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AT622 Section 1
Electromagnetic Radiation

The aim of this section is to introduce students to elementary concepts of radiometry and to describe
some basic radiation laws relevant to the course.

1.1  Electromagnetic Radiation

Electromagnetic radiation from the sun is the principal source of energy that drives circulations in
both the atmosphere and ocean. This radiation, in the form of a wave, is generated by oscillating (or, more
generally, time varying) electric charges, which in turn generate an oscillating electric field. A
characteristic of an oscillating electric field is that it produces an accompanying oscillating magnetic field
that further produces an oscillating electric field. Therefore these fields, initiated by the oscillating charge,
proceed outwards from the original charge, each creating the other. A visualization of such a propagating
wave is given in Fig. 1.1. It was James C. Maxwell, who, more than a century ago, provided us with the
theoretical synthesis of this phenomenon. Detailed account of this work can be found in most standard
texts on electromagnetic radiation.

y

Fig. 1.1 Schematic view of a time-harmonic electromagnetic wave propagating along the z-axis. The
oscillating electric E and magnetic B fields are shown. Note that the oscillations are in the x-y
plane and perpendicular to the direction of propagation.

There are a number of basic properties that distinguish different electromagnetic (EM) waves. One is
the rate of oscillation of the £ and B fields (that is the frequency of the oscillation), the second is the
amplitude of the wave (this defines the energy carried by the wave), and the third is the state of
polarization of the wave. This third property is something we will not consider further in this course
although it is fundamental to many topics relevant to remote sensing (and thus to AT652).

Electromagnetic theory predicts that the EM wave travels at a speed that depends on the medium

through which it travels. This speed, ¢, can be related to the speed of propagation of light in a vacuum
(namely c¢y) by the formula:
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S0 ¢, =2.998x10%ms™
n

where n is the refractive index of the medium (more on this later). For most gases, the refractive index is
close to unity especially at the wavelengths of interest to topics considered in these notes. For example,
air at room temperature has n = 1.00029 over the visible spectrum (refer to Fig. 1.2).
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Fig 1.2. The electromagnetic-photon spectrum.

The wavelength of the EM wave depends upon the frequency of the oscillations. We shall denote this
frequency (number of oscillations per second) by v, and it is related to ¢ by

v=—, (1.1)

where A is the wavelength of the wave. For example, red light with a wavelength of 0.7 micrometers (uwm)
corresponds to a frequency of 4.3 x 10'* oscillations per second, while violet light, at 0.4 um, corresponds
to 7.5 x 10" oscillations per second. An alternate way of describing the frequency of radiation is in terms
of wavenumber

vl (1.2)
A

which is a count of the number of wave crests or troughs in a given unit of length. For example, red light
has 14,286 wave crests in a centimeter whereas 25,000 crests can be counted in a centimeter of violet
light. Wavenumber is the measure often used by spectroscopists and others involved in experimental

measurements of the interaction of radiation with matter.



Example 1.1: What is the frequency and wavenumber of 10 wm radiation?

A=10pum=10x10° m

=—=—=3 10”Hz
A 10x10™° m
- 1 4
¥=————=1000cm
10x10" m

(a) Electromagnetic Spectrum

Even before Maxwell, the spectrum of electromagnetic radiation (that is the range of wavelengths or
frequencies of the radiation) was known to extend beyond the visible (i.e., beyond those wavelengths
detectable by the human eye). In fact, we now know that the visible portion of the spectrum, from 0.4 um
to 0.7 wm, is just a small part of a much broader spectrum of electromagnetic radiation. The character of
the radiation and the way it interacts with matter is vastly different depending on the wavelength of the
radiation. The radiation that is relevant to this course is shown in Fig. 1.3.
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Fig. 1.3 Atmospheric absorptions. (a) Blackbody curves for 6000 K and 250 K. (b) Atmospheric
absorption spectrum for a solar beam reaching ground level. (c) The same for a beam
reaching the temperate tropopause. The axes are chosen so that areas in (a) are proportional
to radiant energy. Integrated over the earth’s surface and over all solid angles, the solar and
terrestrial fluxes are equal to each other, consequently, the two blackbody curves are drawn
with equal areas. Conditions are typical of mid-latitudes and for a solar elevation of 40 ° or for
a diffuse stream of terrestrial radiation.
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In the solar/terrestrial spectrum shown in Fig. 1.3, the frequency domains of greatest interest are the
ultraviolet, visible, and infrared wavelengths. The ultraviolet frequencies range from the extreme
ultraviolet (EUV) at 10 nm to the near ultraviolet (NUV) at 400 nm as shown.

Extreme Ultraviolet — EUV. The extreme ultraviolet, sometimes abbreviated XUV, is defined here
as 10 nm to 100 nm. The division between the EUV and the FUV is frequently considered to be the
ionization threshold for molecular oxygen at 102.8 nm. The EUV solar radiation is responsible for
photoionization at ionospheric altitudes. The division between the EUV and the x-ray regions corresponds
very roughly to the relative importance of interactions of the photons with valence shell and inner shell
electrons, respectively.

Far Ultraviolet — FUV. This region extends from about the beginning of strong oxygen absorption to
about the limit of availability of rugged window materials, the lithium fluoride transmission limit. The
range as used here extends from 100 to 200 nm.

Middle Ultraviolet — MUYV. The middle UV covers the region from 200 to 300 nm, which is
approximately the region between the solar short wavelength limit at ground level and the onset of strong
molecular oxygen absorption. Most solar radiation in this range is absorbed in the atmosphere by ozone.

Near Ultraviolet — NUV. This region covers wavelengths from 300-400 nm, and represents roughly
the limits between the solar ultraviolet that reaches the surface of the earth and the limit of human vision

in the visible.

The biomedical community uses a different convention:

UV-C 15-280 nm
UV-B 280-315 nm
UV-A 315-400 nm

UV-C is absorbed entirely in the upper atmosphere and is of practical significance to the biomedical
community only in the sense that it is frequently used to sterilize surfaces and kill bacteria. UV-B is
responsible for Vitamin-D production by the skin. Both UV-A and UV-B activate melanin in the skin,
which is responsible for the darker appearance after exposure to the sun.

The infrared spectrum is occasionally divided into the near and far infrared.

Near Infrared. The portion of the spectrum beyond the visible (0.7 wm) where the amount of solar
radiation is significant. Generally defined in the 0.7 wm to 2.5 um range.

Far Infrared. The portion of the spectrum beyond near infrared where the Earth’s radiation
dominates. 2.5 wm to 1000 wm range.

Microwaves, while not contributing to the energy incident upon Earth or emitted from it, play an

important role in remote sensing as well as communications. Figure 1.4 shows the allocation of the
microwave spectrum to different users.
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(b) The Mathematical Form of an EM Wave
The oscillatory E and B fields can be presented in a classical way as a harmonic oscillator of the form
E=E,cosk(x-ct) (1.3a)

where the quantity E, is the amplitude of the wave and, as we shall see later, the energy carried by the
wave is related to the square of this amplitude and is the property of most interest and relevance to
atmospheric sciences. The quantity k(= 27tV ) is also referred to as wavenumber, but this should not prove
to be a source of confusion as v and k are used in different contexts; k generally applies to wave
propagation, whereas Vv, is used, as in the previous section, to discriminate regions of the electromagnetic
spectrum. Equation (1.3a) can also be written in the form

E=E)cos(kx-wt) (1.3b)
where w = kc = 2mc/A is the angular frequency of the wave and, according to Eqn. (1.1), w=2mnv.

The argument of the cosine function in Eqn. (1.3a) also has a particular meaning. It is represented by
the function ¢

¢=k(x-ct) (1.4)

and is referred to as the phase of the wave. A tidier expression for a harmonic oscillator is
E(xt) = Ey "™, (1.5)

where it may be taken for granted that the real part of this expression represents the wave.

The general representation of the harmonic wave requires that the displacement £ be specified at x =
0 and ¢ = 0. We specify this initial displacement (initial since it is defined at # = 0) in terms of a constant
phase, ¢, at x =0 and ¢ = 0. For this general case,

b=y + k(x-ct) (1.6)

and ‘
E(x,t)=E,ée". (1.7)

Simple algebraic manipulations show that the square of the wave amplitude, given as
|Et) P = Ep°, (1.8)

is the same for all x and ¢ since E, is a constant. The energy transferred by the wave, related to | E, >, does
not vary along its path of propagation and is independent of our definition of ¢,. It is only the interaction
of the wave with matter that alters the energy of the wave as it propagates. These interactions and the
potential they offer for modulating the atmosphere is of interest to the atmospheric scientist.
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1.2 Energy Carried by an EM Wave

An electromagnetic wave, traveling through space at the speed of light, carries electromagnetic
energy, which is detected by sensors that respond to this energy. In the next section, we will discuss in a
more geometrical way how we describe the flow of energy carried by an EM wave. But for now we will
endeavor to see what defines this energy. Energy flows in the direction in which the wave advances and

this direction of propagation is defined by the vector cross product of the electric and magnetic fields, E
x B. The energy per unit area per unit time flowing perpendicular into a surface in free space is given by
the Poynting vector S , where

S = czgoEx B (1.9)
¢ is the speed of light and & is the vacuum permittivity (g, = 8.85 x 10> F-m™). Energy per unit time is
power, so the SI units of S are Wm™. At the frequencies of interest to the topics of this class, the fields
E, B,and S oscillate at rapid rates. It thus remains impractical to measure instantaneous values of
S directly. Rather, we measure its average magnitude, < S >, over some time interval that is a
characteristic of the detector. This time averaged quantity is referred to as the radiant-flux density.
Strictly speaking, the flux density emerging from the surface is known as the exitance and the flux density
incident on the surface is called the irradiance. To avoid unnecessary complications with nomenclature,

we refer to the flux density onto or from a surface as either irradiance or flux and use the symbol F' to
represent this quantity.

When the flow of light is nonparallel and when the detector collects the light confined to a range of
directions, specified by a small element of solid angle d<2, then the quantity sensed is the intensity,
defined as < S > /dQ and has units of Wm™ster'. This quantity, referred to as a radiance, is used
throughout and we will denote it by the symbol / (more about this below).

We can consider a more direct relationship between the energy carried by an electromagnetic wave
and the amplitudes of the electric and magnetic fields by considering the simple case of a plane wave of
the form

E = E, cos(kx — at). (1.10)
The magnetic field also has the form B = B, cos(kx - wt) and therefore
S=c’e,ExB=c"¢,E, B,cos’(kx - wt). (1.11)

Hence
<S>= c2£0|EO-B0|<cosz(kx—a)t) >, (1.12)

and the time average is calculated for an interval of length 7" according to

2 _ _l t+T 2 _ , /=l_ 1 . a o _
<cos (kx a)t)>— ij cos” (kx —awt)d > " 20T [sm 2(kx—w(t+T))—sin2(kx a)t)]. (1.13)

When 7' >> ¢, wT>> 1 and < cosz(kx - wt) >— 1/2. Since Ey = cB,,
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F=<S>=%E§ (1.14)

or
F=ce <E* >, (1.15)

where < E° > = E,/2. It also follows that /=< S >/ dQ.

