J. Quant. Spectrosc. Radiat. Transfer, Vol. 18, pp. 245-248. Pergamon Press 1977. Printed in Great Britain

DOUBLING INITIALIZATION REVISITED

W. J. WiscoMBE
National Center for Atmospheric Research, Boulder, CO 80307, U.S.A.t

(Received 1 February 1977)

Abstract—In previous work, the author studied errors arising solely from initial-layer approximations in
doubling. It now appears that misleading conclusions may be drawn from that work, because it failed to
consider the interaction of angular and initial-layer error. That interaction is such that decreasing
initial-layer error (a) often has no effect on total error, or (b) sometimes increases total error. One concludes
from this that, contrary to accepted practice, it is advisable to use an initial layer of fairly large optical
depth, in order to strike a balance between angular and initial-layer error. The diamond initialization still
seems generally superior, but only dramatically so for high orders of angular approximation.

INTRODUCTION

IN CALCULATING any radiative quantity such as layer albedo by the doubling method, we shall
always arrive at an approximate value, A.pprox, instead of the exact value, A. The two are
related by

Aapprox = A + eang(M) + einil(AT)’ (1)

where M is the order of angular approximation and A7 is the initial-layer optical depth used in
the doubling method. Ignoring round-off error, €.,,—>0 as M > and €0 as Ar—>0.

WiscomBe'” extensively analyzed €., both as it varied with Ar, and with the initial-layer
formulas. The objective was to make €., as small as possible, and also to ensure flux
conservation. Only three out of the five initializations examined conserved flux and, of these,
the expanded diamond (EDI) seemed to offer no particular advantage over its progenitor, the
diamond (DI); therefore we restrict our study in this paper to the diamond and infinitesimal
generator (IGI) initializations.

The angular error, €.,,, was ignored in Ref. (1). The present paper attempts to remedy that
omission and in the process we shall arrive at some unexpected conclusions about doubling
initialization.

ANGULAR TREATMENT

The angular part of our calculation follows the recently-proposed “8-M method” [WiscoM-
BE®], rather than the renormalization approach outlined in Ref. (1). The 8-M method wraps
phase function truncation and renormalization into a single procedure, and replaces the actual
phase function by an approximate one having the same first 2M moments. An angular
discretization 0 <, <---<pun <1 is used, where u is cosine of zenith angle, and u; are
Gaussian quadrature points for the interval [0, 1]. The supplementary angles — u; are used on
[—1,0], for a total of 2M “*streams”. All other features of the doubling calculation are as described
in Ref. (1).

Note that no truncation was used on the phase functions in Ref.[1], which was justified: (a) by
the caveat that angular error was not being considered (truncation is used to reduce angular error);
and (b) by the fact that we considered only Henyey-Greenstein phase functions, for which
then-known truncation procedures seemed ill-adapted. [With the §-M method, on the other hand,
truncation becomes a formality, equally applicable to all phase functions.]

AN EXAMPLE
We move immediately to a particular example of the phenomena we wish to point out.

Consider a homogeneous non-absorbing layer having the Mie phase function shown in Fig. 1.
This phase function is typical of a water cloud in the visible spectrum; the relevant details are
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Fig. 1. Mie phase function vs angle for a polydispersion, of effective radius 104, of water drops having
index of refraction 1.335 at wavelength 0.5u. The gamma distribution of sizes was integrated between radii
0.1 and 40u using steps 0.1 in Mie size parameter.

given in the figure caption. There is no upwelling flux at the bottom boundary of the layer. We
calculate the albedo A, of the layer using doubling with the 6-M method for M =2, 4, 8;
for layer optical depths 7 = 0.1, 1, 10; and for incident beam zenith angle cosines uo=10.1, 0.5,
1.0.

Four different initializations are used, in order to vary e, over several orders of magnitude.
Two are the DI with A7 =y, and A7 = u,/10, respectively; and two are the IGI with Ar = u,
and Ar = u,/100, respectively. For each formulation (DI or IGI), the second value of At
reduces €. a hundredfold compared to the first; this is because €. is linear in Ar for the IGI,
and quadratic in Ar for the DI

Total albedo errors,

€ior = €ang + €init — Aapprox - A; (2)

for this calculation are shown in Table 1. This table appears rather formidable, but with it one
can make numerous cross-comparisons, which would be rendered much more difficult were the

Table 1. Albedo error using the 8-M method for M =2, 4, 8 and doubling with various initializations, for a
. . . . . A
homogeneous non-absorbing layer having the Mie phase function of Fig. 1. For each entry of the form (ﬁ'; A:)’ A,
x}

and A, are for the IGI with A7 = g, and Ar = ,/100, respectively; while A; and A, are for the DI with Ar = &, and
Ar = §1,/10, respectively. Errors below 1E-4 for uo=0.1 and below 1E-6 for u,= 0.5, 1 are written as zero

Yo
T M 0.1 0.5 1.0

0.1 2 ~3E-2/-3E-2 7E~4/1E-3 ~4E~4/-3E-4
-3E-2/-3E=2 1E-3/1E-3 -3E-4/~3E-4
4 -6E~3/-3E-3 -1E-3/1E-6 -2E-4/-3E-5
~5E~3/~3E~3 -4E-5/6E-6 -3E-5/-3E-5

8 4E-4/8E-4 -2E-4/2E-5 -3E~5/1E~5

7E-4/8E-4 2E-5/2E-5 1E~5/1E-5
1 2 -6E~3/-3E-3 -5E-3/6E-3 -8E-3/-2E-3
-2E-2/-3E-3 4E-3/6E-3 -2E-3/-2E-3
4 4E-3/8E-4 ~3E-3/5E~5 -2E-3/-1E-4
-1E-3/7E-4 -8E-5/7E-5 -1E-4/-1B-4

8 2E-3/7E-4 -8E-4/1E-6 ~4E~4/3E~6

SE-4/7E-4 -4E~6/6E-6 5E-6/6E-6

10 2 3E~-3/-2E-3 ~4E-4/-2E~4 -2E-4/2E-3

-5E-3/-2E-3 -6E-4/-2E-4 2E-3/2E-3
4 2E-3/0 7E-6/~TE~5 ~6E=4/=2E~5
~3E-4/0 -1E-4/-7E-§ ~2E-5/-1E-§

8 9E~4/3E-4 3E~-5/0 ~1E~4/3E-6

2E-4/3E~4 ~3E-6/-1E-6 4E-6/5E-6
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numbers to be dissected into separate tables. “Exact” albedos A, good to four decimal places
for uo=0.1 and at least six for uo = 0.5, 1.0, are deduced from an M = 60 solution, as described
in Ref. (2).

Observe first that, while €. falls one hundred fold, €. actually rises or stays the same in 16
out of the 27 cases for the DI, and 6 out of the 27 cases for the IGI. Keeping A7 fixed at u,, but
going from the IGI to the more accurate DI, reduces &, in the majority (19) but, by no means,
all of the cases.

Consider now just the DI. In reducing A+ from w, to u./10, €. changes less than a factor of
three (excepting only 3 cases), even though €., falls a factor of 100. It is easy to deduce from
this fact, plus eqn (2), that €.., and €. differ in magnitude by no more than a factor of four
when Ar = u,. Therefore, it seems pointless and indeed wasteful of computation to take Ar
significantly smaller than u,, since doing so only reduces €., and can, at best, effect only a
moderate reduction in €,.. Such a reduction of €., can sometimes even raise €., in the
circumstance that €, and €., have opposite signs when A7 =pu, and partially cancel one
another. Table 1 contains several examples of the latter phenomenon.

