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1 The Phase Function

This is just a short note to describe my understanding of phase functions. It is taken en-
tirely from Liou (2002). In general, the scattering of radiation off a particle is described by
the phase matrix P(Θ), which is a 4x4 matrix. In the most general case of non-randomly
oriented nonspherical particles, P(Θ) has 16 independent elements. Each element Pij is
a function of the scattering angle Θ, where

cos Θ = µµ′ + (1− µ2)1/2(1− µ′2)1/2 cosφ− φ′ (1)

Thus, Pij(µ, φ, µ
′, φ′) represents the fraction of scattered radiation of Stokes parameter i,

incident from direction (µ′, φ′) upon a scatterer, and scattered into direction (µ, φ) with
Stokes parameter j. The four Stokes parameters are of course (I,Q, U, V ). For a review
of polarization see Section 2 of this document.

For unpolarized radiation, we only consider the P11(Θ) element of P(Θ); let us call this
simply P (Θ) and refer to it simply as the phase function. However, it would be more
accurate to call it the “intensity phase function”. The (intensity) phase function is con-
ventionally normalized as follows∫ 2π

0

∫ π

0

P (Θ) sin ΘdΘdφ = 4π (2)

which is equivalent to ∫ 1

−1
P (cos Θ)d cos Θ = 2 (3)

where oftentimes we write µ = cos Θ for brevity. But note that this is a different µ than
in Equation (1)!! Some researchers prefer to express each element P (Θ) of the phase
function as an expansion in Legendre polynomials (spherical harmonics). Then we may
write:

P (Θ) =
N∑
`=0

χ`P`(cos Θ) (4)
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where P` are the Legendre Polynomials. Formally N =∞ but in reality the χ` coefficients
often die away after hundreds, thousands, or perhaps tens of thousands of coefficients.
Therefore one can typically set a reasonable upper limit N which will retain all the
same features of the full phase function. For the full phase function without azimuthal
symmetry, one can write:

P (µ, φ, µ′, φ′) =
N∑
m=0

N∑
`=m

χm` P
m
` (µ)Pm

` (µ′) cosm(φ− φ′) (5)

where we define χ` ≡ χ0
` , and the Pm

` (µ) are the Associated Legendre Polynomials. Also
note that P` = P 0

` . Equation 5 can be derived using the addition theorem of spherical
harmonics (see Appendix E of Liou). I should note that the ability to write a phase
function as a function of simply Θ is only good for either spherical or randomly oriented
particles. For oriented nonspherical particles, the math is much harder, and is not con-
sidered further here.

In order to calculate the expansion coefficients for a real phase function, one can use the
property that the Legendre polynomials are orthogonal on the range {−1, 1}. Specifically,∫ 1

−1
Pi(µ)Pj(µ)dµ =

2

2`+ 1
δi,j (6)

where δi,j is the kronecker-delta function; it equals 1 for i = j and 0 for i 6= j. One can
then show that χ` is given by:

χ` =
2`+ 1

2

∫ 1

−1
P`(µ)P (µ)dµ (7)

For real phase functions, one must typically compute this integral numerically. 1 To cal-
culate (regular) Legendre polynomials, it is often convenient to use the recursion relation
called ”Bonnet’s recursion formula”:

P`+1(µ) =
1

`+ 1
((2`+ 1)µP`(µ)− `P`−1(µ)) (8)

Then one simply uses the fact that P0 = 1 and P1(µ) = µ and one can obtain all higher
P`(µ) from there.

For many applications, one may consider the azimuthally averaged phase function value
for incoming zenith direction µ′ and outgoing direction µ. We will denote this as P̃ (µ, µ′).
Note that P (Θ) is only a function of φ−φ′. Therefore, the azimuthally averaged intensity
phase function is given by:

P̃ (µ, µ′) =
1

2π

∫ 2π

0

P (µ, φ, µ′, φ′)d(φ− φ′)

=
N∑
`=0

χ`P`(µ)P`(µ
′) (9)

1One can use Simpson’s rule or something similar, but Gaussian Quadrature also works well.
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The latter equality is shown easily from Equation (5).

Note that, often times we refer to the asymmetry factor, g, of a phase function. For
an azimuthally-averaged phase function, this is defined as the first moment of the phase
function in cos Θ (i.e., the mean of cos Θ when treating the phase function as a probability
distribution function):

g ≡ 1

2

∫ 1

−1
P (cos Θ) cos Θ d cos Θ (10)

It is simple to show that g = χ1/3.

Finally, a convenient one-parameter phase function called the Henyey-Greenstein phase
function is sometimes used. It is given by

PHG(Θ, g) =
1− g2

(1 + g2 − 2g cos Θ)3/2
(11)

This form has the logical feature that the asymmetry parameter is truly given by the
parameter g. It also has a very simple Legendre expansion:

PHG(Θ, g) =
∞∑
`=0

(2`+ 1)g`P`(cos Θ) (12)

2 Review of Polarization Description

Let us briefly review the mathematical description of polarization. An electromagnetic
wave can in general be written in terms of its electric field as

~E = Exx̂+ Eyŷ (13)

where

Ex = Ex0e
i(kz−ωt+φx)

Ey = Ey0e
i(kz−ωt+φy) .

It is implicit that one takes the real part of ~E to obtain the physical field. We can equally
well describe this radiation by four scalar quantities, the Stokes parameters which are
defined as follows:

I = 〈E2
x0

+ E2
y0
〉 (14a)

Q = 〈E2
x0
− E2

y0
〉 (14b)

U = 2〈Ex0Ey0 cos(φx − φy)〉 (14c)

V = 2〈Ex0Ey0 sin(φx − φy)〉, (14d)

where 〈. . .〉 denotes a time average. Q and U both represent linear polarization, while
V represents circular polarization. For quasimonochromatic light, each component of
Equation (14) is understood to be averaged over the entire frequency band.
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The Stokes parameters I and V are unchanged under rotations of the x̂ − ŷ plane, but
Q and U are not. If we rotate the x̂− ŷ axes through an angle θ, the Stokes parameters
change as

Q′ = Q cos 2θ + U sin 2θ

U ′ = −Q sin 2θ + U cos 2θ (15)

The angle α ≡ 1
2

arctan U
Q

transforms to α − θ under the rotation; hence it defines a
constant direction in space, which is interpreted as the axis of polarization. Finally, the
fraction of polarization is typically denoted by

Π =

√
Q2 + U2 + V 2

I
. (16)

For a fully polarized signal, Π = 1. A partially polarized signal has 0 < Π < 1. An
unpolarized signal has Π = Q = U = V = 0.
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