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FOREWORD 

 
These lectures on inverse modeling are part of a half-course, “Models of 

Atmospheric Transport and Chemistry”, that I have taught to graduate students at 
Harvard since 2002. Most of that course focuses on the construction of chemical transport 
models, but I also cover inverse modeling as it relates to atmospheric chemistry 
applications: retrieving concentrations from satellite radiance measurements, retrieving 
emissions from observed concentrations, chemical data assimilation. Originally I 
dedicated just one lecture to inverse modeling, but this has grown to about four lectures 
as my interest and experience in this area have grown. 

I first educated myself in inverse modeling in 2000 through a reading course 
with my former student Colette L. Heald, in which we worked through the book by Clive 
D. Rodgers, “Inverse Methods for Atmospheric Sounding” (World Scientific, 2000). I 
found it to be wonderfully rigorous and clear, but difficult. . My lectures are heavily 
influenced by this book but try to be easily accessible to a beginning graduate student 
with a basic background in linear algebra. I have made a point of using Rodgers’ notation 
because I consider it a model of clarity and in order to encourage the interested reader to 
go to his book for further information and insights.  

I would greatly appreciate feedback from readers on any topics that need to be 
clarified, any errors, and any general issues of content. Send me an email at 
djacob@fas.harvard.edu. 

I would like to thank my students and postdocs who have worked on inverse 
modeling as part of their research and educated me in the process: Colette L. Heald, 
Emily Jin, Dylan B. Jones, Monika A. Kopacz. Paul I. Palmer. I would like to extend a 
special thanks to Monika Kopacz for her comments on the adjoint modeling chapter. 

 

Daniel J. Jacob 

January 2007 
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1. INTRODUCTION 
 

Inverse modeling is a formal approach for estimating the variables driving the 
evolution of a system by taking measurements of the observable manifestations of that 
system, and using our physical understanding to relate these observations to the driving 
variables. We call the variables that we wish to estimate the state variables, and assemble 
them into a state vector x. We similarly assemble the observations into an observation 
vector y. Our understanding of the relationship between x and y is described by a 
physical model F, called the forward model: 

 ( , )=y F x b + ε  (1.1) 
 

where b is a parameter vector including all model variables that we do not seek to 
optimize (we call them model parameters), and ε is an error vector including 
contributions from errors in the observations, in the forward model, and in the model 
parameters. From inversion of equation (1.1), we can obtain x given y. In the presence of 
error ( ), the best that we can achieve is a statistical estimate, and we need to weigh 
the resulting information against our prior (a priori) knowledge x

≠ε 0
a of the state vector 

before the observations were made. The optimal solution of x reflecting this ensemble of 
constraints is called the a posteriori, the optimal estimate, or the retrieval. We will use 
these words interchangeably. The choice of state vector (i.e., which variables to include 
in x vs. in b) depends on what variables we wish to optimize, what information is 
contained in the observations, and what computational costs are associated with the 
inversion.  

Inverse models have three major applications in atmospheric chemistry: 

 
1. Retrieval of atmospheric concentrations from observed radiances. Consider the 

problem of using nadir spectra measured from space to retrieve the vertical profile of 
a trace gas. The measured radiances at different wavelengths represent the 
observation vector y, and the trace gas concentrations at different vertical levels 
represent the state vector x. The forward model solves the radiative transfer equation 
to calculate y as a function of x and of additional parameters b including surface 
emissivity, temperatures, clouds, spectroscopic data, etc. Inversion of this forward 
model using the observed spectra then provides a retrieval of x.  

2. Optimal estimation of surface fluxes.  Consider the problem of quantifying surface 
fluxes of a gas on a (latitude x longitude x time) grid. The fluxes on that grid 
represent the state vector x. We make observations of atmospheric concentrations of 
the gas from a network of sites, representing an observation vector y. The forward 
model is a chemical transport model (CTM) relating x to y. The parameter vector b 
includes meteorological variables and any characteristics of the surface flux (such as 
diurnal variability) that are simulated in the CTM but not resolved in the state vector. 
The information on x from the observations is called a top-down constraint on the 
surface fluxes. A priori information on x based on our knowledge of the processes 
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determining the fluxes (such as fuel combustion statistics, land type data bases, etc) is 
called a bottom-up constraint. Combination of the top-down and bottom-up 
constraints provides the optimal estimate of x.  Instead of the surface fluxes 
themselves, we may wish to optimize the driving variables of a surface flux model; 
the approach is exactly the same but the dimension of x may be greatly reduced. 

3. Chemical data assimilation. Consider the problem of constructing a continuous 3-D 
field of concentrations of a trace gas over the globe on the basis of limited 
measurements of concentrations at isolated points and scattered times. Such a 
construction may be useful to produce chemical forecasts, to assess the consistency of 
measurements made from different platforms, or to improve estimates of the 
concentrations of non-measured species from measurements of chemically linked 
species. We define the state vector x(t) as the 3-D ensemble of gridded concentrations 
at time t, and y as the vector of observations available over the time interval [t-∆t, t]. 
The forward model is a CTM initialized with x(t- ∆t) and providing a forecast for 
time t. This forecast represents our a priori information for x(t), to be corrected on the 
basis of the observations over the time interval [t-∆t, t]. Our state vector here is in 
general very large, while the observation vector at any given time is relatively sparse. 
We refer to this type of inverse model application as data assimilation.  

Proper consideration of errors is crucial in inverse modeling. To appreciate 
this, let us examine what happens if we ignore errors. We linearize the forward model y = 
F(x, b) around the a priori estimate xa taken as first guess: 

  (1.2) 2( , ) ( ) (( ) )= + − + −a ay F x b K x x Ο x xa

x
x

))a

 

where is the Jacobian matrix of the forward model with elements 
evaluated at x = x

/= ∂ ∂K y
/ij i jk y= ∂ ∂ a. Let n and m be the dimensions of x and y, respectively. 

In the absence of error, m = n independent measurements constrain x uniquely.  The 
Jacobian matrix is then a nxn matrix of full rank and hence invertible. We obtain for x: 

  (1.3) ( ( ,−= + −1
ax x K y F x b

 

If F is nonlinear, the solution (1.3) must be iterated with recalculation of the Jacobian 
around successive guesses for x until satisfactory convergence is achieved. 

Now what happens if we make additional observations, such that m > n? In 
the absence of error these observations must necessarily be redundant. However, we 
know from experience that useful constraints on an atmospheric system typically require 
a very large number of measurements, m >> n. This reflects errors in the observations and 
in the forward model, described by the error vector ε in equation (1.1). Thus equation 
(1.3) is not applicable in practice; successful inversion requires adequate characterization 
of the error and consideration of a priori information on x. The a priori estimate has its 
own error: 

 = +ax x εa  (1.4) 
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and the inverse problem then involves weighting the error statistics of ε and εa to solve 
the optimal estimation problem, “what is the best estimate of x given y?”. This is done 
using Bayes’ theorem, presented below. 