Example 1.2: Consider the following problem: a plane, sinusoidal, linearly polarized
electromagnetic wave of wavelength A = 5.0 x 10”7 wm travels in a vacuum along the x
axis. The average flux of the wave per unit area is 0.1 Wm™ and the plane of vibration of
the electric field is parallel to the y axis. Write the equations describing the electric and
magnetic fields of the wave.

The solution is as follows: The wavenumber is k = 2m/A = 4x x 10° m™'. Given the
following,
107
cEy=—
dmc
then the amplitude

P ECTO R v

Ccé,

and the form of the £ wave is
E,(t) =~24x cos4mx10°(x - ct) [NC™']

and the magnetic field is governed by

E,
5.(0="""r,

1.3 Momentum and Radiation Pressure

An electromagnetic wave, aside from carrying energy, also carries momentum. If an electromagnetic
wave is absorbed or reflected by a material, it will impart momentum to the electrons in the material,
which is subsequently transmitted to the lattice structure as a whole.

E
t
—>
© =—> direction of propagation

0
BT g,
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The electric field exerts a force fE = gE , which drives an electron with a velocity v,. (Note that the
symbol f is used instead of F to distinguish it from the radiative flux F used throughout these notes).
The magnetic field, in turn, exerts a force f, =gV, xB. Although f; changes its direction as E varies,

having the direction opposite to £ at all times (g < 0), f,, is always in the direction of propagation since
v, and B reverse directions simultaneously.

Thus the electron undergoes rapid oscillations in the direction of the E field, and a small increase in
speed in the direction in which the light propagates. Because the time average of the transverse
oscillations is zero, the net force on the electron is given by

<f>=q<\7€x1§>=qver=1<VeE> (1.16)
c

. . : dw .
Power is the rate at which work is done > and can be expressed (assuming constant forces) as
t

vt (1.17)
P=v,(fz+ 1) (1.18)
=V, (qE +V,xB) (1.19)
—q<v,E> (1.20)

Combining Eqn. (1.16) for the force, or the equivalent, for the rate of change of momentum with Eqn.
(1.20), one obtains

<f>=£=M (1.21)
c c
Finally, the radiation pressure, P, is given by
Area
p_=/>_=5> (1.22)
Area c

Equation (1.22) is appropriate if radiation is absorbed by the material. If a photon is perfectly reflected,
the change in momentum is twice that computed here, and P = 2<S>/c.
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1.4 Problems
Problem 1.1

The wavelength of the radiation absorbed during a particular spectroscopic transition is observed to
be 10 um. Express this in frequency (Hz) and in wavenumber (cm™), and calculate the energy change
during the transition in both joules per molecule and joules per mole. If the energy change were twice as
large, what would be the wavelength of the corresponding radiation?

Problem 1.2

Electromagnetic radiation from the sun falls on top of the Earth’s atmosphere at the rate of
1.37 x 10° Wm™. Assuming this is to be plane wave radiation, estimate the magnitude of the electric and
magnetic field amplitudes of the wave. The units of the electric field are m kg s?Co™ and the units of the
magnetic field are kg s'Co™, which is also known as a telsa (T).

Problem 1.3

Assume that a 100 W lamp of 80% efficiency radiates all its energy isotropically. Compute the
amplitude of both the electric and magnetic fields 2 m from the lamp.

Problem 1.4

The average power of a broadcasting station is 10° W. Assume that the power is radiated uniformly
over any hemisphere concentric with the station. For a point 10 km from the source, find the magnitude of
the Poynting vector and the amplitudes of the electric and magnetic fields. Assume that at that distance
the wave is plane.

Problem 1.5

A radar transmitter emits its energy within a cone having a solid angle of 107 sterad. At a distance of
10° m from the transmitter the electric field has an amplitude of 10 Vm™. Find the amplitude of the
magnetic field and the power of the transmitter.

Problem 1.6

Radio waves received by a radio set have an electric field of maximum amplitude equal to 10" Vm™.
Assuming that the wave can be considered as plane, calculate: (a) the amplitude of the magnetic field, (b)
the average intensity of the wave, and (c) the average energy density.

Assuming that the radio set is 1 km from the broadcasting station and that the station radiates energy
isotropically, determine the power of the station.



AT622 Section 2
Elementary Concepts of Radiometry

The object of this section is to introduce the student to two radiometric concepts—intensity (radiance)
and flux (irradiance). These concepts are largely geometrical in nature. Neither quantity varies as light
propagates along.

2.1 Frame of Reference

Before considering how we might describe electromagnetic wave propagating in space in radiometric
terms, it is necessary to consider ways of representing the geometry of the flow. We use a terrestrially
based frame of reference such as a Cartesian coordinate system and select one of its axes to be anchored
in some way according to some property of the terrestrial atmosphere.

i, ], and k are unit vectors that define three orthogonal axes. Examples of two sun-based frames of

reference, where the x axis points to the sun (i.e., the azimuth angle is defined relative to the sun's
azimuth), are shown in Fig. 2.1. A general reference point within a Cartesian frame of reference may be
indicated by the position vector 7 such that

7 =(x,Y,27),

where (x, v, z) defines the coordinates of the tip of this vector.

3 xy,x5,x3)0r(%,y,2)

y

meteorologic optics
sun-based frame

gravitation field failing
direction is downward

y

hydrologic optics
sun-bosed frome

+Z

(x),x3,%3)or(x,y,2)

Fig. 2.1 Sun-based terrestrial frames of reference for meteorologic optics and hydrologic optics.
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We define a direction vector in terms of a unit vector (f ) whose base is at the origin point and whose

tip is the point (a, b, ¢) on the unit sphere that surrounds the origin. In this case, va’ +b* +¢* =1. The
unit direction vector may also be defined in terms of a general point (x, y, z) by

|r| ()c2 + y2 +22)

§=z (X,y,Z)

/2 °

A more trigonometrical interpretation of the direction vector follows by considering Fig. 2.2a. For a point
(a. b, c¢) on the unit sphere, it follows that

a=7-i =cosgsinf
b=7-j =singsind
c=7Fk=cosf=u.

where @ is the zenith angle and ¢ is the azimuth angle. The latter, in this case, is measured positive
counterclockwise from the x axis. Since & = (a, b, ¢), then

& = (cos ¢sin @, sin ¢sin O, cos &) (2.1)

are the three components of the direction vector. We will also use u« = cos #throughout these class notes.

(a) g

——
——
—

r4
(b}_ J
g )
® g
| ,
I ] ;
|
| 7> I
TN
1 7 S
N

Fig. 2.2 (a) Angle and direction definitions defined with respect to a unit sphere. (b) Scattering
geometry and the scattering angle on the unit sphere.
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Example 2.1: Scattering angle

Many problems of interest require the definition of the angle formed between two
directions. For example, the scattering angle © is the angle between the direction
of incident radiation and the direction of the scattered radiation. If the former

direction is {,; and the scattering direction is .,E " then
cos@=E-E'.
We can schematically represent ® and the two directions in question on a unit

sphere (Fig. 2.2b). It follows from the above equation and Eqn. (2.1) that ® can
be stated in terms of two pairs of angles E'(u', ¢') and E(«, ¢)

cos® = puu' +(1-u*)"* (1= u"*)"* cos(¢p - ¢).

S rsin8d¢
X% BV rd@

Fig. 2.3 Illustration of a solid angle and its representation in polar coordinates. Also shown is a pencil
of radiation through an element of area dA in directions confined to an element of solid angle
de

2.2  Solid Angle and Hemispheric Integrals

Many radiation problems, particularly those dealing with fluxes, require some type of integral over
solid angle. A simple and convenient way to think about the solid angle is to imagine that a point source
of light is located at the center of our unit sphere and that there exists a small hole of area A on its surface
allowing light to flow through it. This light is contained in a small cone of directions, which is
represented by the solid angle element €2 defined as

A

2
r

Q= (22)

With this definition, one can easily show that the solid angle with all directions around a sphere equals
4n. Referring to Fig. 2.3, one can write the differential area of the opening as
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dQ =sind6dg . (2.3)

Integrating d<2 over the entire sphere
Q- i dg|"sin6d6 = 4z (2.4)
0 0

yields the result we intuited earlier in Eqn. (2.2).

Suppose we now wish to integrate some function, like the intensity, over a complete hemisphere of
directions. To fix ideas, consider the intensity /(6 ¢) flowing to some point on a horizontal surface from
the hemisphere above it. The hemispheric integral of this intensity is then

h=["dg(’ 10.9)sinad0 =" dp| 1(u.p)du

An even more important quantity in radiation studies is the hemispheric flux F defined as

F =2z ).

Note how this quantity differs from % above through the appearance of the factor « in the integrand. The
hemispheric flux defined in this way is a measure of the energy flowing through a horizontal surface per
unit area and per unit time (we will discuss this in a more formal way later). Recall from Section 1 that the
intensity is a measure of the energy flowing though a surface normal to the flow per unit area, per unit
time, and per unit solid angle. The cosine factor therefore accounts for the projection onto a horizontal
surface of the area that is normal to the flow of photons.

Example 2.2: Solid angle

1) The solid angle of a spherical segment is
0, 2w
Q(D) = I sin Hdﬁj d¢ =2m[cosf, —cosb,].
o, 0
2) The solid angle of a spherical cap defined by the angle &1is
2 4
QD) = [ i d¢j0 sin 846 = 27[1 - cos 0]

For small 6, cos §— 1- 8°/2+ ... and

Q(D) =6 .
3) The solid angle of the sun is therefore 5
Q. =707

whereas we shall see later, 6_=r /R , and

6 \2
Qo=7r M ~0.684x107*  steradian
1.5x10°
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2.3 Basic Radiometric Concepts

Radiation is a way of transferring energy from one point to another and we now formalize a way of
describing this flow. From Section 1 we learn how the energy of an EM wave is associated with the
square of the amplitude of the £ field. Now we consider the geometrical constructs of this flow of energy.
These considerations are known as radiometry: Radiation + Geometry. Radiometry has almost become a
discipline in itself—a large variety of terminologies and symbolisms exist. However, we need only
consider one basic quantity from which others follow. Another point is that once we have established the
nature of radiant energy, radiometry is by and large geometrical in nature.

The first basic quantity is the "radiant flux". The definition for "radiant flux" of monochromatic
radiation is

P(v) = hvx(n(v)xc)xd4 W(um)" (2.5)

where n(v) is the phase space density = number of photons per unit frequency per unit volume; Av is the
energy of each photon; and n(v)x c is therefore the number of photons per unit frequency crossing a unit
area per unit time. Two quantities that follow from P are:

F, = P(v)/A for the area density of radiant flux [Wm™ um™]

which is strictly known as the flux density but we will call it flux (or irradiance and shortly dispense with
the quantity P), and the monochromatic, or spectral intensity, or radiance

I=PW)/24 [Wm'sr! um'] (radiance)

Example 2.3: Photon flow rate of Example 1.2

Here we estimate the rate of photon flow required to deliver a given amount of
flux at a specific wavelength. We begin with Eqn. (2.5)

= PG) =n(v)xcxhv,
dA
such that
FV
nv)-c= .

