}
$$

Solid angle density

$$
F_{\Omega} = P(\vec{r}) / d\Omega(\vec{\xi}) \qquad Wster^{-1} \, (\mu m)^{-1}
$$

$$
Wster^{-1} (µm)^{-1}
$$

Basic quantity measured is the **radiance** $I = P/T$ Wm⁻²ster⁻¹ (µm)⁻¹ where $T = dA x d\Omega$ is the instrument throughput.

Radiance or intensity is fundamental since we can measure it and all other relevant parameters of interest to us derive from it.

Basic measurement concepts -radiometer

Key point: radiance is a 'field' quantity being independent of the distance between the instrument and source assuming the FOV is uniformly filled.

Problem: a simple radiometer is pointed at a wall as shown. The radiant flux received by a detector D of area A_d at the base of a black tube of length X and aperture area A_a as shown is P. Assuming $A_d \ll X^2$ and $A_a \ll R^2$ what is the averaged radiance of the wall?

Solution: The solid angle subtended by the entrance aperture at the center of the detector is A_{a}/X^{2} The radiance is $P/(A_d A_a/X^2)$

Note: (i) the area of the field of view (target area) is A_t at the point p. The total area as seen by the whole detector is A_t ' which is larger than A_t . (ii) The radiance is independent of R.

From radiance to irradiance (flux)

For n sources of radiance $\mathbf{I}_{\mathbf{j}_{\cdot}}$ j=1…n $% \mathbf{I}_{\mathbf{r}_{\cdot}^{\prime}}$ along the n directions $\mathbf{\hat{\xi}}_{\mathbf{j}_{\cdot}^{\prime}}$, j=1…n illuminating the surface, the total rate of energy flow per unit area through the surface dA is just the superposition of each individual source

From radiance to irradiance (flux)
\nFor n sources
\n
$$
I_1 = I(\tilde{\xi}_1)
$$
\n
$$
F(\hat{n}) = \frac{P(\hat{n})}{dA} = I_1 \hat{n} \cdot \tilde{\xi}_1 d\Omega(\tilde{\xi}_1) + I_2 \hat{n} \cdot \tilde{\xi}_2 d\Omega(\tilde{\xi}_2) + ...
$$
\n
$$
F(\hat{n}) = \int I(\tilde{\xi}') \hat{n} \cdot \tilde{\xi}' d\Omega(\tilde{\xi}')
$$
\nConsider now the special case
\nwith $\hat{n} = \hat{k}$
\n
$$
d\Omega = \sin \theta d\theta d\phi
$$
\n
$$
2\pi \pi/2
$$
\n
$$
F^+ = \int_0^{\pi/2} d\phi \int_0^{\pi} I(\theta, \phi) \cos \theta \sin \theta d\theta
$$
\n
$$
(\hat{k} \cdot \tilde{\xi} = \cos \theta)
$$
\n
$$
F^- = \int_0^{2\pi} d\phi \int_{-\pi/2}^0 I(\theta, \phi) \cos \theta \sin \theta d\theta
$$

Scattering phase function

Consider an experiment that places a detector at some distance from a scattering volume. We seek to measure the scattered intensity at all such points located around an imaginary sphere that surrounds the scatterer

As before:

2 $-$ ₀ $-$ ₀ 2 \overline{a} \overline{a} \overline{b} 2 $dW = I_{sca} dA = I_{sca} r^2 d\Omega$ Ω = Θ $=\int_{\Xi} \frac{|\mathbf{C}\cdot\mathbf{C}-\mathbf{C}|}{k^2} \mathbf{I}_0 d\Omega = \mathbf{I}_0 \mathbf{C}$ Ω Θ $=\frac{1-\sqrt{1}}{k^2}\mathbf{I}_0\mathbf{d}$ $W = \int \frac{|\mathsf{S}(\Theta)|^2}{\mathsf{L}^2} \mathsf{I}_0 d\Omega = \mathsf{I}_0 C_{\text{sca}}$ total power scattered $=\frac{S(\Theta)}{1^2}$ power received by d

2

1

2 $\Theta\big)\!\big|^2$

 Ω

thus

kr

 $-$ ikr $+$ i ω

<u> –</u>ikr+

 $E_{inc} = E_0 e^{-ikz + i\omega t}$

 $I_{inc} = E_0 e^{-ikz+i\omega}$

 $_{\textrm{sca}}$ = $\mathsf{S}(\Theta)$

 $E_{\rm sca} = S(\Theta) \frac{e^{-{\rm i}kr + {\rm i}\omega t}}{1}$

$$
\begin{array}{c}\n\text{etector} \\
\downarrow \\
\downarrow \\
\downarrow\n\end{array}
$$

Examples of phase function

Points to note: the extent of forward scattering & how it increase with x Optical phenomena like rainbow and glory and where they appear Smoothing of scattering function for polydispersions Anticipate the effects of particle absorption

http://members.tripod.com/~ regenbogen/indexe.htm

Properties of the phase function

$$
g = \frac{1}{2} \int_{-1}^{+1} P(\cos \Theta) \cos \Theta d \cos \Theta
$$

asymmetry parameter

g=1 pure forward scatter g=0 isotropic or symmetric (e.g Rayleigh)

g=-1 pure backscatter

Other properties of the phase function

Define forward scatter & backscatter as