 

2. BAYES’ THEOREM 
 

Bayes’ theorem provides the general foundation for inverse models.  Consider 
a pair of vectors x and y.  Let P(x), P(y), P(x,y) represent the corresponding probability 
distribution functions (pdfs), so that the probability of x being in the range [x, x+dx] is 
P(x)dx, the probability of y being in the range [y, y+dy] is P(y)dy, and the probability of 
(x, y) being in the range [x, x+dx, y, y+dy] is P(x,y)dxdy.  Let P(y|x) represent the pdf of 
y when x is assigned to a certain value.  We can write P(x,y)dxdy equivalently as 

 ( ) ( ) ( )P d d P d P d=x,y x y x x y x y  (2.1)  
 

or as 

 ( ) ( ) ( )P d d P d P d=x,y x y y y x y x  (2.2) 
 
 

Eliminating P(x,y), we obtain Bayes’ theorem:  

 ( ) (( )
( )

P PP
P

=
)y | x xx | y

y
 (2.3) 

 

This theorem formalizes the inverse problem posed in chapter 1.  Here P(x) is the pdf  of 
the  state vector x before the measurements are made (that is, the a priori pdf). P(y|x) is 
the pdf of the observation vector y given the true value for x, which the instrument knows 
about. P(x|y) is the a posteriori pdf for the state vector reflecting the information from 
the measurements – that is, it is the pdf of x given the measurements y.  The optimal or 
maximum a posteriori (MAP) solution for x is given by the maximum of P(x|y), that is, 
the solution to ( | )P∇x x =y 0  where ∇x  is the the gradient operator in the state vector 
space. The probability function P(y) in the denominator of (2.3) is independent of x, and 

we can view it merely as a normalizing factor to ensure that 
0

( | ) 1P
∞

=∫ x y dx . It plays no 

role in determining the MAP solution (since it is independent of x) and we ignore it in 
what follows. 

 

3. INVERSE PROBLEM FOR SCALARS 
 

Application of Bayes’ theorem to obtain the MAP solution is easiest to first 
understand using scalars. Consider a source releasing a species X to the atmosphere with 

Daniel J. Jacob, Lectures on Inverse Modeling, 2007. 4



 

an emission flux x.  We have an a priori estimate ax aσ±  for the value of x, where σa
2 is 

the error variance. For example, if X is emitted from a power plant, the a priori 
information would be based on knowledge of the type and amount of fuel being burned in 
that plant, any emission control equipment, etc. We set up a sampling site to measure the 
concentration of X downwind of the source. We measure a concentration iy σ±  where 
σi

2 is the instrument error variance. We then use a CTM to obtain a relationship between 
x and y as  

 ( ) my F x σ= ±  (3.1) 
 

where σm
2  is the CTM error variance. Let us assume that the CTM relationship between x 

and y is linear. Let us further assume that the instrument and CTM errors are uncorrelated 
so that the corresponding variances are additive. The measured concentration y is then 
related to the true source x by 

 y kx εσ= ±  (3.2) 
 

where the coefficient k is obtained from the CTM, and σε
2 is the observational error 

variance defined as the sum of the instrumental and CTM errors: 

 2 2
i mε

2σ σ σ= +  (3.3) 
The observational error includes the forward model error, so it is not purely from 
“observations”. Think of it as the error in the observing system designed to place 
constraints on the state vector.  

After making the measurement, we seek an improved estimate  of x that 
optimally accommodates the top-down constraint from the measurement and the bottom-
up constraint from the a priori.  We uses Bayes’ theorem.  Assuming Gaussian error 
distributions, we have 

x̂

 
2

2

( )1( ) exp[ ]
22

a

aa

x xP x
σσ π

−
= −  (3.4) 

 

 
2

2

1 (( | ) exp[ ]
22

y kxP y x
εε σσ π

−
= −

)  (3.5) 

 

Applying Bayes’ theorem (2.3) and ignoring the normalizing terms that are independent 
of x, we obtain: 

 
2 2

2

( ) ( )( | ) exp[ ]
2 2

a

a

x x y kxP x y
εσ σ

− −
− −∼ 2  (3.6) 

 

Finding the maximum value for P(x| y) is equivalent to finding the minimum in the cost 
function J(x):  
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2 2

2

( ) (( ) a

a

x x y kxJ x
εσ σ

− −
= + 2

)

0

 (3.7)  

 

which is a least-squares cost function weighted by the variance of the error in the 
individual terms. It is called a χ2 cost function, and J(x) as formulated in equation (3.7) is 
called the χ2 statistic.  

The optimal estimate  is the solution to x̂ /J x∂ ∂ = , which is straightforward 
to obtain analytically:  

 ˆ (a )ax x g y kx= + −  (3.8) 
 

where g is a gain factor given by 

 
2

2 2 2
a

a

kg
k ε

σ
σ σ

=
+

 (3.9) 

 

In (3.8), the second term on the right-hand side represents the correction to the a priori on 
the basis of the measurement y. The gain factor is the sensitivity of the retrieval to the 
observation: /g x= ∂ ∂y� . We see from (3.9) that the gain factor depends on the relative 
magnitudes of σa and σε/k. If σa << σε/k, then  and 0g → ax x→� ; the measurement is 
useless because the observational error is too large. If by contrast σa >> σε/k, then 

 and 1/g → k /x y k→� ; the measurement is so precise that it constrains the solution 
without recourse to the a priori information. 

We can also express the retrieval  in terms of its proximity to the true 
solution x. We have 

x̂

 y kx ε= +  (3.10) 
 

where ε (with variance σε
2) is the observational error. Replacing in equation (3.8) we 

obtain 

 (1 ) ax ax a x gε= + − +�  (3.11) 
 

where a = gk is an averaging kernel describing the relative weights of the a priori xa and 
the true value x in contributing to the retrieval. The averaging kernel represents the 
sensitivity of the retrieval to the true state: /a x x= ∂ ∂� . The gain factor is now applied to 
the observational error in the third term on the right hand side. We see from equation 
(3.9) that the averaging kernel simply weights the error variances σa

2 and (σε/k)2.  In the 
limit σa >> σε/k, then and the a priori does not contribute to the solution. However, 
our ability to approach the true solution is limited by the third term g ε in equation (3.11)
with variance (g σ

1a →

ε)2.  Since in the above limit , we obtain in fact 1/g → k /x y k→�  as 
derived previously. The error on the retrieval is then defined by the observational error. 
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We call (1-a)xa  the smoothing error since it limits the ability of the retrieval to obtain 
solutions departing from the a priori, and we call gε. the retrieval error. 