For F=01Wm?> A=0.5 um, c=3x 10® m/s, and & = 6.6 x 10™* Js, one obtains

0.1x0.5x107¢

=2.5x%x10"
6.6x107* x3x10®

n(s)-c=

photons of A = 0.5 um flow per sec through a unit area to produce 0.1 Watts of
power per m’.
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There are only two ways that we need to visualize the flow of radiant energy (Fig. 2.4)—the first is as a
function of direction and the second is as a function of space:

(1) For the first we imagine the radiant flux of energy P(s) passing through some area dA4 as in Fig.
2.4a.

(2) For the second depiction, radiant flux of energy P(s) passes through a single point p through a
small set of directions d€2.

P \ )
\E'i/i/ ~ 4\_‘%(}_,: EL.M" llw.&
AT € ey

Fig. 2.4 (a) and (b) two hypothetical modes of flow of radiant energy.

(a) Spectral Intensity 1

Unfortunately, the flows shown in 2.4a and b are not practical since these flow types are not
measurable: an instrument detector can neither sense radiation at an infinitesimal point, since detectors
have some characteristic area, nor can a detector measure purely parallel flow as they also have a
characteristic angle. Consider a simple radiometer as shown in Fig. 2.5a. The detector subtends a solid
angle

Q=all?

where a is the area of the detector and ¢ is the length of the collimating tube. What is measured is then the
quantity

R [Wm st~ um™] (2.6)

a-dQ

which we will refer to as either spectral radiance or spectral intensity. Radiance (intensity) is a
fundamentally important quantity as it is directly measurable by instruments we call radiometers. The
product of the area and solid angle a2 is known as the 'throughput' 7" of the radiometer and the radiance is
then P/T.
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(b) Irradiance or Flux F

An even more important radiometric quantity, at least from the perspective of meteorology and
climatology, is the quantity referred to as irradiance (or flux density or just flux, again remember that we
will shortly dispense with P for the rest of this class). This quantity describes the total flow of radiant
energy that flows onto or from a surface. For a general definition of this quantity, consider a surface of

area dA and flow from two directions 51 and 52 , which make angles ¢, and 6, with respect to the normal
n to dA. The radiances /;, and /, define the radiation field along each direction. The flux onto dA4 is then

()= diA =4 (El )(El ndQ) +1, (Ez )(52 ndQ,) Wm_zﬂm_l

and in the limit that the number of sources — o, then

F(n)= Jl(é)cos adQ (2.7)

where F is defined with respect to the normal # (Note: it is only meaningful to talk of flux relative to
the orientation of some surface..most of our interests are for horizontal surfaces and thus 7
represents either the zenith or nadir). When the integration is carried out over the entire sphere of solid
angles, this is the ner flux that flows through the surface. It is more common to carry out this integral in

two parts, one over a positive hemisphere (positive in the sense that E -n >0, see Fig 2.5a) and one over
the corresponding negative hemisphere (Fig. 2.5b).

L 3vam i > ——— /_\
A S———

(b)

dA

dA

Fig. 2.5 (a) A simple radiometer and (b) hemisphere fluxes.

2-7



Example 2.4: Exploring the relation between radiance and flux

1) Consider the situation where radiation flows onto a surface defined by a
discontinuity in refractive index. At the surface

Snell's law predicts that

m, sin@, = m,sind, (6,6, are small by hypothesis)

m6, = m,0,
and it follows that
miQ, =m;Q,
where now we make use of our small cap approximation Q = 76> Since

QI =F =F,=Q,I,
we obtain

L 1

)
my m,

Thus we take /m* as the intensity when we are interested in propagation
through an m varying media. The radiance from one m environment to
another m environment thus needs to be adjusted by refractive index.

2) Hemispheric fluxes on a horizontal surface. The upward flux may be
defined as

2 /2 .
F =J.0 '[0 1(6,¢)cosOsinGdbdgy
and the downward flux is
2x 0 .
F =IO J- /21(19,¢)cosﬁsmc9dl9d¢

and the net flux is F = F" + F". Often the limits of the & integral for F~ are
flipped, which in turn defines a positive F~ leading to an alternate
definition F = F" — F~. We will use this latter convention throughout.
[Note also that the + sign on the upward flux means that the normal of the
surface in question points upward along the vertical.
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Example 2.4: Continued.

3) Consider a special case of isotropic radiation (i.e., / = I, is constant), then it
follows that

F' = IOZE I:/zlo cos@sin Gdbd g = 2ﬂIUI;Mﬂ =7,

and also F~ = nl,, so that F"* = 0. As much radiation flows onto the surface
that leaves the surface.

4) Flux of an isotropic source on a vertical surface. Let us consider the surface
in the y-z plane

F* = [I(E)E -1dQ(E)
= IOJ‘”/2 Iocosﬁsin 0dode =,

-/2 F4

where we make use of Eqn. (2.1). Also take special note of the limits of the
integration and the hemisphere these limits define.

5) The intensity and flux from the sun. We will see later how the sun radiates
approximately as a blackbody of temperature 7_ = 5790 K. This radiation is
emitted isotropically from the sun with a broadband intensity (i.e., at an
intensity that has been integrated over all wavelengths)

I,=21!=2x10"  [Wm7sr']
JT

If we consider the geometry as shown, then the flux from the sun incident
on a surface whose normal is along the direction from the point P on the
earth's surface to the center of the sun is

F, = J'Q@ 1, cos dQ2

=1, '[02” d¢.|.:" sin @ cos 4d 6

2= ®

2
= xlsin*8.]=1.7 ;9 1.9Q.

~1380 [Wm™]
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Example 2.5: The black of night: Olbers' paradox

An ancient astronomer, if asked why the night sky is black, probably would
have answered that it was because the sun is absent. If we then ask why the
stars don’t take the place of the sun, then the likely answer is because the stars
are of limited number and individually dim. This last argument has lost its
force over the centuries and astronomers tell us that the number of stars
occupying the night sky is tremendous indeed. We are left with a paradox of
sorts—why is not the night sky as brilliant as the daytime sky filled with the
light from an almost infinite number of stars. Olbers pondered this paradox and
approached it with the following assumptions:

1. The universe is infinite in extent,
2. The stars are infinite in number, and
3. The stars are of uniform average brightness through all space.

He then considered space as divided into concentric shells about the observer
that are large enough to be populated by stars. The amount of light that reaches
us from each star (think of this as the product of /_£2_) varies inversely as the
square of its distance from us. But as we look farther out in space the volume
of the shell of space also expands (as the distance squared) in such a way that
the increased number of stars in the farther shell cancels with the decreased
brightness of these more distant stars.

Thus the crux of the paradox is—if the universe is infinite in extent and thus
consists of an infinite number of shells, the stars of the universe, however dim
they may individually be, ought to deliver an infinite amount of light to Earth.
Somewhere in Olbers' paradox there is some mitigating circumstance or logical
error. It is commonly thought that the failure of the above arguments occurs
with assumption (3). We know that the stars of distant galaxies are receding
and this movement caused a red-shift in the spectrum. With the expansion of
the universe each succeeding shell delivers less light as it is subject to a
successively greater red shift. Thus we receive only a finite amount of energy
from the universe and the night sky is black.

Problems

Problem 2.1

Radiance of the moon and sun

seen from the center of the Earth.

the following constants:

SolarConstant = 1367 Watts m™

(a) Calculate the solid angle subtended by the sun, and the solid angle subtended by the moon as

(b) Calculate the radiance of the sun and the radiance of the moon as seen from the earth. Assume



SunDiameter = 1.39 X 10° km
MoonDiameter = 3.48 X 10° km
Sun - EarthDistance = 1.49 X 10 km
Sun - MoonDistance = 1.49 X 10® km
Earth - MoonDistance = 3.8 X 10° km
Reflectivity of the Moon = 6.7%

Assume that the reflectance from the moon is isotropic (i.e., the moon's surface is said to be a
Lambertian reflector).

Problem 2.2

A small perfectly black spherical satellite is in orbit around the earth at a height of 200 km. What
solid angle does the earth subtend when viewed from the satellite? Hint: Consider Fig. 2.6a and assume
the Earth's radius to be 6370 km.

- 0
5‘%{:>| .

/

a—

b
(b} 'L
s

Fig. 2.6 Deriving the irradiance distance-law for spheres and disks.
Problem 2.3
Irradiance Distance Law for Spheres.

Consider a spherical surface S of radius a with uniform radiance distribution of magnitude / at each
point. Suppose that S is viewed at a point x a distance  from the center y of S. The lines of sight lie in a
vacuum and the background radiance of S is zero. See Fig. 2.6 (a). Derive the irradiance F(x, §) at point x
in terms of the given variables. Here § is the normal at x in the direction from y to x.



Problem 2.4

Irradiance Distance Law for Circular Disks

Refer to Fig. 2.6 (b). That figure depicts a circular disk of radius a of uniform surface intensity / at
each point. The disk is viewed at point x on the perpendicular through the center y of S at a distance r
from the center. The set D of the lines of sight from x to S lies in a vacuum and the background radiance
of S is zero. What is the irradiance F(x, §) at point x in terms of the given variables? Here § is the same as

that in Eqn. (1.3). Compare your answer to that of problem 2.3 by determining the value of » (in units of
radius a) such that the difference between the two irradiances is less than 1%.

Problem 2.5

If an incident azimuthally symmetric radiation field is described by /(6) = I, tané, where & is the
zenith angle, briefly describe the visual appearance of such a field and derive an expression between F
and /,.
Problem 2.6

Solve the following:

(a) Using the cosine law and the definition of solid angle in the class notes, establish that the

relationship between the hemispheric flux F on a horizontal surface and the intensity / flowing to
that surface is

a7 10 Osin aded
=.[o J-o (8,¢)cosfsin ¢

where @ is the zenith angle and ¢ is the azimuthal angle.

(b) Calculate this flux when the intensity field is uniform (isotropic) and flows through a set of
directions defined by the angle & centered on the normal to the horizontal plane. Derive this flux
as a function of 6.

(c) Using your results of (b) above, show that the hemisphere flux is 7w/, for an isotropic intensity
field of magnitude /.

2-12



AT622 Section 3
Basic Laws

There are three stages in the life of a photon that interest us: first it is created, then it propagates
through space, and finally it can be destroyed. The creation and destruction of a photon occurs through its
interaction with matter. Here we consider the basic laws that characterize the creation of radiation by a
process referred to as emission. Processes that destroy the photon, via absorption, are topics of later
chapters.

3.1 Equilibrium Radiation and Kirchoff’s Law

The generation of electromagnetic waves occurs as a general result of an accelerating electric charge.
In general, any object is composed of a vast number of molecules that oscillate over a continuous range of
frequencies and therefore emit radiation of all frequencies. However, this radiation is not emitted equally
at all frequencies but is distributed in some way according to the emission spectrum, which, as we shall
see, depends strongly on the temperature of the object.

The nature of the emission spectrum and its relationship to the temperature of the body loomed as a
major challenge to physicists in the late nineteenth century. In fact, the relationship could not be
accounted for using the principles of classical physics and its description marked one of the major turning
points in the history of science. In attempting to formulate the description of the emission spectrum there
emerged the hypothetical concept of a blackbody, which is a body whose surface absorbs all radiation
incident upon it. It also follows that any two blackbodies at the same temperature emit precisely the same
radiation and that a blackbody emits more radiation than any other type of object at the same temperature.