Evidence for larger values of M reinforces the observations of the last paragraph. For
small (<1, say), numerical experiments at M =50 showed that using A7 < u, rather than
At = u, changed albedos, etc. in at most the 7th or 8th decimal place (of course u, is quite small
at M = 50). Second, for large 7 (=10, say), using A7 <y, introduces serious round-off error
accumulation, causing, among other things, large spurious absorptions. For == 100 and M = 50,
round-off usually affected the 4th or S5th decimal places of albedos and absorptivities for
A7 =0.02u,; it retreated to the 6th or 7th places upon increasing A7 to u,; the computation
carried 14 significant digits. In sum, it seems unwise as well as wasteful to take A7 < u, when
using the DI, whatever the value of M.

Is the DI still preferable at all, in light of the above findings? We still believe so, but the case
for it is not nearly so strong as an examination of €., alone indicates. We have already seen in
about 1/3 of the cases in Table 1 that the IGI may actually lead to better accuracy when
A7 = u,. Furthermore, Table 1 shows that the IGI with At = u,/100 gives errors nearly identical
to the DI with Ar = u,/10 (with only 4 exceptions); both initializations have at this point caused
|€init| € |€ang| and are therefore equally preferable. But an optimal initialization would use as large
a At as possible, in order to minimize computation and round-off. At the same time, this large
value of At should cause the two errors to be comparable in magnitude, |€ni| ~ |€ang|, by the
following reasoning. Suppose, in fact, |€ii| = |€.ng|. Then what can we gain by reducing either
error? If both have the same sign, at most a factor of two reduction in €. is achieved; if
opposite signs, €. is increased from zero up to, at most, twice the error which was not reduced.
Since no clear advantage accrues to reducing either error, and since it requires extra com-
putation to do so, we are best off where we started, that is, with |€ii| = |€ang]- We cannot of
course hope to achieve equality, but it is still desirable, by the same arguments, to strive for
comparability, (€| ~ |€ang|-

The DI generally meets the criteria laid out in the last paragraph better than the IGI. Indeed,
|€init| > l€ang| in general for the IGI with Ar = u,, as indicated by the frequently large factors
(especially for M =4, 8) by which €. plummets when €. is reduced a hundredfold. The
superiority of the DI is manifest particularly for larger values of M; at M = 60, for the same
situation as in Table 1, and with At = u,, DI albedos, etc. are fully two decimal places more
accurate than IGI ones. Thus the DI seems to be the best all-around initialization, an
“Initialization for all seasons”, as it were.

SUMMARY

The conclusions of this paper have been drawn in the context of a specific example; but
while the example is specific, the conclusions are general. We have observed similar
phenomena in a wide variety of cases.

The basic conclusion is that total error, eqn (2), need not be reduced when initial-layer error
is reduced, especially when working at the low orders of angular approximation (M = 2-16, say)
that many investigators would prefer to use. Effort spent to reduce initial-layer error, unless it
significantly exceeds angular error in magnitude, is largely wasted. Indeed, initial-layer and



248 W. J. WISCOMBE

angular error sometimes partially cancel one another in eqn (2), leading to an increase in total
error when either one alone is decreased.

The most desirable state of affairs, in view of all this, is to tie angular and initial-layer error
together, in such a way that they remain roughly comparable, |€;ni ~ |€ng)- This seems best
accomplished, from the numerous examples we have examined, by using the diamond in-
itialization with At~ ..
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Abstract—Truncation errors and flux conservation errors in the doubling method are examined. The error
properties of five different initial-layer approximations are compared as a function of initial-layer size, layer
optical depth, single-scattering albedo, and phase function asymmetry parameter. The “‘diamond” initial-layer
approximation is found to be orders of magnitude more accurate than the others for fixed initial-layer size, or of
equivalent accuracy starting from a very much larger initial layer. The commonly used single-scattering
initialization is shown to lead to serious flux conservation errors. Analytic error estimates, based upon a new
derivation of the single-scattering initialization directly from doubling, are shown to be useful when the layer
optical depth is on the order of 10 or less. Finally, questions of round-off error, calculation of an “exact” answer
using Richardson extrapolation, and computational efficiency are all addressed briefly.

INTRODUCTION

THE DoUuBLING method has become a mainstay for accurate radiative transfer calculations for
plane-parallel, horizontally-homogeneous, absorbing-scattering atmospheres. For a layer of
arbitrary optical depth and arbitrary (but constant) single-scattering albedo and phase function,
the method provides the internal sources, the reflectivity, and the transmissivity. By decreasing
the initial-layer size and increasing the number of discrete angles at which these quantities are
calculated, fluxes and intensities may be computed to any desired accuracy (limited only by
round-off error). Doubling was proposed in its present form by Vanpe HuLst” and independently
by TwoMEY et al.® and has been applied to atmospheric problems by Hansen®® and Grant and
Hunt” among others. A historical review and more extensive references are given by PLasS et
aL(S)

In spite of the broad acceptance of doubling for benchmark radiative transfer calculations,
very little discussion of its flux conservation properties and of its error, as a function of
initial-layer approximation and of parameters such as the single-scattering albedo, has appeared.
Those who apply the method generally obtain at least plotting accuracy (1% or so) by
experimenting with the initial-layer size and angular resolution; only Van pE Hurst and
GrossmaN® have gone beyond this, and their comments are brief and fall far short of a thorough
error analysis. As for flux conservation, Grant and Hunt"®!" have provided a nice conceptual
framework within which to discuss the problem, but they show very few actual examples.
Finally, there are a variety of ways to initialize the doubling process (see Section 3), and it is not
clear which, if any, is superior.

One might well ask, of course, if error analysis and initialization are not rather academic
concerns. After all, by appropriately reducing the initial-layer size and re-computing results it is
possible to experimentally confirm whether one’s solution has converged to the desired number
of significant digits (if round-off can be neglected). For many simple applications this is
undoubtedly sufficient. But there are a growing number of more sophisticated applications, such
as in the GRant-Hunt"® method for vertically inhomogeneous atmospheres, where doubling is
only a component in a larger scheme. The author (WiscomBe and FREeMAN;'? WiscoMBE”) has
described a radiative transfer calculation for the entire solar and i.r. spectrums which requires
roughly 100 spectral intervals, within each of which the Grant-Hunt method may be called
repeatedly based on the number of terms in an exponential-sum fit to the transmission.
Thousands of doubling results, for widely-varying layer sizes, single-scattering albedos, and
phase functions, are required in the course of such a calculation. It is time-consuming and wasteful
to have to repeat such massive calculations with smaller initial-layer sizes to verify levels of

tThe National Center for Atmospheric Research is sponsored by the National Science Foundation.
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significance, and a priori error estimates such as are given here relieve much of this burden.
Furthermore they make possible potentially large savings of computer time, since lacking such
estimates one must generally be over-conservative (no more striking example of this exists that
Hansen’s'” use of initial layers of thickness 272*, which the present study shows to be orders of
magnitude smaller than necessary).

In the following sections, we shall study error and flux conservation in the doubling method
for five initial-layer approximations (hereinafter called simply “initializations”) as a function of
(1) initial-layer size (2) layer optical depth (3) single-scattering albedo and (4) phase function
asymmetry parameter. Other new results are: a derivation of the single-scattering approximation
directly from doubling; analytic error estimates which are useful when the layer optical depth
does not exceed 10; and methods for avoiding round-off error when doubling results of high
accuracy are desired. Some computation-saving short cuts are also given in Appendix A.

The question of error due to angular discretization is not specifically addressed here (although
we do examine errors for different numbers of angles). Within a particular angular discretization
we shall only be concerned with error due to the use of finite initial-layer sizes. (Hunt™® has made
some empirical studies of angular error.)