We can derive a general expression for the retrieval error variance by starting 
from equation (3.6) and expressing it in terms of a Gaussian distribution for the error in 
(x- x� ). We thus obtain a form in 2exp[ ( ) / 2 ]x x 2σ− − � �  where 2σ�  is the variance of the 
error in the a posteriori x� . The calculation is laborious but straightforward, and yields  

 
( )22 2

1 1 1
ˆ /a kε

σ σ σ
= +  (3.12) 

 

Notice that the a posteriori error is always less than the a priori and observational errors, 
and tends towards one of the two in the limiting cases that we described. 

Let us now consider a situation where our single measurement y is not 
satisfactory in constraining the solution. We could in principle remediate this problem by 
making m measurements yi, each adding a term to the cost function (6.10). Assuming the 
same observational error variance for each measurement: 

 
2 2

2
1

( ) (( )
m

a i

ia
2

)x x y kJ x
εσ σ=

−
= + ∑ x−  (3.13) 

 

We can re-express J(x) as 

 
22

2 2

( )( )( )
/

a

a

y kxx xJ x
mεσ σ

−−
= +  (3.14) 

 

Where < > denotes the mean value and  is the variance of the error on the mean of 
 (this is the central limit theorem). By increasing m, we could thus approach the 

true solution: 

2 / mεσ
2(y kx− )

ˆˆ /  and 0m x y k σ→ ∞ ⇒ →< > → . However, this works only if the 
observational error is (1) truly random, (2) uncorrelated between different measurements. 
With regard to (1), it is critical to establish if there is any systematic error (also called 
bias) in the measurement. In the presence of bias, no number of measurements will allow 
convergence to the true solution; the bias will be propagated through the gain factor and 
correspondingly affect the retrieval. Accurate calibration of the measuring instrument and 
of the forward model is thus essential. With regard to (2), instrumental errors (as from 
photon-counting) are often uncorrelated; however, forward model errors rarely are. For 
example, two successive measurements at a site may sample the same air mass and thus 
be subject to the same transport error in the CTM used as forward model. It is thus 
important to determine the error correlation between the different measurements. This 
error correlation can best be described by assembling the measurements into a vector and 
constructing the observational error covariance matrix. Dealing with error correlations, 
and also dealing with multiple sources, requires that we switch to a vector-matrix 
notation in our formulation of the inverse problem. . We do so in the next section. 
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Onr last point before we move on. We assumed in the above a linear forward 
model  y = F(x) = kx. What if the forward model is not linear? We can still calculate a 
MAP solution  as the minimum in the cost function (3.7), where we replace kx by the 
nonlinear form F(x). The error in this MAP solution is not Gaussian though, so equation 
(3.12) would not apply. An alternative is to linearize the forward model around x

x̂

a as 
yk
x x xa

∂
=

∂ =
 to obtain an initial guess x1 of , and then iterate on the solution by 

recalculating 

x̂

1

yk
x x x

∂
=

∂ =
, and so on. As we will see, the latter is the only practical 

solution as we move from scalar to vector space. 

 

4. VECTOR-MATRIX TOOLS FOR INVERSE MODELING 
 

Let us now consider the problem of a state vector x of dimension n with a 
priori value xa for which we seek an improved estimate on the basis of an ensemble of 
observations assembled into an observation vector y of dimension m.  The forward model 
is 

 ( )= +y F x ε  (4.1) 
 

as in (1.1) but without the model parameters to simplify notation. Inverse analysis 
requires definition of error statistics and pdfs for vectors, and of the Jacobian matrix for 
the forward model. The error statistics are provided by error covariance matrices, and 
the pdfs are constructed in a manner that accounts for covariance between vector 
elements. Numerical construction of the Jacobian matrix may be done using either the 
forward model or its adjoint. We begin by describing these different objects before 
proceeding to the solution of the inverse problem in the following sections. 

4.1 Error covariance matrices 
 

The error covariance matrix for a vector is the analog of the variance for a 
scalar. Consider a vector x = (x1,…xn)T of dimension n. Its error covariance matrix S has 
as diagonal elements the error variances of the individual elements of x, and as off-
diagonal elements the error covariances between elements of x. Let us construct the a 
priori error covariance matrix Sa of the state vector for the inversion, i.e., the analog of σa 
in the scalar problem (section 6.2).  The a priori value for the state vector is xa and the 
true value is x. The error variance var (xi - xa,i) for element xi is defined as the expected 
value of (xi -  xa,i)2  when xi is sampled over its a priori pdf P(xi). The error covariance 
cov((xi-xa,i), (xj- xa,j))for the pair (x,i, xj) is defined as the expected value of the product (xi 
– xa,i)(xj – xa,j)  when xi and xj are sampled over their respective a priori pdfs.   The matrix 
is thus constructed as: 
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  (4.2) 
1 ,1 1 ,1 ,

1 ,1 , ,

var( ) cov( , )

cov( , ) var( )

a a

a n a n n a n

x x x x x x

x x x x x x

⎛ ⎞− −
⎜ ⎟= ⎜ ⎟
⎜ ⎟− − −⎝ ⎠

aS
…

# % #
"

n a n−

x x x

 

We express it in compact mathematical form as S x  where E is the 
expected value operator returning the expected value of the quantity, i.e., its average 
value over a large number of determinations. 

[( )( ) ]T
a E= − −a a

Constructing an accurate error covariance matrix requires detailed statistical 
information and knowledge that is often difficult to obtain. Depending on the problem, 
simple estimates of errors may be sufficient.  

 
 

t

 
S

 

a
e
b

 

T
a

 

T
e
a

D

Example. If we assume a uniform 50% error on the individual elements of
xa with no correlation between the errors on the different elements, then the diagonal
elements of Sa are 0.25xa,i

2
 and the off-diagonal elements are all zero. 
 