That it is more appropriate to view blackbody radiation as equilibrium radiation is evident by
considering an isolated cavity with walls opaque to all radiation. The cavity walls constantly emit, absorb,
and reflect radiation until a state of equilibrium is reached (i.e., until the temperature of the cavity walls
no longer change in time). This equilibrium radiation fills the cavity uniformly and is just the same as the
radiation emitted by a hypothetical blackbody at the same temperature of the cavity. To understand why
this is so, imagine that a blackbody is placed in the cavity. This body absorbs the entire equilibrium
radiation incident on its surface and, since the cavity is in a state of equilibrium, the radiation emitted by
the object must be precisely that absorbed by it, which also happens to be the equilibrium radiation that
fills the cavity. Therefore under the conditions of equilibrium, the ability of a body to radiate is closely
related to its ability to absorb radiation. The mathematical formulation of this statement is known as
Kirchoff's Law, which can be written as

ENT) = &BAyT) (3.1

where E is the emitted radiation and B(7) is the radiation of the hypothetical blackbody. £, is sometimes
referred to as the spectral emissive power and the total emissive power is

E(T) = j: E,(T)dA

The proportionality constant in Eqn. (3.1) is referred to as an emissivity, £ (sometimes also referred to as
an absorption coefficient), which in this context varies between 0 and 1. If & = 0, then Eqn. (3.1) states
that a body neither emits radiation at the given wavelength nor absorbs radiation at the same wavelength.
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For & =1 on the other hand, the emitted radiation is just blackbody radiation and the body absorbs all
radiation incident upon it. As we shall see in following sections, the absorption coefficient contains
information about the type of matter that emits radiation. The wavelength dependence of this coefficient
varies dramatically according to the nature of the matter and the portion of the electromagnetic spectrum
under consideration.

Table 3.1 Typical gray body emissivities and reflectivities for various ‘opaque’ surfaces. These quantities
are averaged over respective terrestrial and solar emission spectra (later sections). Albedo
() refers to the reflectivity of solar radiation. Because the sun and earth are not in thermal
equilibrium, blackbody relationships between emission, absorption and reflection do not

apply.
Type Albedo (o) Emissivity (g)
Tropical forest 0.13 0.99
Woodland 0.14 0.98
Farmland/natural grassland 0.20 0.95
Semi-desert/stony desert 0.24 0.92
Dry sandy desert/salt pans 0.37 0.89
Water (0°-60°)* <0.08 0.96
Water (60°-90°) <0.10 0.96
Sea ice 0.25-0.60 0.90
Snow-covered vegetation 0.20-0.80 0.88
Snow-covered ice 0.80 0.92

*The albedo of a water surface increases as the solar zenith angle increases. Ocean surface
albedos are also increased by the occurrence of white caps on the waves.

Gray bodies: ¢, is assumed constant and independent of A.

It is through the statement of Kirchoff's Law that the whole point of blackbody radiation is relevant.
All blackbodies at some temperature behave identically and the radiation emitted by such bodies at a
given A depends only on the temperature of the body. Thus the emission of radiation at some chosen
wavelength is solely determined by the characteristics of the emitting matter (through a;) and temperature
(through B,).

Example 3.1: Show that two blackbodies at the same temperature must emit
the same radiation.

Proof of this lies in the second law of thermodynamics. In the case of two black
surfaces 4 and B at the same temperature, suppose A radiates more energy than
the other. Imagine placing these surfaces next to each other and allowing each
to absorb the radiation from the other. Thus B must absorb more radiation than
it emits, receiving more energy and becoming hotter. 4, correspondingly
becomes cooler. Thus the second law of thermodynamics is violated and our
assumption that 4 radiates more than B is false.
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3.2 Planck's Blackbody Function and Related Laws

The theoretical question of what form the wavelength distribution of the intensity of this cavity
radiation takes and how this radiation in turn depends on the temperature of the walls of the cavity
occupied the attention of many of the worlds leading physicists during the 1890's. It was Max Planck who
provided us with the theoretical description of the blackbody radiation but in doing so he was forced to
make an assumption that proved to be one of the most daring departures from the philosophies of physics
at that time. He considered that each of the oscillators in the walls of the cavity could have only one of a
discrete set of energies rather than the more conventional view that energy could assume any value above
or equal to zero. The discrete energy level of the oscillator could then be represented in the form

E = nhv

where 7 is an integer, referred to as the quantum number, which defines the permitted number of discrete
units of energy of the oscillator. The fundamental unit of energy turned out to be proportional to the
frequency of the oscillator v where the proportionality constant / is known as Planck's constant. It is these
discrete packets of quanta of energy that are emitted by the oscillators in the cavity walls after the
oscillator undergoes a transition from one quantized energy state to another. On the basis of these
arguments, Planck was able to demonstrate that the relationship,

2hc?

B,(T) = m ) (3.2a)

adequately describes blackbody radiation where K is Boltzman's constant and 7 is the absolute
temperature of the cavity walls. It is also customary to introduce the constants

=2mhc? =3.7419x 107! Wm?

Cl
he -2

C,=—=1.4413x10"" mK

K

in which case
Cl

B, (T) = ﬂis[eczmr 1]

(3.2b)

b

where it is assumed for convenience that ¢ = c,,.

The function defined by Eqn. (3.2) is known as Planck's function and is graphically portrayed in Fig.
3.1 for six different temperatures. These examples demonstrate a gross relationship that perhaps could
have been anticipated. For example, consider an ordinary electrical element on a stove. On the highest
and thus hottest setting the element glows brightest with a reddish hue (Fig. 3.1). When the electricity is
turned off and the element is allowed to cool, the color of the element fades until its luminosity vanishes.
But it is still radiating; a fact evident when a hand is placed above the cooling element. This simple
experiment, known as Wein's displacement law, establishes a connection between the wavelength of
maximum emission (A,,,) and the temperature of the radiator. This law is simply derived from

B,
A
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from which it follows that
Thnax = 2898 (um °K). (3.3)

Wein's displacement law is also graphically depicted on Fig. 3.1 as the diagonal line joining the maxima
of the three Planck functions.

S,
LALALLLL SRR Ll S il N e L |

Blackbody emissive power Ej,, ‘W;lm’]mn

qul‘
“ﬁm

3,

Wavelength 4, jim

Fig. 3.1 Planck's blackbody flux curve at the three temperatures shown. The units of this function are
Wm™ um”. The diagonal line intersecting the curves at their maxima depicts Wein's
displacement law.

Example 3.2: What is the wavelength of the maximum emissive power of
the sun? What is the corresponding wavelength of Earth? The temperature of
the sun is approximately 5760K and it follows from Eqn. (3.3) that

Ay =——=0.5um

which roughly corresponds to the middle of the visible portion of the
spectrum (Fig. 3.2a). Solar radiation is attenuated as it penetrates the
atmosphere. Understanding this attenuation in some detail is one of the
goals of this course.

Temperatures of emitters in the Earth's atmosphere vary. Assuming a value
of 290K, it follows that

Apax =——— =10 um
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Fig. 3.2

Example 3.2 Continued.

Figure 3.2a is an example of the emission spectrum at the top of the at-
mosphere measured at one location. This spectral emission does not follow
the blackbody curve since it occurs through a kind of transfer from layer to
layer in the atmosphere through a combination of absorption at low levels
and emission at higher levels and at colder temperatures. The difference
between the measured emission and that of a blackbody is crudely indicative
of the absorption spectrum of the absorbing gases in the atmosphere. The
transfer of radiation and a detailed understanding of the absorption spectrum
are topics that we will return to later.

B e o o S S SHAS S S T s a o oy o - ey rsap— T
e BN LA A e e e e e D AL |
4 Blackbody emissive power at .
(a) - . 1 5762 K. normalized 1o 1353 W/m?
= N’
= 2000+ {\/ o,  Exaicoesrial solas spectrwm, 1353 Wim?
= é‘v ‘V;""'/;"Ail“n‘ﬁss one” solar Specirum
= u’&’k\'/!/g._
= i s
£ 1500 :'I( H0
5 [/ Y
£ 1000 f AN B0
3 F H0
E: :p .
b L 1
g s o ! 1,0
w 3, : — H,0 H,0
-uv Visible - Infrared b— 7 R €O
o L 8 1 y %’lmﬁﬁa}uﬂ"—
02 04 66 08 10 12 14 16 18 20 22 24 26 28 3¢
Wavelength A, ym
240

(b)

RADIANCE (org soe” e’ arVem)

WAVE NUMSER {cu™

(a) Solar irradiation measured at the top of the Earth's atmosphere compared to that of a
5760K blackbody normalized to 1353 Wm™ (the reason for this will be discussed later). Also
shown in a schematic way is the irradiance at the surface under 'typical’ clear sky conditions.
(b) The spectrum of infrared radiation emitted to space from Earth as measured by an
instrument on an orbiting satellite. This spectrum corresponds to clear sky conditions over
the Saharan desert.

3-5



There follows from Eqn. (3.2) two important limits of the Planck function. The first of these limits is
referred to as Wein's distribution and applies to A — 0

B, = B; =2hc’ Lse_h"/K’lT (3.4)
A

whereas the longer wavelength limit, A — o is referred to as the Rayleigh-Jeans distribution, and is
expressed by

B, =B, = 2cKT% (3.5)

This long wave limit has a direct application to passive microwave remote sensing problems. At these
wavelengths, the emission by the earth's atmosphere is directly proportional to temperature and intensity
and temperature can be treated as mutually equivalent. We refer to the intensity expressed in units of
temperature as the brightness temperature, which is the temperature that is required to match that
measured intensity to the Planck blackbody function. For microwave radiation, this is simply obtained
from Eqn. (3.5). At other wavelengths, the brightness temperature is obtained by inverting either Eqn.
(3.2) or Eqn. (3.4).

3.3 Total Blackbody Emissive Power
An obvious characteristic of blackbody radiation is that the hotter the object, the greater the total

amount of radiation is emitted from a given surface area. This is just a statement of Stefan-Boltzmann's
law, which can be simply derived by integrating B; over the entire wavelength domain according to

BT - | B,y =51 - { Sy }n

T -[0 (ATS)[expCZ/”—IJ aCy o e’ —1
where y = C,,/AT. The integral in this expression is n*/15 and the constant

4
o="5 _567x10° Wm K™
15C;

is the Stefan-Boltzmann constant. The total blackbody emission (intensity) thus follows

_9 e
B - P T (3.6a)

where the reason for the appearance of the m factor arises from the properties of isotropic radiation. The
hemispheric blackbody flux is thus

7B(T) = oT’ (3.6b)

As an example, the radiation emitted from a 6000 K blackbody, for instance, is 160,000 times that emitted
from a 300 K blackbody.
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It is often convenient to use the Planck function defined in terms of wavenumber rather than
wavelength. The relationship between these two forms is obtained from the simple requirements that the
integrated energies must be an expression of Stefan-Boltzman's law. Thus

B, (T)dA=-B;(T)dv

and, with Eqn. (3.2a) together with the definition of v , it follows that

2~3
BV (T) _ th v (37)
e

v /KT
chv/ -1

Many problems in atmospheric radiation require the Planck function integrated over some finitely
wide spectral region, say between A, and A,. Then

2 G g Yy |4
Ll Bi(T)dA _[ncj Iyz 1|

cannot be evaluated analytically. The fraction of blackbody radiation between 0 and A;, namely

A
B,(ThdA o3
f(u>=j°w—=§ s
jOB,l(T)d/l 7 ine -1

can be evaluated numerically or using precomputed look-up tables. The spectrally integrated blackbody
radiation then becomes

[ B.mar=[roun) - rDIZT 58)

and a program that calculates the factor in parentheses is supplied in Appendix 3A.
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Example 3.3: What fraction of the total solar emission occurs at wavelengths
longer than 0.7 um?