2. THE DOUBLING METHOD

In this section we give the doubling formulas and phase function used in the calculations and
show how an “exact” solution, necessary for computing errors, was obtained.
Our interest shall center on the m X m reflection and transmission matrices

r.=rQ2"A7), t.=t(2"A7),

where A7 is the initial-layer size, 7 = 2V Ar will be the total layer optical depth, and where the
goal is to double from r,, ¢, (derived from some initialization) to ry, ty. The quantities r(7) and
t(7) give, when operating on angularly-discretized vectors of incident intensity, the reflected and
transmitted intensity vectors respectively. These relationships are summarized in the
“interaction principle” (Grant and Hunt'®), which when specialized to a layer across which the
single-scattering albedo and phase function are constant, is

(1) = r(Di (D) + IO+ S ©,7), (1a)
i) = r(ni* O+ t(ni(N+2, ©,7), (1b)
where
i(F, £y
i(f)= [ : ] ()
i(7, £ ptm)

and where i(7, u) is the azimuthally-averaged intensity (we ignore azimuthal dependence here
since our interest centers on fluxes). The angular discretization is 0 < i< <, <1, where
p =cos 6 and @ is the angle measured from the normal to the layer. The internal sources S* are
discussed in a companion paper (WiscomMBe"'”). For those unfamiliar with the interaction principle,
Fig. 1 of GranT and HuNT"” provides a nice schematic interpretation of eqn (1).

The doubling formulas may be derived directly from collapsing eqns (1) and their analogue for
the layer [7,27] into a single interaction principle, or alternatively by specializing the layer
addition formulas in Grant and Hunt,"” to yield

tari =t (I ~rr,)7't,, (3a)
Foit =t H (I = rur) ' rat, (3b)
Equations (3) were iterated from n =0 to n = N — 1 to obtain ry and fx. All computations were
done in 29-significant-digit arithmetic unless otherwise stated, in order to minimize round-off error.

Appendix A'gives a technique which greatly teduces the computational burden of the doublin
formulas (3).
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For simplicity, and because it simulates the effect of an arbitrary phase function quite well
(Hansen™), the Henyey-Greenstein phase function

1_ 2
P =T g™

was employed in this study. The parameter g is identical to the asymmetry factor {cos @) for this
phase function. We actually require the azimuthally-averaged form of P, viz.

_ 1 r e
Pl ) =— f Pl + VT= 52 VI~ 57 cos ¢) dé

2b
_ 21-g%) E<\/a+b) @)
m(a +b)"” - 26

a+b

where E is the complete elliptic integral of the second kind and
a=1+g"-2gup, b=2gVI-u’Vi-u’

This form for P has not been previously noted in the literature to the author’s knowledge; it is
useful in that fast standard subroutines are available for elliptic integrals. The values of P from
eqn (4) were re-normalized with Grant’s method (see Section 6).

The “exact” reflection and transmission matrices, defined as

Fay to = lim 1y, ty, (5)
T fixed

are necessary in order to perform an error analysis. Letting At - 0 on the computer, however, is
not possible in principle because of round-off error growth. And because we set ourselves the
goal of obtaining r.. and t.. correct to at least 8 significant digits, it was generally impossible in
practice as well. However, we found a way to sidestep the round-off problem. By using element-
by-element Richardson extrapolation (see the excellent review of Joyce"®) of ry’s and tn’s
computed from successively halved initial-layer sizes,

Atk =(A7)/2* (k=0,1,2,..),

it proved possible to compute r.. and ¢.. to the desired accuracy, provided r was not too large. For
large 7 the extrapolation tended to lose utility because the higher-order terms in the expansion
rv =r.+alAr+b(Ar) +- - - were no longer small compared to the low-order terms which were
being successively eliminated (some insight into the reason for this behavior is furnished in
Section 7). The value at which r became “large” depended crucially on the initialization; for the
diamond initialization (Section 3b) it was as small as 1-2, while for the less accurate infinitesimal
generator initialization (Section 3d) it was at least 100 (the largest value of 7 considered). But for
large + we availed ourselves of the phenomenal accuracy of the diamond initialization (Section
7); our desired level of significance was easily obtained using this initialization with a moderately
small A7,

Since r.. and t.. are crucial to our analysis, considerable effort was expended to make sure
they were accurate. The error computations were performed with varying (A7), and using
extrapolation with the diamond, expanded diamond (Section 3c), and infinitesimal generator
initializations. In no case were the error plots, presented below, discernibly changed. It is
interesting to note, however, that extrapolation *““‘converged” (ceased to decrease the error) more
quickly for the more accurate initializations.

3. INITIALIZATIONS

Here we review a general theory from which any number of specific initializations may be
derived. Five initializations are singled out for further study.
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(a) General theory
Let us write the azimuthally-averaged monochromatic radiative transfer equation in the form

piri=otnm+ 2 [ Pluuiitw)d ©)
T —1

where o is the source term, w the single-scattering albedo and P the azimuthally-averaged phase
function from eqn (4). Replace the integral using a quadrature formula for [0, 1] with points
0<p,<---<u. =1 and corresponding weights ¢, and set u = u; to yield

31 s Mi . W b e
i (;T“)+I(T,,LL,')=0'(T,[L,')+§‘Z‘C,'{p.‘j I(T’ _”'i)+pii ’(Typ'i)}a
i=

where
P =[P, =)

An analogous equation follows from putting s = —, rather than u = .. The two equations may
immediately be written in matrix-vector form as

ai*
ar

=M +i*=a7(r)+ 5 [p it +p i, )

where i* are as defined in eqn (2) and
U(T’ iI~'~'l)
U't(’f) = : s M=[pd;]l, c= [c:65].
(T, £ptm)

Now integrate eqn (7) across a thin layer [7o, 7] of thickness At to yield
EM\E— i0") + ipAT = o ipAT + % Ar[pTciin+tp Tiin). ®

The quantities i,* and i,” are simply i* evaluated at 7 = 1, and 7 = 7,, respectively. The “central
intensities” i3, and “central sources” o3, are defined as

- | S . | S A
l?/zEEj;o lAdT, Ul_/zEA—Tj;O (deT. (9)

A variety of different thin-layer approximations can be obtained by assuming that the central
intensities are related linearly to the two boundary intensities. The most general such assumption
which does not mix up intensities along different quadrature directions u; is

=X+ - XDi,", (10a)
hp=X"im+I-X)iy, (10b)

- where X" and X~ are arbitrary diagonal matrices. Upon inserting these relations into eqn (8), it is
possible to manipulate eqn (8) into interaction principle form [eqns (1)] and thereby identify
expressions for r, t and =*.

(b) Diamond initialization (DI)
A natural choice for the X™* in eqn (10) is

_y-_1
X=X 21

since this is equivalent to assuming that the intensity is linear in optical depth. CArLsoN"” coined
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the name “diamond scheme” for this assumption in an entirely different radiative transfer
framework, and we shall retain that usage.
Putting the diamond scheme into eqn (8) leads to

I+ )i = (I - T)io" + Rlis+ i)+ 6% (112)
(I + T)ig = (I - T)iv + RGis" +i") + 61, (11b)
where
r=14T f=m (1-2p7) (110)
R=RS, R=2M"pe (11d)
= M oA, (1le)

Equation (11a) would be in interaction principle form [eqn (1a)] were it not for the i, term. But
eqn (11b) can be solved for i, in terms of the other intensities, and substituted into eqn (11a) to
eliminate i,”. After further manipulation we may then identify the reflection and transmission
matrices and source vectors in the interaction principle as follows:

r(A7)=2TR(I+T)", (12a)
t(Ar)y=2I'-1, (12b)
S T (Ar)=T{éin+ RU + T)'65n}, (12¢)

where
F=[{I+T-RUI+T)'R]"

The identities
W+ '=1+I+T)'U-T), 2U-T'=I-T+RUI+T)'R,

have been used to simplify the equations for r(Ar) and #(At), respectively.
The actual computation of eqns (12) is facilitated by using the techniques in Appendix A.
Equations which are reducible to eqns (12) are buried in an appendix of GRaNT and HUNT."®
However, it is not clear from the context if they used these equations to initialize doubling, and it is

certain that no one else has.