Let us now similarly construct the observational error covariance matrix Sε of 
he error vector ε in the forward model (4.1) used to relate x to y: 

 ( )= +y F x ε  (4.3) 

ε is constructed as 

 
1 1

1

var( ) cov( , )

cov( , ) var( )

n

n n

ε

ε ε ε

ε ε ε

⎛ ⎞
⎜= ⎜
⎜ ⎟
⎝ ⎠

S
…

# % #
"

⎟
⎟

m

m

 (4.4) 

 

nd we can express it in compact form as Sε = Ε[εεT].  Included in ε are all the sources of 
rror that would prevent the forward model from reproducing the observations. They can 
e separated into instrument errors (εi) and forward model errors (εm): 

  (4.5) iε = ε + ε

hese errors are in general uncorrelated so the corresponding error covariance matrices 
re additive: 

  (4.6) 
iε ε εS = S + S

he instrument errors can be determined from calibration standards. The forward model 
rrors are more difficult to estimate. They include errors in the model representations of 
ll processes not correctable through adjustment of the state vector.  
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Daniel J. Ja
Example. Consider the problem of inverting CO2 surface fluxes for
 continents on the basis of an ensemble of worldwide CO2 atmospheric
ns at surface sites, and using an Eulerian CTM as the forward model.
ons to the forward model error will include: 

1. The model transport error; 

2. Spatial and temporal smoothing intrinsic to the model (grid resolution,
time step), preventing it from resolving fine-scale variability in the
observations – this is called the representation error; 

3. Error in the distribution of a priori CO2 surface fluxes on
subcontinental scales that is not corrected by adjustment of the state
vector on continental scales – this is called the aggregation error.  
he error covariance matrix is in general a complicated object to interpret. 
position can be a useful tool to identify the dominant error patterns. In the 

ovariance matrix S for a vector x has full rank, since otherwise would imply 
ent is perfectly known. It is also symmetric since the covariance operator is 
It therefore has orthonormal eigenvectors ei with eigenvalues λi. 

is of S is useful to diagnose the dominant error patterns. S can be spectrally 
 along its eigenvectors as 

 (4.7) Tλ= ∑ i i i
i

S e e

w the base for x defined by the eigenvectors. In that base, eigenvector ei has a 
or its ith  element and a value of zero for all its other elements, so that the error 
matrix is a diagonal matrix of eigenvalues: 

1 0

0 n

λ

λ

⎛ ⎞
⎜= ⎜
⎜ ⎟
⎝ ⎠

S
…

# % #
"

⎟
⎟  (4.8) 

lue λi thus represents the error variance associated with the orthonormal error 
y eigenvalue decomposition of S and ranking of eigenvalues, one can identify 
t error patterns and the corresponding variances. 

sian probability distribution functions for vectors 

pplication of Bayes’ theorem (chapter 2) requires formulation of probability 
 functions for vectors. We derive here the general Gaussian pdf for a vector x 
n n with expected value <x> and error covariance matrix S. If the errors on 
al elements of x were uncorrelated (i.e., if S were diagonal), then the pdf of 
ould simply be the product of the pdfs for the individual elements. This 

ion can be achieved by transforming x to the basis of eigenvectors ei of S. Let 
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us assemble the eigenvectors as the columns of a matrix E; then z = ET (x - <x>) is the 
transformed value of x - <x> in the eigenvector basis.  The pdf of z is then  

 
2

1/ 2

1( ) exp[ ]
(2 ) 2

i

i i i

zP
πλ λ

= ∏z −  (4.9) 

 

The determinant of a matrix is the product of its eigenvalues:  

 λ= ∏ i
i

S  (4.10) 

 

Further defining Λas the diagonal matrix of eigenvalues, we can rewrite (4.9) as: 

 1
1/ 2/ 2

1 1( ) exp[ ]
2(2 )

T
n

P
π

−= −z Λ z
S

z  (4.11) 

 

and replace z: 

 1/ 2/ 2

1 1( ) exp[ ]
2(2 )

T T
n

P
π

= − -1x (x- < x >) EΛ E (x- < x >)
S

 (4.12) 

 

The spectral decomposition (4.7) of S can be expressed in terms of E as 

  (4.13) TS = EΛE
 

Since S is a symmetric matrix, ET = E-1 , and therefore 

  (4.14) T-1 -1S = EΛ E
 

resulting in the general pdf expression for vector x: 

 1/ 2/ 2

1 1( ) exp[ ]
2(2 )

T
n

P
π

= − -1x (x- < x >) S (x- < x >)
S

 (4.15) 

 

4.3 Jacobian matrix 
 

The Jacobian matrix is a linearization of the forward model that enables 
application of matrix algebra to the inverse problem. It represents the sensitivity of the 
observation variables y to the state variables x, assembled in matrix form: 

 ∂
= ∇ =

∂x
yK F
x

 (4.16) 
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with individual elements . If the forward model is linear, then K does not 
depend on x and fully describes the forward model for the purpose of the inversion. If the 
forward model is not linear, then K is a function of x and represents a linearization of the 
forward model around x. It needs to be calculated initially for the a priori value x

/ij i jk y x= ∂ ∂

a, 
representing the initial guess for x, and then re-calculated as needed for updated values of 
x during iterative convergence to the solution. Depending on the degree of non-linearity, 
K may not need to be re-calculated at each iteration. 

Construction of the Jacobian matrix may be done analytically if the forward 
model is simple, as in a 0-D chemical model where the evolution of concentrations is 
determined by local reaction rates. If the forward model is complicated, such as a 3-D 
CTM, then the Jacobian must be constructed numerically. The standard approach, and the 
best to use if the dimension of the state vector is less than that of the observation vector 
(n < m), is to build the Jacobian matrix column by column by successively perturbing the 
individual elements xi of the state vector by small increments ∆xi, and applying the 
forward model to obtain the resulting perturbation ∆y. If the observations are sparse or 
the state vector is large so that n > m, then a more effective way to construct the Jacobian 
is through the model adjoint, as described below. 

4.4 Model adjoint 
  

 The adjoint of a model is the transpose of its Jacobian matrix. It turns out to 
be very useful in inverse modeling applications where observed concentrations are used 
to constrain a state vector of sources or concentrations at previous times. We will discuss 
this in chapter 7. It can also be an efficient tool for numerical construction of the 
corresponding Jacobian matrix. Consider a CTM discretized over time steps [t0,…ti,… tn], 
and let yn represent the vector of concentrations at time tn,. We wish to determine its 
sensitivity to the state vector x at time t0 (generalization to a time-invariant state vector or 
to state vector elements for different times will be shown later to be immediate). The 
corresponding Jacobian matrix is ∂ ∂nΚ = y / x . By the chain rule, 

 01

0

... ∂∂ ∂ ∂ ∂
= =

∂ ∂ ∂ ∂ ∂
n n n-1

n-1 n-2

yy y y yK
x y y y x

 (4.17) 

 

where the RHS is a product of matrices. As discussed in section 4.3, the standard way to 
construct the Jacobian numerically is by successively perturbing the individual elements 
of x and applying the CTM to obtain the resulting perturbation ∆y. Another way is to take 
the transpose of the Jacobian matrix, i.e., the adjoint of the CTM: 