Making use of the above mentioned program
program test
W2=4
W1=0.7
T=5800
frac=PLANCK(W1,W2,T)
write(*,*) 'fraction="', frac

end
Distribution of the solar constant in various wavelength bands.
Band Wavelength Irradiance Fraction of
Interval (nm) (W m?) (percent)®
Ultraviolet and beyond <350 62 4.5
Near ultraviolet 350-400 57 4.2
Visible 400-700 522 38.2
Near infrared 700-1000 309 22.6
Infrared and beyond > 1000 417 30.5
Total 1367 100.0

*Percentages computed from data in Thekaekara (1976).

3.4 Problems
Problem 3.1

Assuming that the normal body temperature is 37 °C, what would the emittance (i.e., how much
radiation is emitted) by the body if:

(a) The body was a perfect blackbody?
(b) The body was gray with 90% absorption?

What is the wavelength of maximum emission?
Problem 3.2

Consider a room with a fireplace, which has an opening of 1 m”>. The opening is composed of 10%
flame, 30% logs and 60% walls. The flames have an emittance of 0.5, while the walls and logs are black.
Assume the respective temperatures of the flames to be 2000 K, of the logs, 1000 K, and of the walls, 500
K, and that only radiation energy escapes into the room. What is the total radiant power escaping the
fireplace from each source and the wavelength of maximum emission from each? Explain the effect of
placing a glass plate over the opening if the glass has the property of

transmittance = 1, absorptance = 0; 0 < A < 3u

transmittance = 0, absorptance = 1; A > 3u
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Problem 3.3

There are two approximate forms of Planck’s Law. The first is known as Wien’s Law.
_ . 2-5 (e, /2T)
B, =cA7e” .

This expression is valid for very small values of A7. What would be the numerical value of T for
which less than a 1% error would be incurred at 1 wm using the above approximation?

A second simiplification is the Rayleigh-Jeans approximation often applied to microwave
wavelengths.

B, =c,A'T

Derive the above expression from Planck’s Law and define the 1% error threshold in terms of 7 and A =
500 wm.

Problem 3.4
Convert the wavelength form of Planck’s Law to the wavenumber form given below:

~3
B o GV

= where:\7=l; d\7=—%dﬂ
e —1 A A

Problem 3.5

Show that the maximum intensity of the Planck’s function is proportional to the fifth power of the
temperature. Comment.
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APPENDIX 3A

FUNCTION PLANCK(WI,W2,T)

OO0O0O0O0O0n

ONONOK®)]

Use an approximate integral scheme to evaluate the integral

of Planck's Law. W1 and W2 define the upper and lower wavelength extent of
the band in micron and T is temperature in K.
Output is in units of W sq m per ster (radiance units)
Ref:

WVN1=1./(WI*I.E-4)

WVN2=1./(W2*1.E-4)
X1=1.43868*WVN1/T
X2=1.43868*WVN2/T

CALCULATE THE MEAN PLANCK FUNCTION

PLANCK=ABS(PL(X1)-PL(X2))*SIGMAP*T**4
write(*,*) X1,X2,WVN1,WVN2,T
PLANCK=ABS(PL(X1)-PL(X2))

RETURN
END

FUNCTION PL(X)

C

101

INTEGER MM
PI=3.1415926
PL=0.0

IF (X.GT.2.5) THEN
DO 101 MM=1,50
M=FLOAT(MM)

TERM=EXP(-M*X)*(((M*X+3.)¥*M*X+6.)*M*X+6.)*15.0/(PI*M)**4

PL=PL+TERM

IF (ABS(TERM/PL).LT.1.0E-5) RETURN
CONTINUE

ELSE

PL=1.0-15.0/PI**4*x**3%

$(1./3.-X/8.+X**2/60.-X**4/5040.+X**6/272160.-X**8/13305600.)

ENDIF
RETURN
END
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AT622 Section 4
Elementary Radiative Transfer

The aim of this section is to acquaint students with simple, basic concepts of radiative transfer as it
applies to both a sourceless atmosphere and an atmosphere that contains general or arbitrary sources of
radiation. The equation derived will be applied to study radiative transfer in an absorbing atmosphere in
the context of infrared transfer in a clear atmosphere. Thus we begin to learn how these transfer processes
shape the thermal structure of the atmosphere.

4.1 Extinction

The propagation of radiation through attenuating material undergoes changes as a result of radiative
processes that take place in the medium. Extinction is one of the elementary processes affecting this
transfer and it is defined as follows. The change in intensity d/, on propagating along a path of length ds
(Fig. 4.1) is empirically related to the incident intensity of the radiation via Lambert's law of extinction

dl, = -o,.l.ds “4.1n
where o, is the proportionality constant known as the extinction coefficient. This extinction may occur
as a result of scattering by particles or molecules in the atmosphere, by absorption by particles and
molecules in the atmosphere or by a combination of both (although the molecules that scatter radiation
are, on the whole, different from the molecules that absorb radiation—The reason for this will become
apparent later). Thus we can write

Oext = Ogea T Opps
where examination of Eqn. (4.1) reveals that the quantity

dt = o,ds
is unitless. This is a fundamental quantity known as the optical path and when the path is vertical, it is the

optical depth. We will see later that there are different ways of measuring o, and thus different
complementary measures of path length ds.
ds \

I, +dI,

Fig. 4.1 The law of extinction.

Equation (4.1) may be readily cast into a radiative transfer equation

1
a, & 1 4.2)

ds ext,ytv o
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which has a solution of the form

1,(s")=1,(s) exp(-7,), (4.3)

o
where 7, = I O, (s)ds is the optical thickness. This solution, referred to as Beer's law, serves as the
)

ext,v

basis for many remote sensing applications and is a good approximation to the measurements of sunlight
in the clear and relatively clean atmosphere. For example, consider the measurement of direct sunlight. If
the sun is inclined at an angle &, from the vertical (the solar zenith angle), then Eqn. (4.3) becomes

1,(r))=1,(z, =0)exp(-t, /cosh.), (4.4)
where 7, is the optical depth. The logarithmic form of Eqn. (4.4) is
InZ,(z,)=Inl,(z,=0)-7,/cosb, . 4.5)

Figure 4.2 is an example of this type of relationship derived from radiometer (pyrheliometer)
measurements obtained at the Manua Loa Observatory. The data are from a spectral radiometer pointed
towards the sun and measurements are recorded as the sun moves across the sky throughout the course of
a day. If the logarithms of these measured intensities are plotted as a function of sec_ then the optical

depth ri is the slope of the line and the incident intensity /,(t, = 0) is given by the intercept determined

by extrapolating secd_ to zero. From this diagram we see how the clear sky measurements of solar fluxes
at the wavelengths of the filters used is very closely represented by Lamberts law.
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Fig. 4.2 An example of a Lambertian plot: the logarithm of solar intensity is plotted as a function of
optical air mass for clear, stable atmospheric conditions.
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Example 4.1 Extinction—it’s black and white.

The experimenter who observes that extinction has taken place by measuring
radiation at two levels in the atmosphere cannot determine if the radiation is
decreased because it is absorbed or decreased because it is scattered. A
simple illustration of this elementary point is well described by Bohren
(1987) and is highlighted in Fig. 4.3. One cannot distinguish between the
images of two water-filled glass petri dishes projected on a screen yet their
darkness arises from different mechanisms. Light incident on the inky water
is attenuated mainly by absorption, whereas light incident on the milky water
is mostly scattered. It is only by looking at the dishes that this difference
between them becomes apparent. An important scattering parameter that
helps quantify these differences is the single scattering albedo @,. This

parameter is the ratio of the amount of scattering that attenuates the light to
the total extinction (absorption plus scattering). For the milky water we
might infer that @, =1 since light is primarily scattered in all directions from
the dish. On the other hand, @, =0 for inky water little light is scattered and

most of the extinction occurs through absorption. We will see later how the
parameter @, is fundamental to problems of multiple scattering and thus for

understanding how radiation is transferred from layer to layer in clouds.

Fig. 4.3. The images of two water-filled glass beakers projected on a screen
are identical yet their darkness (extinction) arises from different
mechanisms. Light incident on the inky water is attenuated mainly
by absorption, whereas light incident on the milky water is
attenuated mostly by scattering. It is only by looking at the beakers
that this difference becomes apparent.
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4.2 Adding Sources of Radiation

Example 4.1 illustrates how multiple scattering confuses the interactions between radiation and the
atmosphere. For example, photons originally scattered away from the viewing direction can reappear, and
scattering can also cause photons to arrive having been incident from some other direction. Multiple
scattering acts as a kind of source of radiation (this is sometimes referred to as virtual emission).

Whether it is real emission (governed by Kirchoff's law, Section 1) or virtual emission that
contributes to a beam as it traverses a path of length ds, the increased intensity may be expressed as

dl,=0,,J\ds, (4.6)

which defines the source function J,. When this emission takes place in the lower atmosphere where
thermodynamic equilibrium occurs, J, = 2,

The net change in radiation along a path element, ds, due to the combination of emission and
extinction is

dl, = dI(emission) + d;(extinction). 4.7
and with the combination of Eqns. (4.1) and (4.6) we obtain

dl

vV

= _aevt v[lv - Jv]ﬂ (483)
ds o

4.3 A Radiative Transfer Equation for Absorption/Emission

In many problems of infrared radiative transfer that interest the atmospheric scientist it is reasonable
to neglect scattering so we can substitute o, for o, Then substituting Eqns. (4.1) and (4.6) in Eqn. (4.7),
we obtain the following transfer equation

dl, =-o0, I -B], (4.8b)
ds ’

which is the mathematical relationship describing how radiation is transferred from one layer to another
layer as a result of absorption and emission. The amount of radiation leaving the end of the path is a
function of the distribution of absorber along the path (we will see that this is implied in gy,,) and the

distribution of temperature (through the presence 15,).