(¢) Expanded diamond initialization (EDI)

When preliminary numerical experiments showed the DI to have accuracy O[(A7)?], it seemed
logical to avoid the matrix inversions in eqns (12) by expanding in powers of At out to (Ar)*. The
truncated expansions so derived are:

(AT)

r(Ar) = RAr — (RT + TR) =~ (13a)

(AT)

t(Ar) =1 - TAr +(T7+ R} =+ (13b)

R and T are defined in eqns (11c, d). The source vector expansions are not given here since they
depend on the explicit form of the source function o (7, n). Equations (13) will be referred to as the
“expanded diamond” initialization.

(d) Infinitesimal generator initialization (IGI)
The simplest and most basic initialization can be derived either by taking X* = X~ = I in eqns
(10), whereby eqns (8) reduce immediately to interaction principle form, or by expanding the DI
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to O(A7) only. The result is
r(Ar)=RAr, t(Ar)=1-TAr, 3 (A1)=éin, (14)

where R, T, and 6 are defined in eqns (11c-e). This initialization is probably the one used most
frequently (e.g. TwoMEY et al.®) Only Grant and Hunt'® have given it a name, the “infinitesimal
generator” (from group theory), and to avoid a proliferation of nomenclature we will adopt that
usage here.

(e) Single-scattering initialization (SSI)

The single-scattering approximation in radiative transfer is well known (CHANDRASEKHAR®).
It corresponds to solving the integral form of the radiative transfer equation to first order in w.
It does not, however, proceed from eqns (8) and (10) for any choice of the weights X*, for the
simple reason that eqns (8) are extracted from the integrodifferential form (6) of the transfer
equation.

Nevertheless, it is possible to derive the single-scattering approximation from nothing more
than the IGI [eqns (14)] and the doubling formulas (3). We rewrite eqns (14) in order to explicitly
display their w-dependence as

r0=a)f', t0=é+wt,
where

F=aM'p*"cAr, t==M"'p*cAr, é=1-M"'Ar (15)

1 1
2 2

Clearly rois O(w), and therefore from the doubling formula (3b), r, will be O(w) for all n. Hence to
O(w) the matrix inverse in both doubling formulas can be replaced by the identity. Performing the
first two doublings explicitly and keeping only O(w) terms,
rn=ryt+ t()r()t() = (1)(; + éfé),
t =t =62+ w(fé + éf),
A3 AA

r2=r|+t|r1t|zw[f+éfé+é2;é2+e res],

L=t =&+ w(té> + 666> + 866 + &*f).

The emerging pattern is clear, and it can be proved by induction that
2n—1 2n—1 Aon
= 2 Y, t=é"+ 3 eer
k=0 k=0

Because ¢ is diagonal [eqn (15)], these reduce to geometric series which can be summed in closed
form. For r, we have

27—

(r.)ii = wh; Z (e:6))" = wf;i[1 - (ei;)" /(1 - eie;), (16)

where ¢, is the ith diagonal element of é:
e=1-(Ar/w).

For ¢, we have similarly
n 27—
(tn)y= €78y + wte?™" Z (e/e)
k=0

eiz'- + znwt‘“eiz'--l
= { (17)

wli(e” - e (g —e) i#]
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Let us now take the limit as Ar -0 of these results, holding the layer size 7 =2"Ar fixed.
Since

llm e|'2’l = llm (1 “M) = e**/u.-,
Ar—0

o "

it is clear that the limiting forms of eqns (16) and (17) are

(rm)”____p" [1 (‘r/u,+-r/u-,)]/< (183)

Hi I"l)

(t) = (18b)

t_; (eﬂ/u, — e )/(____) #].

With #=A7, eqns (18) become the single-scattering initialization. It has been used most
prominently by Hansen.””

_.,/p_ [ S
<l+2wp,, 7') i=j

(f) Plass initialization (PI)

This initialization appears in the appendix of a paper by PLass et al.,® where it is mistakenly
associated with Hansen, who in fact uses the SSI. It is a slight variant on the IGI, in which it is
recognized in eqn (14) that when w =0 the IGI transmission

t(Ar)=1~M"'Ar = [(1 —ﬁ—j) 5..,.],

is merely a two-term expansion of the correct transmission
E(A7)=[e™** §;).

Therefore, the transmission is initialized by
t(Ar) = E(Ar)+ oM™ 'p**cAr, (19)

which is then exact at w =0. The remainder of eqn (14) is used as it stands.

Equation (19) is inconsistent in that an incipient power series in At has been summed
explicitly in only one part of eqn (14). The price of this inconsistency will become clear in
Sections 5 and 6.

() Restrictions on At

Grant and Hunt'®' thoroughly discuss the importance of having all elements of the
reflection and transmission matrices non-negative, which one should expect on physical grounds.
They show that the property of non-negativity is preserved by doubling, so that it is sufficient to
have all elements of roand ¢, non-negative. These matrices are always non-negative for the SSIand
PI, for all A7 > 0. But for the other three initializations, non-negativity imposes an upper limit on
Ar.

For the IGI, this upper limit is

(AT)imex = min (l—_éa‘)‘T) (20)

In the case of the EDI, non-negativity constrains A7 to satisfy a complicated set of inequalities.
For typical small A7, however, they are only slightly more liberal than A7 < (A7)max. Therefore
these inequalities are omitted.
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For the DI, we can show that an upper limit of 2(A7),..., is sufficient for non-negativity (the
proof is given in Appendix B), but are unable to establish the necessity of this bound. Numerical
experiments using the DI over wide ranges of parameters and with A7 >2(A7)max have
however convinced us that (1) Ar <2(A7)max iS a necessary as well as a sufficient
condition for r,, t, =0 (2) computed fluxes may remain accurate even when A7 exceeds 2(A7 )max
by up to an order of magnitude and (3) initially negative elements (in r, and t,) disappear after
only a very few doubling steps. This remarkable recovery ability is not shared by either the IGI or
EDI—if they start out negative, they grow more so. The number of doubling steps needed for the
DI to recover non-negativity is a function primarily of the extent to which Ar exceeds 2(A7)max-
For A7/[2(AT)max] = 2, for example, only one doubling step is required; for A7/[2(AT)max] = 5, 3
steps. We conclude that it will be safe to use At > 2(A7)max in the DILif one is doubling to fairly large
optical depths, but not otherwise.

(h) Sources
We do not examine error in doubling for sources here, but we note that this error is
unnecessarily magnified when the central source vectors o, [eqn (9)] are taken as

o= o (1), 2D

where 7 is the midpoint of [7o, 7,]. Both Grant and Hunt"” and the author in earlier work
(WiscomBe and Freeman‘'®) have used this approximation, which is exact only for some unknown
7 in [7o, 7], according to the mean value theorem. But when the r~dependence of ¢* is known
analytically, as for example in the direct beam source, which is exponential in 7, then o3}, can be
computed exactly. Even if the analytic dependence on 7 is not known, it should be possible to
perform a more sophisticated numerical quadrature on eqn (9) than a midpoint rule, which leads
to eqn (21).