 0 01 1

0 0

... ...
T T T TT

T ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛∂ ∂∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞= =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝⎝ ⎠ ⎝ ⎠
n n-1 n-1 n

n-1 n-2 n-2 n-1

y yy y y y y yK
y y y x x y y y

⎞
⎟
⎠

 (4.18) 

 

where we have made use of the property that the transpose of a product of matrices is 
equal to the product of the transposed matrices in reverse order. The adjoint model 
described by (4.18) offers an alternate way of constructing the Jacobian matrix by 
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applying successive perturbations ∆yi to the individual elements of yn and successively 
applying the operators ,  ( )/∂ ∂n n-1y y T ( )/∂ ∂n-1 n-2y y T T

i-1

…all the way to to 
obtain the sensitivity ∆y

( )0 /∂ ∂y x

i/∆x which is a row of the Jacobian matrix. Thus we construct the 
Jacobian matrix row by row, instead of column by column as previously. This approach 
is more economical if dim(y) < dim(x), because as we will see later the cost of running 
the adjoint model is comparable to that of running the forward model. A single run of the 
adjoint model from tn to t0 can determine the sensitivity of yn to state vector elements at 
different times, or to a time-invariant state vector – in the latter case, one sums the 
sensitivities to the state vector for the successive steps back in time. 

Construction of the adjoint model KT requires linearization of the forward 
model (CTM) to express it as a product of matrices that we can then transpose. Consider 
the matrices /= ∂ ∂i iZ y y describing the evolution of the CTM over individual time 
steps [ti-1, ti], and the matrix 0 0 /= ∂ ∂Z y x , such that 

  (4.19) ...T T T T= o 1 i nK Z Z ...Z Z T

 
To determine the individual matrices Zi we need to decompose the CTM in terms of its 
individual linearized operators. Consider a CTM with successive application of operators 
for emissions (E), chemistry (C), convection (Co), and advection (A) over a model time 
step [ti-1, ti]. Each operator updates the concentration over the time step, and this update 
can be described by a matrix representing the linearized operator. For example, the 
update from advection can be written iA −= ∇i i 1y y where iA∇ is the linearized advection 
operator. Thus we can write Zi as a product of matrices representing the linearized 
operators: 

 i,i i o i iA C C E∇ ∇ ∇ ∇Z =

T
i

 (4.20) 
 
and its transpose is then 
 
  

  (4.21) ,
T T T T

i i i o iE C C A∇ ∇ ∇ ∇Z =
 
Construction of 0 0 /= ∂ ∂Z y x is done in exactly the same way except that the linearization 
of the relevant CTM operator is done with respect to x rather than to y. In the common 
application where we are interested in the sensitivity of concentrations to emissions, the 
linearization with respect to x is done in the emission operator iE∇ . This is 
straightforward to do, as discussed below. 
 

Construction of the adjoint of a forward model thus involves two steps. The 
first is the construction of a Tangent Linear Model (TLM) that linearizes the individual 
operators of the forward model. The second is the transposition of these linear operators. 
Construction of the TLM from non-linear operators is an arduous task and commercial 
software packages are available for this purpose.  
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For simple linear operators, however, construction of the adjoint model may 
be straightforward. Consider for example a linear advection operator in which the 
transport of mass from gridbox j to gridbox k over time step [ti-1, ti] is described by the 
matrix coefficient ajk such that , , 1/k i j i jky y a−∂ ∂ = . In the transposed operator, this 
coefficient applies to the reverse flow from gridbox k to gridbox j, that 
is, . We thus see that reversing the winds is all we need to do to obtain 
the transpose of a linear advection operator. This makes sense in terms of the general 
adjoint model philosophy of propagating sensitivities back in time. Even if the advection 
scheme is weakly non-linear, using reverse winds may be an acceptable approximation 
for the sake of ease in building the adjoint. The validity of the approximation can be 
tested as will be discussed in chapter 8. 

, , 1/j i k i jky y a−∂ ∂ =

As another example of simple adjoint construction, consider a linear chemical 
operator consisting of local first-order loss. The matrix for that operator is diagonal since 
there are no interactions between species or gridboxes. Transposition does not change the 
operator, which is then called self-adjoint; we can apply the original operator in the 
adjoint model. Again, this makes sense; if a species decays with a certain time constant, 
then the sensitivity of concentrations to conditions backward in time will decay with that 
same time constant.  The emission operator is similarly self-adjoint when expressed in 
terms of the sensitivity of concentrations to emissions (i.e., for construction of the matrix 

0 0 /= ∂ ∂Z y x ). It is a null matrix when expressed in terms of the sensitivity to 
concentrations for the previous time step (i.e., for construction of the matrix 

/= ∂ ∂i iZ i-1y y ). 

 

5. INVERSE PROBLEM FOR VECTORS 
 

The vector-matrix tools presented in chapter 4 allow us to apply Bayes’s 
theorem to obtain an optimal estimate of a state vector x (dim n) on the basis of the 
observation vector y (dim m), the a priori information xa, the forward model F, and the 
error covariance matrices Sa and Sε (the reader is encouraged to return to chapter 3 as 
needed for simple application of Bayes’ theorem to the scalar inversion problem, which 
helps develop intuition for the material presented in the present chapter). We need to 
linearize the forward model, if it is not already, in order to use matrix algebra.. This is 
done by Taylor expansion about the a priori value as described by (1.2), where 

/= ∂ ∂ = ∇xK y x F(x) is the Jacobian matrix. If the forward model is linear, K is invariant 
with x. If it is not, then K must be calculated initially for x =  xa and re-calculated 
iteratively as the inversion progresses. In this chapter we assume that the forward model 
is linear or has been linearized so that  

  (5.1) y = Kx + ε
 
where ε is the observational error vector previously introduced in chapter 1. 
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5.1 Analytical maximum a posteriori (MAP) solution 
 

Folllowing the general pdf formulation for vectors (section 4.2), the pdfs from 
Bayes’ theorem in chapter 2 are given by 

  (5.2) -1
12 ln ( ) ( ) ( )TP− = − −a a ax x x S x x c+

c+

+

)

 
  (5.3) 1

22 ln ( ) ( ) ( )TP ε
−− = − −y | x y Kx S y Kx

 
  (5.4) -1 1

32 ln ( ) ( ) ( ) ( ) ( )T TP cε
−− = − − + − −a a ax | y x x S x x y Kx S y Kx

 
where c1, c2, c3 are constants. The maximum a posteriori (MAP) solution is the value of x 
that yields the maximum of P(x|y), or equivalently the minimum of the scalar-valued cost 
function J(x): 

  (5.5) -1 1( ) ( ) ( ) ( ) (T TJ ε
−= − − + − −a a ax x x S x x y Kx S y Kx

 

To find this minimum, we solve for ( ) :J∇ =x x 0  

  (5.6) -1 1( ) 2 ( ) 2 ( )TJ ε
−∇ = − + =x a ax S x x K S Kx - y 0

)

 

The solution is straightforward and can be expressed in compact form as 

 ˆ (= + −ax x G ay Kx  (5.7) 
 

with G given by 

 1(T T
ε )−= a aG S K KS K S+

T

 (5.8) 
 
or equivalently by: 

 1 1 1( )T − − − −= + 1
ε a εG K S K S K S  (5.9) 

 
(the second form is more expeditious to compute if m > n). G is the gain matrix and 
describes the sensitivity of the retrieval to the observations, i.e., ˆ /= ∂ ∂G x y

ˆ )−

)

.  