In general, the interactions between radiation and the gases of the atmosphere are weak enough that
the photon mean free path exceeds the mean free path of molecules. Hence, the radiative transfer in the
atmosphere tends to be nonlocal requiring integration of processes along the path. To derive this integral
form of the radiative transfer equation, we first make use of the definition, dz,(s) = -Ous.(s)ds, for an
element of the optical thickness (the reason for the negative sign in this definition of optical thickness
becomes evident below) and then multiply each side of Eqn. (4.8b) by the factor exp(-t,(s)). Combining
terms, we obtain
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7,()
arer” ~Be ™. 4.9)
dr,

Consider a general path extending from some point s = s’ to an end point s = s”. Then simple integration
of Eqn. (4.9) from 7(s") to #(s") yields

B , 7(s") )
I(S/r)e—r‘,(s ) _I(S’)e—Tv(S) =J‘ o B[T(S)]e_r(b)dT(S)

WhiCh, on rearrangement, giVCS
” N 75 )—(s" 7(s") (s =7 (s"
I(S )= I(S )e [(s)-7(s1)] + ' ) B[z(s)e fr(s)-7( )]dl(S) (410)

where the frequency dependence of all factors (we could have equally used wavelength rather than
frequency here) in Eqn. (4.10) is taken to be understood. The first term on the right-hand side of this
equation represents the radiation, originally incident at s’, that is transmitted to s”. We will refer to this as
the surface term. The integral term represents the emitted radiation that accumulates along the path and
transmitted to s".

Fig. 4.4 The geometric setting for the integral transfer equation in a plane parallel vertically
stratified atmosphere.

When Eqn. (4.10) is applied to the atmosphere (Fig. 4.4), it is customary, but not necessarily
realistic, to assume that the atmosphere is plane parallel and horizontally homogeneous. For such a
stratified atmosphere, the integral equation can be expressed in terms of optical depth t(z) (rather than
optical thickness t(s)). It is conventional to define the optical depth such that T = 0 at the top of the
atmosphere and T = T* at the surface.! For slant paths, the expression relating optical depth to optical path
is

1(s) =T(z)/cos 6.

! The convention that t increases downward from the top of the atmosphere has roots in the traditional astrophysics
literature on radiative transfer where T is taken to increase along the direction of sunlight entering the atmosphere.
Optical depth increases in the oppposite sense to z and hence the negative sign in its definition.
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producing

1) =1 =)™ [ Byt & (4.112)
v u

I

for 0 < u < 1, which defines radiation that upwells from the atmosphere, and

() = 10, 4 [T B0 < @.11b)

for 0 > u > -1 for downwelling radiation.

Figure 4.5 is an example of a measured intensity spectrum obtained from an interferometer instrument
flown on Nimbus 4. Superimposed on the measurements are the blackbody curves for selected
temperatures. Also highlighted are spectral positions of the absorption bands of the predominant
absorbing gases. This diagram more clearly shows how emissions from different levels in the atmosphere
(and therefore at different temperatures) combine to produce the observed spectra. For instance, emission
in the central portions of the 9.6 um ozone band occurs at temperatures below about 250 K, and emission
in the 15 wm CO, band varies throughout the atmosphere according to the spectral position relative to the
band center. For both O; and CO,, the increase in emitted radiation in the strongest part of the center of
the absorption band occurs higher up in the atmosphere than in the neighboring spectral regions and is an
indication of the increase in temperature with increasing altitude in the stratosphere. Also noteworthy is
the water vapor emission that is confined to the lower atmosphere (emission by the vibration and rotation
bands is broadly characterized by the 275 K blackbody curve for this example). An important spectral
region is the atmospheric window between about 800 cm™ and 1200 cm™ in which the atmosphere is
almost transparent (except for the ozone band) and the emission originates from levels close to the
surface.
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-~ — .
-~ ~ ~
S 100 /Y 275K [ > ~ .
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220K T o~ ~ - n‘ o~
CO, \‘-—--ﬁ___\\—*“‘ = -
O 1 [} 1 “—T_—"—_‘——ﬁ_
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1500

Wave Number v [cm'l]

Fig. 4.5 Earth’s emission spectrum seen at the top of the atmosphere.
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Example 4.2: Radiative transfer in an isothermal atmosphere

Consider a simple demonstration of Eqn. (4.11): Isothermal atmosphere
* anisothermal atmosphere, B(f) = B. Thus

I(T*, u) =Bl -e""").

This leads to limb brightening for downwelling radiation at T = t*
and isotropic fields for the upwelling intensity at T = 0 since

10, 10) = Be ™ + Bl—e™"*)=B..

For the nonisothermal problem, the solutions for the intensities and
fluxes become much more complex. For illustrative purposes,

assume the Planck function to be linear in optical depth. Let B, and

B* be the Planck functions at the top (r = 0) and bottom of the
atmosphere, respectively. It is easily shown that

I(@*, ) =B,(1-¢""") + (B*—B{))(] —ﬂ(l _ g )j
T*

(Limb Brightening)

1(0,4) = B*e™ ¥ + B¥(1=¢™") = (B*-B (1= ™"
(Limb Darkening)

when B(t) = B, + (B* - B,)t/t*. Generally the angular variation of
upwelled radiation is less marked than that of downwelled radiation.

ISOTHERMAL NONISOTHERMAL

NADIR/Zenith

A .
Upwelling Upwelling

Downwelling Downwelling

>
1 1 0 0

Viewing angle |u|
Examples of the angular variation of upwelling and downwelling emitted radiation.
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Example 4.3: The exponential integral, flux equation and diffusivity

We adopt the transfer equations above to obtain fluxes. We choose to
demonstrate this using Eqn. (4.11a), which is integrated as follows:

1 1 * —(t*-7)/ u
Zﬂjol(r,ﬁu)‘udy = ZJZIOI(T , e “udu +
1 T*
—(t-7)/ u
2 j du f Bl dt
which becomes

1 « T* 1
F*(z) =, j T 2j aB(1) j ey

where the surface radiation is taken to be isotropic. Introducing the
exponential integral function

*® _x dt 1 n-2 _-x/u
En(x}=]'1 e"t—,,=foﬂ e du

then the flux equation becomes

F*(7) =l 2E,(T% 1) + 2 L’*;r[s(t)E2 (t - 7)dt

T

General behavior of the exponential integral. Shows also that 2E;(x) =~
exp(-px) where § =1.66 and is known as the diffusivity factor. We return to
this factor and its interpretation later, but note that it represents a
transmission function for flux.




4.5 Problems

The attached diagram presents the emission spectrum measured by an interferometer on a satellite
viewing Earth.

(1) Identify major absorption features in the spectrum.

(2) What conditions (clear sky or cloudy, dry or moist atmosphere) do you think are applicable to
measured spectrum?

(3) Draw a schematic of the difference in the emission spectrum before and after a CO, doubling has
occurred. Consider only clear sky conditions and the following two scenarios:

a. CO, doubling with fixed absolute humidity
b. CO, doubling with fixed relative humidity

Briefly discuss the different spectra highlighting key features as they relate to a CO, increase
(you may wish to draw these spectra as applied to global mean conditions).

T _— T T T T
—~ 7 35K T -
- ~ -
-~ ) ~
150 7 o ~ a -
- © 300K - ~
-~ - ~
- ~ ~
S ‘ I — — IS = ~
s 100 4/F 275K [ ~ ~
= =~ o H,O
-g - = 7 = — o b ~~ =~ ~
S| ~
& 2501 - -~ _ SN
22K o — — — - (] R .
CO, - _ o _—
O L L L . T === T
400 600 800 1000 1200 1400 1500

Wave Number ¥ [cm™]

Earth’s emission spectrum seen at the top of the atmosphere.
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AT622 Section 5
The Sun

The main aim here is to acquaint the student with basic radiative properties of the sun and the factors
that govern the disposition of solar radiation received at Earth.

5.1 The Solar Atmosphere

The sun is an entirely gaseous star composed of hydrogen (75%) and helium (25%). It is
approximately 4.6 billion years old and located approximately 1.5 x 10° km from the Earth. It accounts
for virtually all energy received by Earth and is responsible for circulation of the Earth's atmosphere and
oceans. The solar atmosphere is portrayed in Fig. 5.1. The bulk of the electromagnetic radiation emitted
from the sun and received at Earth arises from the vicinity of the photosphere.

T 1 1 ‘]]lv"'rlev' T 1 1

i . :

g

L

g

8

[
:Clwomoesphere

Height above Photosphere, km

} &

&

4 6 810 15 20 30 40 50
Temperature, K [x 10° ]

Fig. 5.1 A schematic cross section of the solar atmosphere.

The sun’s emission is much like that of Earth in that it is a result of superimposing emissions from
several regions within its own atmosphere. The emission from the sun is entirely analogous to the Earth's
emission spectrum already shown previously where radiation arises from different levels according to the
wavelength of the emission. Absorption/emission is stronger at shorter and longer wavelengths (Fig. 5.2a
and c) of the solar spectrum where absorption within the atmosphere is largest (Fig. 5.2b) observe greater
variability in emission due to solar activity. The emission at these extreme wavelengths originates in the

rarefied corona at temperatures exceeding 10° K.
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The intensity of solar radiation from the UV to far infrared approximately follows the 5785 K
blackbody curve (Fig. 5.2a,b). The emissions at wavelengths shorter than 0.1 wm and longer than 1 cm
are coronal, and highly variable. These emissions are related to measures of the solar activity, such as the
sunspot number (Fig. 5.3a and b and see further discussion later). The spectrally integrated or total
irradiance (i.e., the area under the curve) is a quantity that is most important for various atmospheric
science applications. This irradiance measured at the top of the Earth's atmosphere under certain fixed
conditions is paradoxically termed the solar constant.
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Fig. 5.2 Spectrum of solar emission and photospheric absorption. (a) Solar spectrum compared to
that of a 5784 K blackbody. The method of plotting gives areas (f,Ad log;yA/100)
proportional to energy flow (f,dA). (b) Mass absorption coefficient for the photosphere at a
temperature of 5785 K. After Allen (1958). (c) The solar irradiance.
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Fig. 5.3 Solar activity as defined by the sunspot number (a) undergoes a distinct cycle, which affects
the radiant output (b).

5.2 The Solar Constant

According to our understanding of blackbody emission, a 5785 K hot body like the sun emits
substantially more than a 288 K blackbody (in fact (5785/288)" ~ 163,000 times more). How can the
Earth be in a state of radiative equilibrium: an observed equilibrium established by a balance between
incoming solar and emitted longwave radiation? The answer simply lies in the dilution of the sun's
radiation as it radiates out from the sun and reaches Earth.
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We calculate the effect of this dilution as follows. The spectrally integrated radiation emitted by the
sun and received at the top of the Earth's atmosphere is

® oT.
0, = [ F.,dh="2Q, <1370 Wm® (5.1)
o=, Fe. v e

which, when calculated assuming the mean sun-Earth distance, is termed the solar constant and hereafter
is denoted as O - Note that by definition, the solar constant does not vary with the position of the

Earth relative to the sun. The spectral flux, defined by substituting B, for GTE‘ /ot in Eqn. (5. 1) will be
referred to as the 'spectral solar constant' F_,. O_ was traditionally difficult to measure but recent

instrumentation flown on satellites offer clear evidence of its variability and the magnitude of this
variability.