4. NORMS AND FLUX ERRORS

Examining the differences between exact and approximate reflection and transmission
matrices element-by-element would be painful and unilluminating. Fortunately, there is a natural
matrix norm for radiative transfer which distills this error into a single number. This number can
be used immediately to put a bound on the flux error.

First a vector norm is defined, following Grant and Hunr,
intensity its norm is the quadrature formula for the flux,

Y 50 that when the vector is an

lill= El 2 fi-
=
The corresponding matrix norm is defined in terms of the vector norm as

Al = max (22a)

lai]
[l

< 1
= m?.X Z] C,-[.LilAijI E;L—," (22b)

The equivalence of eqns (22a and b) is shown in IsaacsoN and KELLER, Ref. (20), p. 9. If A were a
reflection matrix, definition (22a) shows that | Al would be the maximum possible albedo of a
layer; if A were a transmission matrix, ||A | would be the maximum transmissivity. Thus this norm
has simple physical interpretations. ‘

From definition (22a) it is evident that

Al ={Allil-

Subtracting the interaction principles [eqn (1)] for the exact (A7 - 0) and approximate (finite Ar)
cases, taking norms, and using this property leads to the following error-bounds for fluxes leaving
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a layer:
lai | < lar] il + ael i) + 1A%,

Jaio < IArl o) +Iach i+ JA3 T, )
where A indicates the difference between exact and approximate values (Ar =r.—ry,
At = t.— ty, etc.). Thus, barring anomalously high source errors, the error in emergent flux will
not exceed max (JAr|, |At])) times the incident flux, roughly speaking. If, for example, we pick Ar
so that [|Ar| and [|At|| do not exceed 107*, then errors in the emergent fluxes will not exceed 0-01%
of the incident fluxes.

5. COMPARISON OF INITIALIZATIONS

The errors ||Ar|| and [|At|| for the five initializations are now compared.

Figure 1 shows [|Ar| vs initial-layer size At for layers of optical depth r =0-1, 1 and
10 and single-scattering albedos w =0-1, 0-5 and 1. Figure 2 shows ||At|| vs A7 for the
same parameters. Only the asymmetry factor g = 0-9 is considered since the plots varied in only
minor ways for 0 <g <09, and all of the important conclusions to be drawn from them were
independent of g. Figures 1 and 2 are for m = 8 Gaussian quadrature points y; for the interval
[0, 1] and all five initializations of Section 3(b-f) are represented on each plot (although for two of
the r = 10 cases in Fig. 1 the DI is so accurate that its curve falls entirely below [|Ar|| = 107® and so
does not appear).

Perhaps the most striking result of these plots is the phenomenal accuracy of the DI
relative to all the others. Only for A7 near its upper bound 2(A7)m.x, discussed in Section 3(g),
and for 7 = 0-1 do ||Ar|| and |At| become even as large as 1072 For the wide ranges of 7, w, g, and
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Fig. 1. JAr| vs A7 for g =09, m = 8 Gaussian angles, @ = 0-1,0-5, 1-0, and = = 0-1, 1, 10.
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m which we have studied, we have never observed a case in which ||Ar|| and [|At]| for the DI
exceed 107, and the worst cases are always when 7 = u, (i, is a good approximation to (A7 )max)
and Ar = 7, so that no doubling is done. In general, using A7 = u, with the DI will almost always
produce fluxes accurate to better than 1%, using the arguments of Section 4 relating ||Ar| and [|A¢{|
to flux error. This 1% limit will actually be approached for optically thin layers, but by the time
one has doubled up to 7 = 1 a figure of 0:01% maximum flux error is more appropriate, and this
figure continues to plummet dramatically as one doubles beyond 7 =1. In fact, another
remarkable property of the DI is just this dramatic error reduction with each doubling, as one
may observe by looking across the rows of Figs. 1 and 2. It is particularly noteworthy that the
curves for the other four initializations in Fig. 1 hardly move at all as 7 increases across each row,
while at the same time the diamond curve is falling precipitously. All the curves fall as we look
across the rows of Fig. 2, due to the decline in transmission as 7 — o, but clearly the diamond
curve falls faster than the others, the more so the larger w is. As we proceed down the columns of
Fig. 1, corresponding to increasing w, the diamond curve rises 1-2 orders of magnitude. All the
other initializations experience a comparable loss in accuracy as o increases with the exception
of the SSI where the loss in accuracy is rather more drastic.

Note that, in order to match the accuracy of the DI with say A7 =107* (=g,), the other
schemes, with the occasional exceptions of SSI and EDI, require Ar’s orders of magnitude
smaller. Since a single doubling involves more computation than the entire DI (if the shortcuts of
Appendix A are used), it follows that the DI can guarantee a given level of flux accuracy—always
better than 1%—with significantly less computation. If smaller A7’s than 107 are desired, in
order to obtain improved accuracy, the advantage of the DI over all the others except the EDI
escalates rapidly, due to its superior convergence properties (steeper slope of its curves in Figs. 1
and 2).
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In order to show that our conclusions are not sensitive to angular discretizations, we
performed comparisons analogous to Figs. 1 and 2 for m =4 and m = 16 Gaussian quadrature
points also. A few of the 7 = 1 results for m = 16 are shown in Fig. 3 (|Ar{) and Fig. 4 (JAt])), again
for @ =0-1, 0-5 and 1, but this time for g =0 rather than g = 0-9. Comparison of corresponding
plots in Figs. 1 and 3 and in Figs. 2 and 4 leads to the conclusion that the relative ordering of the
curves, their separations, and in general their relations to one another are rarely altered by the
large changes in m and g. Even the actual values of |Ar| and ||A¢| do not change by much more
than an order of magnitude. These conclusions are borne out by more extensive comparisons.
Thus Figs. 1 and 2 furnish a fairly universal set of error estimates in spite of being restricted to a
particular m and g.

100 T t

w=05
161 B 1 7= o 7
ssi )
/ L ED) B
e

REFLECTION MATRIX
ERROR NORM,NIAr I
. 3 S

T T

\

1078 SSI ~ - =
_— /
EDI o1
>/ Dl (o]
|0-0 1 1 1 1 1 /
10°% 1074 073 102 1078 074 1073 02 107 104 1073 1072

INITIAL-LAYER SIZE, Ar
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Fig. 4. |At] vs Ar, same cases as Fig. 3.

We now discuss the remaining initializations, roughly in order of decreasing accuracy and
desirability. The EDI is clearly competitive with the DI with regard to rapidity of convergence
and, for small 7, in size of |Ar| and especially ||At|. For larger 7, it tends to be tremendously
inferior to the DI for computing reflection, but is still fairly competitive in computing
transmission as long as w is not near unity. Unfortunately, since the EDI [egns (13)] involves four
matrix multiplications, it offers no clear computational advantage over the DI if the DI is computed
as in Appendix A.

The IGI is consistently inferior in accuracy to the DI and EDI and to the SSI as well if
o =0-5. For w =0-5 it is superior in accuracy to the SSI, which seems strange in view of the
derivation [Section 3(e)] which implies that the SSI is a more accurate O(w) approximation than
the IGI. However, that derivation was inconsistent in that a series was summed explicitly in the
O(w) terms and not in the O(w?) and higher terms. A similar inconsistency was noted in the
derivation of the PI [Section 3(f)]. Such inconsistencies are no doubt responsible, not only for
inferior accuracy, but for the flux conservation difficulties which we shall encounter in the next
section.

The PI is consistently the least accurate of the five. Note that both the PI and SSI are
constructed so as to give the correct transmissions (i.e. have zero-error) at w = 0, but that their
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accuracies have already deteriorated seriously by w = 0-1, relative to schemes which do not limit
properly as @ —0. Having the correct behavior as w —0 seems to hurt rather than help the
accuracy and flux conservation ability of an initialization.