The error covariance matrix  of can be calculated as in chapter 3 for the 
scalar problem by rearraging the right-hand side of (5.4) to be of the form 

. The algebra is straightforward and yields 

Ŝ x̂

1ˆˆ( ) (T −−x x S x x

 1ˆ ( T
ε
− − −= +1 1

aS K S K S  (5.10) 
 

Note the similarity of our equations for to those derived for scalars in 
chapter 3.   

ˆˆ( ),  ,  , J x x G S
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We pointed out in the scalar problem the danger of over-interpreting the 
apparent reduction in error variance on the state vector from σa to σ̂  as a result of 
accumulating a large number of observations. The same concern applies here. The 
reduction in error from Sa to  assumes that the observational error is truly random and 
that error covariances in the observations are fully accounted for. These requirements are 
often not satisfied, in which case  will underestimate the actual a posteriori error. An 
often more realistic way of assessing the error in   is through an ensemble of inverse 
calculations with various perturbations to model parameters, observational values, and 
covariance error estimates within their expected uncertainties.  

Ŝ

Ŝ
x̂

5.2 Averaging kernel matrix 
 

A useful way to express the ability of an observational system to constrain the 
true value of the state vector is with the averaging kernel matrix ˆ∂ ∂A = x/ x , representing 
the sensitivity of the MAP solution to the true state x. A is the product of the gain 
matrix  and the Jacobian matrix 

x̂
ˆ /= ∂ ∂G x y /= ∂ ∂K y x : 

  (5.11) A = GK
 

Replacing (5.11) and (5.1) into (5.7) we obtain an alternate form of the MAP solution:  

 ˆ ( )= + − +n ax Ax I A x Gε  (5.12) 
 

where In is the identity matrix of dimension n. Note the similarity to (3.11) in the scalar 
problem. A is a weighting factor for the relative contributions to the retrieval from the 
true state vs. the a priori estimate. Ax represents the contribution of the true state to the 
solution, (In – A)xa represents the contribution from the a priori, and Gε represents the 
contribution from the random observational error mapped onto state space by the gain 
matrix G. A perfect observational system would have A = In. We call (In – A)xa the 
smoothing error (because it smoothes the solution towards the a priori) and Gε the 
retrieval error. Equation (5.12) also provides an alternate expression for the MAP error 
covariance matrix : Ŝ

  (5.13) 
ˆ ˆ ˆ[( ) ] (( )( )( ) ( ) ) [ ]

(

T T T

T T

E E E= = − − +

=
n a a n

n a n ε

S x - x)(x - x I A x x x - x I - A Gεε G

I - A)S (I - A) + GS G

T

 

from which we see that   can be decomposed into the sum of a smoothing error 
covariance matrix and a retrieval error covariance matrix . 

Ŝ
( T

n a nI - A)S (I - A) T
εGS G

Algebraic manipulation yields an alternate form of the averaging kernel 
matrix as  

 ˆ −= − 1
nA I SSa  (5.14) 
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which shows how the relative reduction in error enabled by the observational system 
relative to the a priori provides improved knowledge of the state vector.  

The averaging kernel matrix is a very useful thing to know about an 
observation system, and is essential for testing or comparing two different observation 
systems used to determine x. In the case of an analytical MAP solution involving explicit 
calculation of the Jacobian and gain matrices, as described above, A comes out of the 
solution analytically either by (5.11) or (5.14) (whichever form is most convenient to 
compute). Other approaches to the inverse problem, involving for example neural 
networks that fit x to y empirically on the basis of prior correlations, or the adjoint 
approach described in chapter 7 that solves numerically for ( )J∇ =x x 0 , do not provide 
averaging kernel matrices as part of their solutions. An averaging kernel matrix can still 
be constructed numerically column by column by (1) taking small perturbations ∆xi to 
individual elements of the state vector, (2) applying the forward model to obtain the 
resulting perturbation ∆y, (3) applying observational error ε to ∆y, and (4) applying the 
retrieval to ∆y + ε to obtain . ˆ∆x

5.3 Pieces of information in an observing system 
 

A concept related to the average kernel matrix is the number of pieces of 
information in an observing system towards constraining an n-dimensional state vector. 
The number of pieces of information is often called the number of degrees of freedom for 
signal (DOFS) with notation ds. It can be determined as the reduction in the normalized 
error on x due to the measurement. We express the normalized error on x prior to the 
measurement with the χ2  cost function Ja(xa): 

  (5.15) -1( ) ( ) ( )T
a aJ = − −a a ax x x S x x

 

which has an expected value of n, representing the number of pieces of information to be 
obtained for a perfect knowledge of the system.  After the measurement has been made, 
the value of this cost function becomes 

 -1ˆ ˆ( ) ( ) (T
aJ ˆ )= − ax x x S x x−

ˆ )−

T
a

 (5.16) 
  

The DOFS is given by  the difference in the expected values of Ja(xa) and Ja( ):  x̂
 (5.17) -1 -1 -1ˆ ˆ ˆ ˆ[( ) ( )] [( ) ( )] [( ) ( )]T T T

sd E E n E= − − − − − = − − −a a a a ax x S x x x x S x x x x S x x
 
The quantity is a scalar and is thus equivalent to its trace in matrix 
notation: 

-1ˆ( ) (T− ax x S x x

  (5.18) -1 -1 -1ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) tr(( ) ( )) tr(( )( ) )T T− − = − − = − −a ax x S x x x x S x x x x x x S
 

where the last equality exploits the commutativity of the trace operator: tr(AB) = tr(BA). 
We thus obtain for the posterior value of Ja: 
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  (5.19) -1 -1 ˆˆ ˆ ˆ ˆ[( ) ( )] [tr(( )( ) )] tr(T TE E− − = − − = -1
ax x S x x x x x x S SS )a a

 

so that 

  (5.20) ˆ ˆtr( ) tr( ) tr( )sd n= − = − =-1 -1
a n aSS I SS A

 

The number of pieces of information in an observing system (or degrees of freedom for 
signal) is given by the trace of the averaging kernel matrix.  