Example 5.1: Overlapping solar and terrestrial radiation

Using both the Planck routine program, developed in Section 3, determine
the fraction of the total solar radiation that falls at wavelengths below 4
um and the fraction of radiation emitted by a 288 K blackbody at
wavelengths longer than 4 um.

program test program sun
W2=200 W1=0.2
Wi=4 W2=4
T=288 T= 5785
frac=PLANCK(W1,W2,T) frac= PLANCK(W1,W2,T)
write(*,*)'fraction=', frac write(*,*)'fraction=', frac
end end

Output, fraction =0.998 Output, fraction =0.992

This exercise illustrates an important practical point in atmospheric
physics in that only 0.8% of the total extra-terrestrial solar flux resides in
wavelengths longer than 4 um (it is actually even less than this as the
energy blow of 0.2 um is excluded in function solar). On the other hand,
only about 0.2% of the total IR radiation from a 288 K blackbody resides
in wavelengths shorter than 4 wm. Thus from a total energetics point of
view, solar and terrestrial radiation can be treated independently due to
the combination of both the dependence of blackbody radiation with
temperature and the dilution of the sun's radiation as it flows to Earth.

5.3 The Solar Insolation

We will refer to the solar flux incident on a horizontal plane as solar insolation. At the top of the
atmosphere, this insolation depends on the latitude, season and time of day as is expressed in the
relationship
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— N2
R
F, = F@’{RS_EJ cosd, (5.2)

s—FE

which is the insolation at any given instant of time. R, is the sun-Earth distance at the time of

observation, ES_ ¢ 1s the mean sun Earth distance and 6 is the solar zenith angle (i.e., the angle between

the local normal to Earth's surface and a line at the Earth’s surface to the sun). According to this
expression we acknowledge that the insolation received at the top of the atmosphere depends on

* Variations of sun-Earth distance, which in turn depends on variations in the eccentricity of the
orbit of the planet around the sun.

* The sun's elevation (through §_ which is influenced by astronomical factors as we will soon see).
The dependence of insolation on these orbital properties was recognized by Milankovitz in his
proposition that variations in these properties is the cause for ice ages on Earth.

5.4 Orbital Influence on the Insolation

Figure 5.4 illustrates the general characteristics of the Earth's orbit about the sun. The sun is situated
at the focus of an ellipse and the changing Earth-sun distance as the Earth orbits around the sun,
determined by the eccentricity of the orbit, creates asymmetries in solar insolation. The four reference
points on this orbit, labeled 1 - 4, are the cardinal points that are used to delineate Earth's seasons.

(a) Eccentricity

The eccentricity defines the flatness of the orbital ellipse. For Mercury and Pluto, e ~ 0.2 and these
planets are substantially closer to the sun at perihelion than at aphelion. For earth, e ~ 0.017 and Mars e ~
0.093. In the simplest climatological sense, the summers of the southern hemisphere are hotter and
winters are colder based on proximity to the sun (e.g., the Martian northern polar cap persists through
summer but the southern hemisphere cap disappears).
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Fig 5.4

Focus
Center-of ellipse

Auwm‘ﬂ

SQUIAOR
Sept 22

Dates of equinox and solstice. At the equinoxes, the Earth's axis is pointed at right angles to
the sun, and day and night are of equal length all over the globe. At the summer solstice, the
North Pole is tipped in the direction of the sun and the northern hemisphere has the longest
day of the year. At the winter solstice, the North Pole is tipped away from the sun, and the
northern hemisphere has the shortest day of the year.

Example 5.2: The Effect of eccentricity on solar radiation received on
Earth

At perihelion, R_,/ ESE =0.983 and the flux received at the top of the
atmosphere is
R,

2
F =Q¢.)[RSE J =1370x1.035=1419
s—FE

and at aphelion, R _, / RYE =1.017 leading to

— 2
R
F, =Q@(RSE j =1370%0.967 =1325

s—-E

Thus the amplitude of the variation of the solar insolation at the top of the
atmosphere is 93 Wm™.
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(b) Solar Zenith Angle (also see Sellers, Physical Climatology, p. 13-28)

The other principal factor that defines the solar insolation received by a horizontal surface at the top
of the atmosphere is the solar zenith angle 6 _.

cos 6 = sin ¢ sin & + cos ¢ cos d cos & 5.3)
where ¢ is the latitude, 9 is the declination and / is the hour angle.
The declination, 9§, is defined as the angle formed between the equator and plane of orbit. This

parameter has a substantial impact on how the solar radiation is distributed over the globe and thus on
how and why seasons occur on Earth (Figs. 5.5a, b, ¢).

0 ~-23°27"x cos 360
360.25

x (JD + 9)}
where JD is Julian Day.

The hour angle, 7, is defined by =15° each hour before or after solar noon. Account must be
taken for all observers not at an integral meridian.

Denver is located at 105°W, or exactly 7 hours before GMT. Local noon occurs at
12:00. Salt Lake City is 7° further west but in the same time zone. At 12:00, the
hour angle is therefore +7°, while at 1:00 p.m. the hour angle is -8°.

(c) Solar Azimuth Angle
The solar azimuth angle is given by

. cososinh
sinf =————
sind,,

where £is referenced to the south. £> 0 is eastward and £< 0 is westward.
The mean total daily insolation is also a quantity of some interest in climatological studies
F =0 x fractional day length x cos &,

Fractional day length is determined as 2H, and

cosf; = I
- day length

cos ﬁadt/.[dt

Values are tabulated in Table 5.1 and shown graphically in Figs. 5.5b and ¢. As we shall see, the product
of the fractional day length by cos 6_ = 1/4 on the global average.
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Figure 5.6a shows the distribution of daily insolation as a function of latitude and month. Of note are

* locations of maximum and minimum values and the relation of these to astronomical factors
» latitudes of smallest and largest seasonal variations
» asymmetrical hemispheric distribution, and

* typical values of the insolation at low, middle, and high latitudes.

Fig. 5.5
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(a) How seasonal variations depend on the angle between the equator and the plane of the
orbit. If a planet had exactly 90 °inclination, it would be impossible to draw an analogy with
terrestrial north and south poles. The labels in the top panel would then be arbitrary. (b)
Incident solar radiation at a solstice. A beam of sunlight is spread over a larger area of
ground at high latitudes, where the sun is close to the horizon, than at low latitudes where the
sun is almost overhead. The day is longer than the night in the summer hemisphere whereas
the night is longer than the day in the winter hemisphere. Both effects are important in
determining the incident solar radiation. (c) The effect of axial tilt on the distribution of
sunlight. When the tilt is decreased from its present value of 23%: %, the polar regions receive
less sunlight than they do today. When the tilt is increased, polar regions receive more
sunlight. The possible limits of these effects (never actually achieved) would be a tilt of 0°,
when the poles would receive no sunlight: and 54 ° when all points on the earth would
receive the same amount of sunlight annually.
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Table 5.1 The seasonal and latitudinal distributions of the length of the daytime given in parts of 24
hours and those of the weighted mean values of cos 0 (see Table 6 of Manabe and Moller,
1961: On the radiative equilibrium and heat balance of the atmosphere, Mon. Wea. Rev., 8a,

503-532.)
°Lat Fractional length of daytime Cos 6
Apr. July Oct. Jan. Apr. July Oct. Jan.
5 508 517 .500 496 625 587 .614 591
15 521 537 492 471 618 .601 579 .549
25 533 562 483 450 599 .593 524 474
35 .546 .596 471 421 558 567 458 .393
45 562 .637 454 362 501 521 379 317
55 .596 708 437 321 423 453 282 203
65 .629 .837 404 208 345 .369 176 .106
75 750 1.000 329 --- 241 311 .071 -
85 1.000 1.000 - --- .168 318 -—- -—-
[+4]
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Fig. 5.6 The daily variation of the solar radiation at the top of the atmosphere as a function of
latitude. The units are Wm’™.
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Example 5.3: Some properties of the solar zenith angle

Some examples:

* Poles: cos 4, sin ¢, and cos t9® =sin 4, 90 - t9® = 0= constant, where
90 - 6 is the elevation angle. Thus the sun circles the pole and is never
higher than 23.5° and transition from day to night occurs at equinoxes
(0=0).

* Solar noon: cos & =1, §, = ¢- . Note since —23.5° < J <23.5°
only for ¢ <|23.5°| can the sun be directly overhead.

* Sunrise and sunset: 4 = H (half day length), cos §_ = 0 and it follows
that cos H = - tan ¢ tan J, H = 6 hours when tan ¢ (equator) or tan d=
0 (equinoxes).

Convenient formulae for the declination J and the ratio (E\,E /R,_,)" are

3
0= Zan cosny, +b, sinny,
0

and
— 2
R 3
— | =Y ¢, cosmyp, +d, sinmyp,
Rs—E 0
where
_ 27 day,
! 365

where the day number day, ranges from 0 on January 1 to 364 on December
31.

n a, b,

0 0.006918

1 -0.399912 0.070257
2 -0.006758 0.000907
3 -0.002697 0.001480
n C, d,

0 1.000110

1 0.034221 0.001280
2 0.000719 0.000077
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Example 5.4: Example use of a sun-path diagram:

The solar zenith angle can also be calculated graphically using sun path
diagrams such as shown below for the latitude of 41°N. This diagram is a
convenient graphical way of representing Eqn. (5.3).

Example Sept. 21, at 9 a.m., azimuth = 122°; o, ~ 57° (elevation angle 33°)
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An example of a sun path diagram for a latitude near that of Ft. Collins.

5.4 Variability of Solar Flux Outside the Atmosphere

There are two main causes for the variability of O, and these manifest themselves in very different
ways over an enormous range of time scales. The first has to do with changes in the radiation output of
the sun itself and the second has to do with changes in astronomical factors that influence how this output

1s received at Earth.

(a) The Flickering Sun

(Reference: Foukal: The Variable Sun, Scientific American, Feb, 1990). The emission from the sun
varies in time. Large changes in coronal activity are well established giving rise to changes in coronal UV
emission and microwave/radiowave emissions. This variable output was indicated previously in Fig. 5.2b.
However, the greater part of the solar emission comes from the photosphere where the magnitude of the
variability is much less. The shorter term variabilities of solar output (order of 0.2%) over time scales of

weeks is thought to be caused by passage of
* sunspots (dark spots on 'surface' of the sun) across disc

» faculae (bright spots) associated with the sun's magnetic activity that accompanies sunspots.