It is a simple matter to show empirically that the IGI, SSI and PI all have O(A7) convergence,
while the DI and EDI have O[a1’] convergence. The quantities |Ar|| and ||At|| from Figs. 1 and 2
have been divided by (Ar/u:) for the O(Ar) initializations and by (A7/u:)’ for the O[AT?)
initializations. Sample results from this procedure are presented in Fig. 5. Since the curves are
nearly horizontal, the rate of convergence has obviously been deduced correctly. The deviation
from horizontality as Ar increases reflects the influence of higher powers of Ar in the Taylor
expansion of the error.
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Fig. 5. ||Ar]| (top row) and |A¢[| (bottom row) divided by (Ar/u,)" vs Ar form =8, =09, 0 =1and 7 =0-1,
1;n = 2forDIand EDI, n = 1 otherwise.

For the purpose of studying round-off error growth in the various initializations, the
computations were downgraded from 29 to 14 significant digits (CDC single precision, IBM
double precision) and the Ar range was extended down to 10~%. Sample results for |Ar| and [|Af]|
vs Ar, for w =1 and 7 = 1, are shown in Fig. 6. The DI succumbs to round-off error somewhat
below Ar = 107%, and the EDI somewhat below Ar = 107>, (As a general rule, the more accurate
the approximation, the more susceptible it will be to round-off error.) The other initializations just
begin to succumb between A7 = 107 and 10°%; the IGI breaks down somewhat before the others.
It is curious that Hansen,” using A7 =27 =3 x 10", may have been operating very near the
threshold of round-off catastrophe. Of course, the round-off limit on A7 depends strongly on the
machine precision and to a lesser extent on w, 7 and m, so no hard and fast rules can be given
here. But it would seem unwise to use A7’s much smaller than 0-1x, with the DI, especially since
A7 =0-1yu, will give more than sufficient accuracy for most applications.

A final conclusion to be drawn from Figs. 1 to 4 is that so-called “benchmark™ calculations
using the doubling method, with the popular IGI or SSI, may compute fluxes correct to only one
or two significant digits if A7 is not sufficiently small. Heating rates computed from differencing
such fluxes may have no significant digits whatsoever.

6. FLUX CONSERVATION AND PHASE FUNCTION RENORMALIZATION

In order to conserve flux, it is essential (TwoMEY ef al.;® Grant and Hunt"'®) that the phase
function normalization condition be satisfied in its quadratured form:

Sy +pi)=2 G=1,...m). (24)

i=1
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This is a system of m equations and therefore, at best, can only determine m unknowns. Hence
the problem of determining (m”>+ m) correction factors, one for each element of p** and p*~
(the number is reduced from 2m? by symmetry), is underdetermined. This arbitrariness has led to
several proposed methods for renormalizing p** and p*~, which are discussed below in order of
increasing complexity.

The simplest is due to Grant (private communication), who corrects only the m diagonal
elements, identically for p ™" and p *~. Since the diagonal elements are larger than the off-diagonal
ones, this puts the entire correction where it has the least relative impact. To give an idea of the
size of this correction, for g = 0-9 the largest one is 46% for m = 4, 21% for m = 8 and 3-7% for

=16 (the correction obviously goes to zero as m - or as g —»0). Thus it may cause a
substantial distortion in a highly asymmetric phase function. If the unrenormalized matrices are
denoted by p** and p*~, the Grant method is

pu - (1 + ejau)p +*'
From substituting this into eqn (24), one finds

b
A++ )

i+ p ji
where

b=3 (i +pi).

The Grant method was used in the present computations.
A method in which every element is corrected was proposed by Wiscomsk et al.:?"

pit=(l+e+e)pi.

Equation (24) then yields a set of linear equations for the €’s:

m

Z i€ = G=1,...m),

where
Bu = bjaii + C; (15 17+ + ﬁ;-)'

The general effect of this method is similar to Grant’s, that is, the largest corrections turn out to
be on the diagonals, but it distributes the corrections more uniformly over p** and p*~
Next up in complexity is HANSEN’s” method, in which only p ** is corrected; the corrections are
computed iteratively from a formula of unstated origin.
The most complex method is that of TwoMmey et al.,” which involves finding the eigenvectors

and eigenvalues of
<Cﬁ ++ CpA +-—>
CpA +— Cﬁ ++

By the Perron-Frobenius theorem (Topp, Ref. (22), p. 290), since A has all positive elements it
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has a positive eigenvalue A and a unique corresponding eigenvector e, with positive
components. All the other eigenvectors must have at least one negative component since they are
orthogonal to e,. The eigenvector e, should be all ones by eqn (24); if it isn’t, it is made so, A is
changed to 2, and the whole set of eigenvectors reorthogonalized. A new A-matrix is then
constructed from the modified eigenvalues and eigenvectors, from which p** and p*~ are then
extracted. This method is more elegant than the previous ones, but at the price of considerably
more computation. It would be interesting to know which of these renormalization methods, if any,
leads to the smallest flux error.

We now address the question of flux conservation, or alternatively spurious absorption, in
layers for which w = 1. Of course spurious absorption does not disappear when w < 1, but then it
is masked by, and usually insignificant compared to, true absorption. Nevertheless, any
numerical scheme exhibiting non-negligible spurious absorption is seriously deficient; such is the
case for the single-scattering initialization, as we shall see below.

If we add together eqns (la and b) of the interaction principle, ignore sources, and take the
norm of both sides, we obtain

Fou <[ S| Fi, (29)

where ||S|=lr+t, Fou=li"(r)+i ), Fu=[i"(0)+i"(r)|. Fox and F. are the
total fluxes out of and into the layer, respectively. From eqn (25), we deduce immed-
iately that |S||=1 is necessary for flux conservation (Fou= Fi), but not sufficient. Thus
when S} <1 we know flux cannot be conserved, whereas when | S| =1 we can make no
conclusions regarding flux conservation. Grant and Hunt"'" give this necessary condition in the
more restricted form ||S|| = 1, but the author has observed situations [all for At exceeding the
upper bounds of Section 3(g)] in which ||S||> 1 and yet flux is conserved to many significant
figures. It is quite simple to show that flux conservation is preserved by layer addition—one need
only add together the equations F... = F., for each layer. Thus, if the initial layer A7 for doubling
conserves flux, so will the entire layer 7. Since the initial layer cannot conserve flux unless

ISoll = llro + tol = 1, (26)

then it is clear that having ||So|=1 when » =1 is a desirable property for an initialization to
possess.

For the IGI, ||So| =1 may be proven directly from the matrix norm definition (22b) and the
renormalization condition (24). For v =1 and

e Y S
Ar = (A7), = min [1 ——%c,-(pf"’l’ir)]

we have ||SJ| = 1, and for A7 > (A7), we have |\SJ| > 1. Note that (A7), is somewhat larger than
(AT)max {€qn (20)].

The complicated nature of the DI [eqns (12)] precludes the use of the norm definition (22b) to
calculate ||So. We have only been able to prove rigorously that, if At < 2(Ar)s, [|So| < 1 whenw <1
and ||So| =1 when w = 1. This proof is given in Appendix C. But computational experience has
shown that ||So] = 1 when w = 1toatleast 14 significant digits for the DI, provided A7 < 2(Ar),. For
At >2(A7), we find ||Sof| > 1.