 

5.4 Example application 
 

The figure below (from Jacob et al., J. Geophys. Res. 2003) shows in its left 
panel a typical averaging kernel matrix for retrieval of vertical profiles of carbon 
monoxide (CO) mixing ratios from the MOPITT satellite instrument. This instrument 
makes nadir measurements of IR terrestrial emission around the 4.6 µm CO absorption 
band. The radiances measured at different wavelengths represent the observation vector 
for the inverse problem, and the CO mixing ratios at n = 7 different vertical levels from 
the surface to 150 hPa represent the state vector. The averaging kernel matrix is 
represented in the figure row by row, i.e., each line with symbol represents one row of the 
averaging kernel matrix for the level indicated by the symbol, and describes the 
sensitivity of the retrieval at that level to the true CO mixing ratios at different altitudes.  
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Consider in this figure the retrieval of the CO mixing ratio at 700 hPa 
(inverted triangles). We see that the retrieved value is actually sensitive to CO at all 
altitudes, i.e., it is not possible from the retrieval to narrowly identify the CO mixing ratio 
at 700 hPa (or at any other specific altitude). The temperature contrast between vertical 
levels is not sufficient. We retrieve instead a broad CO column weighted toward the 
middle troposphere (700-500 hPa). In fact, the retrieval at 700 hPa is more sensitive to 
the CO mixing ratio at 500 hPa than at 700 hPa. Physically, this means that a certain 
mixing ratio of CO at 500 hPa will give a spectral response similar to a larger mixing 
ratio at 700 hPa, because 500 hPa has greater temperature contrast with the surface.  

We also notice in the averaging kernel matrix some negative values, for 
example the retrieval at 700 hPa is negatively dependent on CO in the stratosphere at 150 
hPa. This is not a physical result but is allowed by the MAP statistical fit; it is reflected in 
the a posteriori error covariance matrix  by a negative correlation between the retrieved 
values at 700 and 150 hPa.  

Ŝ

The trace of this particular averaging kernel matrix is 1.2, so that MOPITT 
provides 1.2 pieces of information on the vertical profile. One may thus expect good 
information on some vertically weighted column but not on gradients. Visual inspection 
of the left panel shows that the retrievals at the surface, 850, 700, and 500 hPa all give the 
same CO column weighted towards the middle troposphere, whereas the retrievals at 350, 
250, and 150 hPa all give a similar weak signal in the upper troposphere and lower 
stratosphere. The largest piece of information in MOPITT is thus the CO column 
weighted toward the middle troposphere, with a smaller piece of information weighted 
toward higher altitudes.  

The right panel of the Figure shows the application of the averaging kernel 
matrix to the validation of the MOPITT instrument with an underpass aircraft vertical 
profile extending from the surface to 200 hPa. The CO measurements from aircraft (thin 
solid line) have high accuracy and can be viewed as defining the true profile. Applying 
the averaging kernel matrix to this true profile (binned by the MOPITT retrieval levels) 
yields the dashed line; this is what MOPITT would see if its capability were as advertised 
by the error analysis that led to the averaging kernel matrix. We see that the vertical 
structure is largely lost, as would be expected (the vertical gradient is mainly from the a 
priori). This aircraft profile processed with the averaging kernel matrix can be then 
compared to the MOPITT retrieval, shown by the thick solid line. The two have similar 
vertical gradients but this merely reflects the a priori information. More instructive is that 
the columns are similar, with a 6% positive bias for MOPITT. This bias represents a 
systematic error in the retrieval that is not accounted for in the error analysis..  

5.5 Sequential updating 
 

Analytical derivation of the MAP solution using (5.7) or equivalently (5.12) 
requires construction of the Jacobian matrix /= ∂ ∂K y x  and of the gain matrix G. 
Numerical construction of K requires a number n of forward model calculations, to be 
possibly iterated if the forward model is nonlinear. The associated computational costs 
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can be tremendous and limit the manageable size of the state vector. As we will see in 
chapter 7, this difficulty can be addressed with an adjoint approach to the inverse 
problem. 

The size m of the observational vector is also of concern because of the 
associated matrix multiplications involved in the construction of G. Limitations on m can 
however be circumvented within the framework of the analytical solution by using 
sequential updating. In this approach, the observation vector is partitioned into smaller 
“packets” of observations that are successively ingested into the inverse analysis. The 
MAP solution ( ) obtained after processing of one packet is then used as a priori for 
the next packet, and so on. The final solution is exactly the same as if the entire 
observation vector were ingested at once. The only limitation is that observations in 
different packets must be taken to be uncorrelated, i.e., S

ˆx̂,S

ε for the ensemble of 
observations must be viewed as a block diagonal matrix where the blocks are the 
individual packets.  

 

6. KALMAN FILTER (“3-D Var”) 
 

So far we have used inverse analysis of observations to constrain a fixed value 
of the state vector. In fact, we may want to use observations distributed in time to 
constrain a state vector evolving with time, subject to some a priori knowledge of this 
state vector and its evolution with time, and not solving for all times at once (which 
would quickly make the problem computationally intractable). A straightforward way to 
do this, commonly called the Kalman filter or “3-D Var”,  is to iterate in time the 
analytical MAP solution presented in section 5.1. “3-D” here refers to the use of 
observations at a given time step to constrain the state vector at that time step, subject to 
a priori  information from prior or posterior times. “4-D Var”, described in the next 
section, refers to the use observations at a given time to constrain the state vector over a 
range of times. 

The Kalman filter can be run either forward or backward. We describe the 
forward filter first.. Consider an ensemble of observations collected at discrete time steps 
over an interval [t0, tn]. let yi  be the ensemble of observations collected at time ti, and xi 
the corresponding value of the state vector. Starting from a priori knowledge (xa, Sa) at 
time t0, we use the observations y0 and the analytical MAP solution described in section 
5.1 to derive best estimates ( ) for that time. We then progress forward in time, 
using a priori knowledge of the time evolution of x expressed by a linear (or linearized) 
evolution operator M

ˆˆ 0 0x ,S

i with error εM: 

  (6.1) i i i-1x = M x + εM

 

In the simplest case, we could assume persistence for x, in which case Mi would be the 
identity matrix.  Consider a time ti-1 for which we have the MAP solution ( ). We 
use (6.1) to derive an a priori value for x

ˆˆ i-1 i-1x ,S
i as 
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  (6.2) ˆa,i i i-1x = M x
 
and the associated a priori error covariance matrix as 

  (6.3) ˆˆˆ[ ] [ ]T T T T
iE E= + =a,i i i M M i i-1 MS M εε M ε ε M S M S+

 

where is the error on  and Sε̂ ˆ i-1x M is the error covariance matrix for the evolution 
operator. We thus obtain time-dependent MAP solutions for x over the interval [t1, tn].  

