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1 The Phase Function

This is just a short note to describe my understanding of phase functions. It is taken en-
tirely from Liou (2002). In general, the scattering of radiation off a particle is described by
the phase matrix P(©), which is a 4x4 matrix. In the most general case of non-randomly
oriented nonspherical particles, P(0) has 16 independent elements. Each element P;; is
a function of the scattering angle ©, where
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Thus, P;;(i, ¢, 1/, ¢') represents the fraction of scattered radiation of Stokes parameter 4,
incident from direction (', ¢') upon a scatterer, and scattered into direction (i, ¢) with
Stokes parameter j. The four Stokes parameters are of course (I,Q,U, V). For a review
of polarization see Section 2 of this document.

For unpolarized radiation, we only consider the P;;(©) element of P(0); let us call this
simply P(©) and refer to it simply as the phase function. However, it would be more
accurate to call it the “intensity phase function”. The (intensity) phase function is con-
ventionally normalized as follows

2 s
/ / P(©) sin ©dOdg — 4n @)
o Jo
which is equivalent to
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where oftentimes we write u = cos © for brevity. But note that this is a different 4 than
in Equation (1)!! Some researchers prefer to express each element P(O) of the phase
function as an expansion in Legendre polynomials (spherical harmonics). Then we may
write:

P(O) = Z)@Pg(cos@) (4)
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where P, are the Legendre Polynomials. Formally N = oo but in reality the y, coefficients
often die away after hundreds, thousands, or perhaps tens of thousands of coefficients.
Therefore one can typically set a reasonable upper limit N which will retain all the
same features of the full phase function. For the full phase function without azimuthal
symmetry, one can write:
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where we define x, = x?, and the PJ"(u) are the Associated Legendre Polynomials. Also
note that P, = P?. Equation 5 can be derived using the addition theorem of spherical
harmonics (see Appendix E of Liou). I should note that the ability to write a phase
function as a function of simply © is only good for either spherical or randomly oriented
particles. For oriented nonspherical particles, the math is much harder, and is not con-
sidered further here.

In order to calculate the expansion coefficients for a real phase function, one can use the
property that the Legendre polynomials are orthogonal on the range {—1,1}. Specifically,
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where ¢; ; is the kronecker-delta function; it equals 1 for ¢ = j and 0 for 7 # j. One can
then show that y, is given by:

Xe = 241 [0 Py(p) P(p)dp (7)
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For real phase functions, one must typically compute this integral numerically. ! To cal-
culate (regular) Legendre polynomials, it is often convenient to use the recursion relation
called ”Bonnet’s recursion formula”:

Pea(p) = 5 (20 + DPo) = (P2 (1) (s)

Then one simply uses the fact that Py = 1 and P;(u) = p and one can obtain all higher
Py(p) from there.

For many applications, one may consider the azimuthally averaged phase function value
for incoming zenith direction ' and outgoing direction z. We will denote this as P(u, 1/').
Note that P(©) is only a function of ¢ —¢’. Therefore, the azimuthally averaged intensity
phase function is given by:
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1One can use Simpson’s rule or something similar, but Gaussian Quadrature also works well.
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The latter equality is shown easily from Equation (5).

Note that, often times we refer to the asymmetry factor, g, of a phase function. For
an azimuthally-averaged phase function, this is defined as the first moment of the phase
function in cos O (i.e., the mean of cos © when treating the phase function as a probability
distribution function):

1
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It is simple to show that g = x1/3.

Finally, a convenient one-parameter phase function called the Henyey-Greenstein phase
function is sometimes used. It is given by
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This form has the logical feature that the asymmetry parameter is truly given by the
parameter g. It also has a very simple Legendre expansion:
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2 Review of Polarization Description

Let us briefly review the mathematical description of polarization. An electromagnetic
wave can in general be written in terms of its electric field as

E = E,i+ E,j (13)
where
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It is implicit that one takes the real part of E to obtain the physical field. We can equally
well describe this radiation by four scalar quantities, the Stokes parameters which are
defined as follows:
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where (...) denotes a time average. () and U both represent linear polarization, while

V' represents circular polarization. For quasimonochromatic light, each component of
Equation (14) is understood to be averaged over the entire frequency band.

I
Q
U=2
V=2
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The Stokes parameters I and V' are unchanged under rotations of the & — ¢ plane, but
() and U are not. If we rotate the  — g axes through an angle 6, the Stokes parameters
change as

Q' = Qcos20 + Usin 20
U'=—Qsin20 4+ U cos 260 (15)

The angle a = %arctan% transforms to o — # under the rotation; hence it defines a
constant direction in space, which is interpreted as the axis of polarization. Finally, the

fraction of polarization is typically denoted by

0 - \/Q2+U2+V2. (16)

I

For a fully polarized signal, I = 1. A partially polarized signal has 0 < II < 1. An
unpolarized signal has [l =Q =U =V = 0.
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