The EDI behaves very similarly, that is, = 1 implies [|[So| = 1 to as many significant digits as
the diamond case until A7 exceeds some limit slightly larger than (A7),; beyond this limit,
[|Soll > 1. It should be emphasized, however, that the condition || So|| > 1 does not necessarily destroy
flux conservation, even when doubling to large optical depths. This holds true for the DI, the EDI
and the IGI. Of course, there may be serious accuracy and non-negativity problems in such cases.

Figure 7 shows ||Sx|| = |lr~ + t~| as a function of initial-layer size At for r =2N¥Ar =0-1, 1 and
10. Results for both g = 0 and g = 0-9 are included to show that renormalization (absent for g = 0)
cannot be responsible for the observed behavior of ||Sx|. As At and/or 7 increases, we see that |Sw ||
for the SSI becomes increasingly less than unity; thus the SSIis incapable of conserving flux. The
PI causes ||Sn| to increase rapidly above unity as At and/or r increase, so that it may still conserve
flux; but whether it does or not is really irrelevant in view of the poor accuracy of this scheme (see
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Section 5), and we consider it no further. Figure 7 also shows ||Sy||=1 for the other three
initializations (except where the IGI curve angles steeply upward for At > (A7), ~0-02).

In order to directly study the spurious absorption due to the various initializations, we
computed the absorptivity

a E(Irin_ Fout)/Fin

when w = 1 for layers of various optical depths 7 and assuming various distributions of incident
intensity. Figure 8 shows a vs 7 for i (r) = 0 (no flux into the bottom of the layer) and for i *(0)
either along the most nearly-grazing or along the most nearly-normal quadrature angle. Other
specifications of incident intensity led to absorptivities between the normal and grazing cases.
Figure 8 is for g =0-9 and m =8, but qualitatively, and quantitatively to within an order of
magnitude, a is the same for 0=g =<0-9 and 4<m =< 16. Results are shown for Ar = u,/10
(0-002) and for At = u,(0-02). The absorptivity increases about linearly with Ar and with 7;
therefore it doubles with each doubling step. It is negligibly small and almost the same for
the DI, the EDI and the IGI. It is intolerably large for the SSI, easily reaching 1-10% and more,
unless Ar is taken very much smaller than the values of Fig. 8. Perhaps this explains why
HanseN® took A7~ 107%, a value much smaller than accuracy alone would dictate.
From eqn (25) and the definition of absorptivity a, it follows that

az1-|$].

In general we find that a' > 1 —||S] initially and for the first few doubling steps (provided |S|| < 1),
but after that a = 1—||S||, so that the absorptivity can be estimated from the layer property ||S||
without postulating a specific incident intensity.
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7. ANALYTIC ERROR ESTIMATES

Restricting our attention to the DI, we shall derive analytic estimates of |Ar| and flA¢]| which
are useful for 7 = 10. An analogous treatment is equally useful for the IGI but is omitted here.

We begin by showing, in Fig. 9, examples of how the errors ||Ar[ and ||At], divided by Ar/p.)’
to normalize out the Ar-variation, vary with 7 for w = 0-1,0-5 and 1-0, for g = 09, and for m = 4
and 8 Gaussian angles. We note two things which are typical of such curves. First, the error peaks
out and is quite large for optically thin layers but decreases dramatically as we continue doubling
to thicker layers. The peak moves toward smaller 7 as m increases. Second, the spread
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Fig. 9. ||| (top row) and ||A¢ (bottom row) divided by (A7/u,)* vs 7 for DI and for g = 0-9, m =4, 8. Curve
labels: ——, @ =0-1; -+, w = 0-5; ---, w = 1-0 (same labels apply to Figs. 10 and 11).



On initialization, error and flux conservation 653

between the w = 0-1 and w = 1-0 curves is reasonably small compared to the range of variation of
the error, especially for |At|, which suggests that analytic error estimates for w -0 will be useful
for all w.

The exact w = 0 transmission error can be derived as follows. Putting r, =0 and hence I', = I
in the doubling formula (3a) and initializing f, from eqn (12b) with » =0, we obtain

2N

= __2&&,’,

The exact transmission is
te=1i =[e "™ §..
Ay—n-o tv=[e 6"]'

(T fixed)

Therefore the w =0 error is

—rlu;
Er=|t.—ta] = ﬁ 7(A7)* max [e#} ] o)

where we have expanded and neglected terms of order (Ar)* and higher, in consonance with our
empirical finding in Section 5 that ||At||is nearly proportional to (A7)’. The value of u at which the
maximum in eqn (27) is assumed depends on 7, and results in Er having a r-dependence of the

following form
re T =3u,
Er x 2 31 <7 <3pm.

Te Hm T3t

The peak is assumed in the first sub-range, at 7 = ., followed by a monotonic decrease through
the next two sub-ranges, as we indeed observe in Fig. 9. The 7~> dependence in the mid-range is
only approximate since the y; are a discrete set, so it is preferable to use eqn (27) directly in the
mid-range.

In the process of expansion in powers of Ar which leads to eqn (27), one finds that
higher-order terms may not be neglected if

(AT’ > 1. (28)

This situation was not triggered in any cases considered here since our maximum Ar was on the
order of 244, so that even for only 4 Gaussian angles condition (28) would be at least 7 > 50. But ina
similar analysis for the IGI, eqn (28) is replaced by 7 A7 > 1, which may invalidate the expansion
for fairly small 7’s.

In Fig. 10 we show ||At|| divided by Er vs 7 for the same values of w as in Fig. 9, for g =0 and
0-9, and for m =4 and 8. When the curves are close to unity, then of course Er is a good
approximation to [|At]. The approximation is seen to be excellent for @ =01, easily within a
factor of 2 everywhere, as we might have expected. The approximation grows progressively
worse for @ = 0-5 and w = 1-0 but is still easily within an order of magnitude almost everywhere.
It deteriorates rapidly beyond about 7 =35 and is considerably worse for highly asymmetric
scattering (g = 0-9) than for isotropic scattering (g = 0). Increasing the number of angles (m)
seems to improve the accuracy of Er as an error estimate in all cases. The sawtooth appearance
of some of the curves is due to the maximum in eqn (27) jumping between values of u;, starting at
w, for small 7 and winding up at w,, for large 7.

Since r. = 0 for @ = 0, we must perforce go to a more complex O(w) theory to get an estimate
for |Ar||. Fortunately the analysis of Section 3(¢) can be repeated beginning with the DI [expanded
to O(w)] rather than the IGI. We dispense with the details and merely give the result corresponding
to eqn (16):

(=52 pi 11— Gee™1/ () 29
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Fig. 10. |At| divided by E; vs 7 for DI and for g = 0,0-9and m =4, 8.

where
_(y_Ar Ar
e‘_<1 Zu.)/(HZ,u.)

We take the difference between eqn (29) and the single-scattering result of eqn (18a) [to which
eqn (29) limits as A7 —»0 with 2V¥Ar fixed] as our error estimate:

Eg =|ro—null,
where

=@ (1 .L) e )+ 2
(re—rn)y 2+ (I-Li3+/~14j3 Pi 1€ (ary,

which has been expanded to order (A7)’ as we did for Er (the same caveat on the size of r(Ar)
applies here). Note that since Er is linear in o it is primarily measuring the error due to
singly-scattered radiation. To the extent that the reflected radiation is multiply-scattered, Ex will
lose accuracy.

It might be remarked that an O(w) correction may be added to Er [eqn (27)] following the
approach for Eg. This will improve the estimate somewhat for thinner layers, but since for
thicker layers most of the transmitted radiation is multiply scattered, no improvement will result
there.