A problem with the forward filter for some applications is that the 
observations at time ti do not constrain the state vector at prior times. An alternative is to 
use a backward filter in which we start from a priori knowledge (xa, Sa) at time tn. The 
observations yn at time tn are used to obtain a MAP solution for xn, and we then progress 
backward in time following the same procedure as with the forward filter. The only 
difference is that we must use an evolution operator Mi

’ running backward: 

 1− ′ ′i i ix = M x + εM  (6.4) 
 

In the backward filter, observations at time ti are not allowed to constrain the state vector 
at posterior times. It is possible to run the Kalman filter for the same observational data 
set first forward, then backward, to allow observations to constrain the state vector in 
both temporal directions. 

 

7. ADJOINT APPROACH (“4-D Var”) 
 

When a very large number of observations is available, as from satellites, we 
would like to use this information to constrain a very large state vector featuring high 
spatial and temporal resolution, commensurate with the detail in the observations and 
limited solely by the resolution of the forward model. This is impractical in the analytical 
solutions to the inverse problem described above, as these require explicit construction of 
the Jacobian matrix as well as multiplications of matrices having the dimension of the 
state vector. The adjoint approach addresses this difficulty through the application of the 
adjoint model. 

The adjoint approach, like the analytical approach, seeks to minimize the cost 
function J(x) given by (5.5), but it does so numerically rather than analytically. Starting 
from the initial guess xa, it computes the cost function gradient ( )J∇x x  iteratively in 
combination with a steepest-descent numerical algorithm to find min(J(x)). Standard 
steepest-descent algorithms are described in textbooks on numerical methods; a popular 
one is the BFGS algorithm. The figure below illustrates how a steepest-descent algorithm 
applied to successive guesses xa, x’, x’’, x’’’…approaches min(J(x)). 
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The main task in the adjoint approach is the efficient computation of   
at each iteration of the steepest-descent algorithm. 

( )J∇x x
( )J∇x x  is given by (equation (5.6)): 

  (7.1) -1 1( ) 2 ( ) 2 ( )TJ ε
−∇ = − + ∇x a a xx S x x F S F(x) - y

 

∇a 

° 
xa 

∇’
∇’’

x’
°x’’

∇’’’
°x’’’

Minimum of cost function 

where F(x) is the forward model (not necessarily linear), and  is the model 
adjoint (section 4.4) applied here to the vector 

T∇ =xF KT

)ε −-1S (F(x) y which represents the 
weighted error in the ability of our guess for x to match the observations. The 
components of   are called the adjoint forcings.  )ε −-1S (F(x) y

Implementation of the adjoint approach is as follows. We start from the a 
priori xa as initial guess and make one pass of the forward model through the period [t0, 
tn] of the observational record of interest. Observations may be scattered over that period. 
We collect the corresponding values of the adjoint forcings and calculate 

 following (7.1):  
)ε

-1
aS (y - F(x )

( )J∇x ax

  (7.2) 1( ) 2 ( )TJ ε
−∇ =x a ax K S F(x ) - y

 
This calculation is done by applying the adjoint model to the adjoint forcings as described 
in section 4.4. We start from the adjoint forcings at time tn and then work backward in 
time, picking up additional adjoint forcings along the way, until we reach t0. The 
variables through which the adjoint forcings are propagated backward in time with the 
adjoint model are called the adjoint variables. An important aspect of this calculation is 
that the Jacobian matrix is never explicitly constructed. The value of computed ( )J∇x ax
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from (7.2) is passed to the steepest-descent algorithm, which make an updated guess x’. 
We then recalculate  for that updated guess, ( )J ′∇x x

  (7.3) -1 1( ) 2 ( ) 2 ( )TJ ε
−′ ′ ′∇ = − +x a ax S x x K S F(x ) - y

 

pass the result to the steepest-descent algorithm which makes an updated guess x’’, and 
so on. Each iteration thus involves one pass through the forward model over [to, tn] 
followed by one pass of the adjoint model over [tn, t0]. Forward and adjoint models 
typically have comparable computational requirements, and the requirements for the 
adjoint model are insensitive to the dimension of x. Increasing the dimension of x still 
entails some penalty, however, as it generally increases the number of iterations required 
for convergence.  

The correctness of the cost function gradients ( )J∇x x  produced by the 
inverse model can be checked with a simple finite-difference test and this is standard 
procedure. To do this test, apply the forward model to xa , calculate the cost function 
J(xa), and repeat for a small perturbation xa + ∆xa. The resulting finite-difference 
approximation 

 ( ) (( ) JJ )J+ ∆ −
∇ ≈

∆
a a a

x a
a

x x xx
x

 (7.4) 

 

can then be compared to the value obtained with the adjoint model. 

 

8. OBSERVING SYSTEM SIMULATION EXPERIMENTS  
 

After having designed an observation system and related inverse model to 
optimize the estimate of a state vector x, it is a good idea to test this machinery with an 
observing system simulation experiment (OSSE), both to test the value of the observing 
system and also to test that the inverse model is working properly. The OSSE consists of 
examining the ability of synthetically generated observations with the forward model 
(pseudo-observations) to retrieve values of x consistent with expectations. 

In an OSSE, we start by selecting some reasonable but arbitrary value of x as 
the true value for the purpose of the test. We then generate pseudo-observations y 
following equation (4.3) by applying the forward model to x and adding a random noise ε 
consistent with our knowledge of Sε.   We then ask the question, how well can our 
observing system retrieve x given y? To this end we start from an a priori estimate xa 
constructed by apply random noise to x in a manner consistent with the a priori error 
covariance matrix Sa. From this a priori and using the pseudo-observations y, we then 
calculate a MAP solution , compare it to the true value x to assess the merit of the 
observation system, and determine whether the two are consistent within the a posteriori 
error covariance matrix  as a test of the inverse model.  

x̂

Ŝ

OSSEs are routinely conducted in the design phase of a satellite mission to 
test whether the mission can satisfactorily address its scientific objectives. In that case, 
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the focus is on whether the MAP solution provides a significantly improved estimate of x 
relative to xa.  The averaging kernel matrix A is a useful diagnostic. It will typically 
provide an overoptimistic assessment of the capability of the observing system, as 
discussed in chapter 5, because the errors used to generate the pseudo-data are random. 
But if the observing system fails that test then it should clearly be redesigned. 
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