In Fig. 11 we show ||Ar|, divided by Eg, vs r for the same parameter set as in Fig. 10. The
utility of Ex as an analytic error estimate is seen to be somewhat less than that of Er. There is a
particularly marked deterioration as @ increases in the g =0-9 case, and in general the Ex
estimate seems to be substantially better when g = 0 than when g = 0-9. This can be understood
in terms of the much larger multiply-scattered component of the reflected radiation when g = 0-9,
which Er does not account for. As a general rule, Ex can only be relied on for an order of
magnitude error estimate for 7 < 0-1; however, depending on the particular combination of @ and
g, it may be reliable up to 7’s of 5-7.

We remark finally that we have purposely considered only 7 < 10 in Figs. 9-11 because unless
w = 1 there is little significant change in r and ¢ with further doubling. Even for w = 0-99, ||| and
llt]| have essentially reached their asymptotic values by = = 100. As n - the doubling formulas
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(3) of course reduce to £,.1~ 0, Fa.i ~ Iu, and the point is that this happens rather rapidly when
o<l

8. SUMMARY AND CONCLUSIONS

The main goal of this paper has been to provide estimates of doubling error for reflection
and transmission, for a variety of initializations, which can be directly used in estimating flux
error [eqn (23]. Figures 1-6 provide an abundance of information in this regard of which we give
only the highlights below. The other major goal has been to compare the flux conservation
properties of the various initializations.

The doubling initializations studied differ widely in accuracy, and two little-known ones, the
diamond and expanded diamond, are found to exhibit vastly superior accuracy and convergence
(as Ar—0) compared to the commonly-used infinitesimal generator and single-scattering
initializations. With the diamond initialization in particular, it is possible to achieve a pre-set
accuracy with an initial-layer size many orders of magnitude larger than what the other
initializations would require. The single-scattering initialization, surprisingly, is found to be less
accurate than the simpler infinitesimal generator when @ =0-5. The diamond and expanded
diamond initializations succumb to round-off error for initial layers A7 somewhat smaller than
10~®, while the other initializations are stable against round-off down to Ar=10"" (for
14-significant digit computations).

Richardson extrapolation is exploited, apparently for the first time in this connection, to obtain
reflection and transmission matrices accurate to at least 8 significant digits. This permits one to
skirt the formidable round-off error problems associated with a straightforward passage to
the limit of small initial-layer size. The diamond, expanded diamond, and infinitesimal generator
initializations are all shown to have excellent flux conservation properties. The single-scattering
initialization, on the other hand, is found to be very poor in this regard.

By judicious use of a new derivation of the single-scattering initialization, analytic error
estimates are derived which prove useful for restricted ranges of layer optical depth,
single-scattering albedo, and asymmetry parameter.

As a final note, the author hopes that the present work may help to stimulate a somewhat
greater awareness of the errors which lurk in supposedly “‘exact” calculations of radiative fluxes.
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APPENDIX A

Speeding up doubling and diamond initialization calculations

The basic idea behind the restructuring of the doubling and diamond initialization computations to be discussed below is
that, in principle, it is roughly six times faster to solve a system of linear equations than to invert a matrix and then multiply it
by another matrix (IsaAcsoN and KELLER Ref. (20), p. 34). Further computational savings may also be possible if the
LU-decomposition from the linear system solution can be reused, as in the diamond case.

Doubling. Referring to eqns (3) in the paper, and dropping subscripts, it is clear that we must compute the matrix

A=t(I~-nm)"
Rather than inverting (I - rr) and multiplying the result by f, cne should write the problem as a linear system,

T~rm)TAT =7 (A1)
and solve for the columns of AT (rows of A) using stand?xl:d Gaussian elimination with LU decomposition. However,
because of the way matrices are stored column-by-column in a computer, it may be desirable to modify eqn (A1) by making
use of the relationships

r"=DrD™', T =DtD, (A2)
where
D = (ucidy)

{p: and c; are defined in Section 3). GRANT and HUNT" mention that eqns (A2) are valid for the IGI (Section 3d). However, it

is not difficult to prove that they are also valid for the DI and the EDI [Sections 3(b) and (c)], and that these relationships are
preserved under doubling. Therefore eqns (A2) are quite general. Using eqns (A2) in eqn (A1), one may derive

(I-rr)B =1, (A3)
where
B=D"'A"D.
Solving this last relationship for A,
¢, -
Ay=t2LB, (<ij<m). (A4)

Timing studies have indicated that obtaining A from eqns (A3) and (Ad) has the advantage over solving eqn (A1) directly.

It should also be noted that once A is available, no further matrix inverses are required in order to double for internal
sources as well (WisCOMBE"). ‘

Diamond initialization. Referring to eqns (12), it is seen that two matrix inverses are involved in the DL The inverse of
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(I + T) always occurs in the combination

C=RUI+T)",
so that we should solve the linear system

U+T)CT=RT
for C. However, as in the doubling case discussed previously, the easily-proved relationships

TT=DTD™', R =DRD™,
allow us to solve instead the system
(I+T)B=R,

and recover C from

G :,%23" (=ij=m).
The other matrix inversion is bypassed in the following manner. Define

G =3[(I+ T)- CR)
and obtain r, t and £* by solving the linear systems

Gr=C, Gu+D=1 GI*=jd3,+Cdipl.

The LU-decomposition of G should be saved during solution of the first system and reused in the subsequent solutions.

APPENDIX B

Sufficient upper bound on At for diamond initialization
We prove that

AT < 2(AT) maxs
implies that r(Ar) and ¢(Ar) for the DI [eqns (12a and b)] are non-negative matrices. At < 2(A1) .. implies (I - T) =0, where

T is defined in eqn (11c). We have R >0 from its definition [eqn (11d)]. Since R and (I — T) are the IGI for r and ¢ for a layer
of thickness jAr, the norm definition (22a) implies that

[RI<1, I-Th<1. (B1)
Defining
Rs=R(I+T)", (B2)
allows us to write the DI as
riAry=2(I+T)"'U - R ™'R,, (B3)
tAD)=20+T)"U-RAH ' -L (B4)

In order to expand the inverse matrices in eqns (BZ)—(BX)M,“wé reAqu"ire the theorem (i.SAACSON and KELLER Ref. (20), p. 15)
that, if A <1, then

U-Ay'=I+A+A%+ -
First prove |Ro] < 1. We have

;

IR < IR = (J1R1|(1-50- D))

s(fz%l_l—ﬂ)?<l,

where eqn (B1) and two norm inequalities from Isaacson and Keller are used. Because |R,%| < 1 and |[I - T|| < 1, eqns (B3)
and (B4) may be expanded as follows:

FAT)=[I+3I = T)+ - +Re+- - -IRq,
HAT) = [T +3I~T)+- - T+ RZ+ - 1.
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But we may expand R, [eqn (B2)] as follows:
Ro=3R[I-y(I-T "' =RUI+XI-T)+{I- T+ ]

so that R, >0 because R >0 and (I -~ T)=0. Both r and ¢ are clearly sums of series of non-negative matrices since Ro>0
and (/- T)=0, so they themselves are non-negative. This completes the proof.

APPENDIX C

Flux conservation parameter |Sd for diamond initialization
Note that the quantities (I — T) and R in eqns (11c and d) are the infinitesimal generator expressions for transmission and
reflection matrices, for a layer of optical thickness A7, Adding the DI equations for reflection and transmission (12aand b)

together and expressing the result in terms of S,q;=1—-T +R,
ISollor = 12T Si)™ Siaull
=[|Swll 21 = Swa)”')

_ Sl

T3S

This follows from two standard norm inequalities (IsAacson and KELLER®), But, if !Ar < (Ar),, then [Sici <1 whenw < 1and
ISiadl =1 when w = 1. Therefore, ||Solo: < 1 when @ <1 and ||Sojor <1 When w = 1.