Long-term variability can also be identified with the solar cycle. The output decreased by about 0.1%
between the peak in 1981 and its minima in mid 1986 (Fig. 5.7a). The sun grew more luminous as the
sunspots grew larger—area covered by bright faculae outweighs the increase in area by dark sunspots.
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Fig. 5.7 (a) Flickering of the sun was recorded by radiometers on two satellites, Nimbus 7 (blue) and
Solar Maximum Mission (red). Short-term decreases in solar output produced the sharp
spikes in the SMM data, and most of those seen in the Nimbus 7 data, which also included
some instrument noise. On the average (vellow line) the sun shone brightest at the time of
maximum sunspot activity. Apparently the greater number of bright faculae at maximum
activity outweighed the effect of dark spots. (b) Solar cycle manifests itself in the changing
number of spots on the sun's visible surface (left). The dearth of spots between about 1645
and 1715, known as the Maunder minimum, appears to coincide with an era of unusually

cold weather.
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(b) Astronomy

The three main astronomical factors that govern the radiation received on a flat surface, namely 0,
orbital eccentricity and axial precession all vary in a regular manner as shown in Fig. 5.8a and b.
Vernekar (1972: Long period global variations of incoming solar radiation, Meteorological Monographs,
12, No. 24) shows how the solar irradiance varies in time and as a function of latitude. An example is
given in Fig. 5.9a. The upper panel shows the changes in the radiation for the NH winter and the lower for
the SH winter. The main point is that the distribution of irradiance is altered significantly but the global
and annual average is not (units quoted are in Ly day, compare these numbers with those presented in
Fig. 5.6 to gain some idea of the percentage change in Q. The characteristics of the variabilities in the
astronomical factors appear in climate records (Fig. 5.9b). Another reference of relevance is that of
Berger (1987: Long-Term variations of Daily insolation and quaternary climatic changes, J Atmos. Sci.,
35, 2362-2367).
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Fig. 5.8  (a) Precession of the earth. Owing to the gravitational pull of the sun and moon on the
equatorial bulge of the earth, its axis of rotation moves slowly around a circular path and
completes one revolution every 26,000 years. Independently of this cycle of axial precession,
the tilt of the earth's axis (measured from the vertical) varies about 1.5 ° on either side of its
average angle of 23.5° (b) Changes in eccentricity, tilt, and precession. Planetary
movements give rise to variations in the gravitational field, which in turn cause changes in
the geometry of the Earth's orbit. These changes can be calculated for past and future times.
(Data from A Berger.)
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(a) Variation in AQ _ (Iy day” as a function of latitude and time measured from 1950 AD). (b)
Time series of isotopic measurements (these reflect global ice volume) from two Indian
Ocean cores (upper panel) and the spectrum of this variation showing the imprint of different
climatic cycles in the isotopic record—these seem to support predictions of the Milankovitch
theory. (Data from J.D. Hays et al. 1976.)
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5.6 Problems
Problem 5.1
Given the following characteristics for Mars and Jupiter:

Sun Diameter = 1,390,600 km

Mars Diameter = 6860 km

Jupiter Diameter = 143,600 km
Sun—Mars Distance = 228 X 10° km
Sun—IJupiter Distance = 778 X 10° km
Mars Albedo = 16%

Jupiter Albedo = 73%

Solar Output = 6.2 kw cm™

Calculate for each planet
(a) Solar Constant
(b) Equivalent Blackbody Temperature
(c) Wavelength of Maximum Emission
(d) Solid Angle Subtended by the Sun
Problem 5.2

Calculate the radiative equilibrium planetary temperatures for earth assuming albedos of 0.2, 0.3, 0.4,
and 0.5.

Problem 5.3

Calculate the net longwave power per unit area gain/loss of a grass surface at 2°C when under a clear
sky with an effective temperature of -30°C, and when under a tree with an effective temperature of 5°C.

Problem 5.4
Find the wavelength at which the incoming solar irradiance at the top of the earth's atmosphere is
equal to the outgoing terrestrial irradiance. Assume the sun and earth to be emitting as blackbodies at
6000°K and 255°K, respectively.
Problem 5.5

Show that for an isothermal, surface-atmosphere system the upward infrared irradiance is invariant
with height.

Problem 5.6
(a) Derive a relationship between solar irradiance and the distance (d) between the sun and the
observation. (Assume R.,,, << d).
(b) Does the radiance obey the same relationship?
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Problem 5.7

If the average output of the sun is 6.2 kw cm™, the radius of the sun is 0. 71 X 10° km, the distance of
the sun from the earth is 150 X 10° km, and the radius of the earth is 6.37 X 10° km, what is the total

amount of energy intercepted by the earth?

Problem 5.8

Calculate the solar zenith angle and azimuth angle for the following dates, locations, times:

Date Latitude | Longitude Time
1 Jan. 0° 20°W 1200 GMT
22 Mar. | 30°N 180° W 1800 GMT
1 July 45°S 90° W 0900 Local sun time
1 Nov. 60° S 35°E 1000 Local sun time
1 Dec. 75° N 45° W 0600 Local sun time

Note: Reference your azimuth angle from the south such that east of south is negative and west of south is
positive.

Problem 5.9

(a) Derive a simple expression for the elevation angle of the sun at local noon as a function of
date and latitude.
(b) Derive an expression for time of sunrise as a function of date and latitude.

Problem 5.10

Calculate the azimuth angle of sunrise at 40° N on June 21. Sketch the sun-earth geometry and
interpret your results.

Problem 5.11

(a) The eccentricity of the earth's orbit is 0.01673. What would be the percentage variation in the
irradiance at the top of the atmosphere due to this eccentricity from time of apogee to time of
perigee?

(b) On which dates would you observe these min max values?

Problem 5.12

An aircraft is being used to measure the surface albedo for a certain region. The downward irradiance
is measured with a pyranometer to be 750 Wm™ and the upward irradiance is measured to be 250 Wm™.
The angle of attack (angle between the horizontal and the plane of the wing) is known to be 4°. If the
plane is flying due west at latitude 0° on Julian day 80, at 1500 local solar time, and assuming that the
total radiation striking the upward looking sensor is 40% direct and 60% pure diffuse, calculate the albedo
of the underlying target.
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Problem 5.13

In Table 5.1 the latitudinal distribution of both the fractional day length and mean cosine of the solar
zenith angle are listed for the Northern Hemisphere. Calculate the matching values of these quantities for
the June 21 solstice for the Southern Hemisphere using the equivalent 9 (Southern) latitudes. Use these
values to provide the latitudinal distribution of the daily solar insolation for this date and compare your
results with those of Figure 5.6a of your notes.
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AT622 Section 6
The Earth

This section provides students with an understanding of the radiative budget of the Earth and seeks to
put this budget in the context of the total energy budget of the planet thus placing the topic of atmospheric
radiation in a broader context.

KEY REFERENCES
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1170-1185.

Kiehl, J. T. and K. E. Trenberth, 1997: Earth’s annual global mean energy budget, Bull. Amer. Met. Soc.,
78, 197-208.

Ramanathan, 1987: Role of earth radiation budget studies on climate and general circulation research,
JGR, 92, 4075 - 4095.

Ramanathan, Barkstrom and Harrison, 1989: Climate and the earth's radiation budget, Physics Today,
22-37.

Stephens, Campbell and Vonder Haar, 1981: Earth radiation budgets, JGR, 86, 9739 - 9760.

6.1 The Earth's Radiation Budget

A fundamental property of the Earth's climate system is the radiative budget defined as

Qo (1_a)-F, 6.1)

Frar ==

referred to as the Earth's Radiation Budget (ERB). In this definition, F,., is the net radiation imbalance at
the top of the atmosphere, O is the solar constant (remember where the factor of 4 comes from?), o is
the albedo of the planet and F. is the outgoing emitted longwave radiation. We believe that on the annual
and global mean the planet as a whole is in radiative equilibrium (an assertion supported by satellite
measurements—at least to the accuracy of the measurements), thus ., = 0 and

%(l -a)=F, (6.2)

where the overbar emphasizes the global-annual average of the specified quantities.
(a) The Planetary Temperature

It is sometimes convenient to consider F. in terms of an equivalent blackbody emission (of
course it is not purely blackbody as we have already seen). If we write F, = oT, , then this balance

can be written as
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&(1 -~a) = of, (6.3)
4 ——
emitted energy

absorbed solar energy

It follows from this balance that

1/4
T (Mj (6.4)

b 4o

where O depends on the sun-earth distance. Figure 6.1 graphically presents Eqn. (6.4) and Table 6.1
provides values of various quantities that help define the radiative equilibrium for various planets. Note
for example that 7, for Venus is similar to that of Earth even though O is almost twice as large.
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Fig. 6.1 The Stephan-Boltzmann law equates the emitted heat radiation to 5.67 x 10° x
(temperature)®. Effective temperatures of the sun and planets are shown in Table 6.1.

The value of 7, for Earth is 253 K, which is much too cold to be representative of the globally averaged
surface temperature of 288 K (actually, 7, = 253 K is approximately the mean temperature of the 500 mb
surface). The reason for the difference between the surface and planetary temperatures is that the Earth's
atmosphere itself emits radiation. For temperatures typical of Earth, this emission occurs mainly in the
infrared region of the electromagnetic spectrum with a peak wavelength around 10 um (Section 3). The
difference between T, and the observed surface temperature, T, is therefore a measure of strength of the

greenhouse effect.
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Table 6.1 Effective temperatures of the sun and planets.

Distance  Flux of solar

Planet from sun  radiation Albedo Ty
(10*km)  (10* erg cm™ sec™) ’
Mercury 58 9.2 0.058 442
Venus 108 2.6 0.71 244
Earth 150 1.4 0.33 253
Mars 228 0.60 0.17 216
Jupiter 778 0.049 0.73 87
Saturn 1430 0.015 0.76 63
Uranus 2870 0.0037 0.93 33
Neptune 4500 0.0015 0.84 32
Pluto 5900 0.00089 0.14 43

(b) The Evolutionary Theory of Planetary Atmospheres

In essence, the Earth's atmosphere is fairly transparent to solar radiation but opaque (except for the
window region) to infrared radiation. Thus the surface is warmed by sunlight and maintained by radiation
from the atmosphere. This produces an increase in surface temperature over the planetary temperature and
is a phenomenon understood to be the greenhouse effect. This effect is obviously very different from
planet to planet as a comparison between 7), and Ty, for the planets listed in Table 6.1. Of some interest to
our overall understanding of the present state of the Earth's climate is how the Earth's atmosphere evolved
with water vapor and CO, being released into the atmosphere. This sort of understanding is also important
to the assessment of how our present climate might change with changing concentrations of these gases.

One hypothesis for the evolution of the climates of the three inner planets of the solar system is
graphically portrayed in Fig. 6.2. The proposed evolution of the surface temperature of Venus, Earth, and
Mars is shown as a function of the amount of water vapor in the atmosphere. This figure suggests that as
water accumulates in the atmosphere, owing to the greenhouse effect, the surface temperature rises. It is
thought that as more water vapor is added in the atmosphere of Venus, the temperature increases creating
a runaway feedback (the so called runaway greenhouse effect). The atmosphere of Venus presently
contains little water vapor. This is explained under the runaway hypothesis by requiring most of the
water vapor to have reached the upper atmosphere where it photodissociated and ultimately escaped. The
present strength of the greenhouse on Venus is maintained by the clouds and large abundance of CO,.
Both Earth and Mars are said to experience a truncated greenhouse effect such that increases in vapor
are met with water phase changes.

In summary:

* MERCURY: all outgassed gases are stripped. No atmosphere.

* VENUS: sufficiently massive that important gases do not escape. Close enough to the sun that
water phase transitions are not reached and an unbuffered runaway system is set up.

» EARTH: Particular 7, allows encounter of the H,O phase transitions near the triple point. Thus
Earth's climate is buffered by these phase changes, i.e., continued outgassing condenses into
oceans and clouds or sublimes; partial pressure of gas cannot increase and feedback on the
greenhouse effect is much weaker than it is (hypothesized) for Venus.

* MARS: Low 7, forces encounter with ice/vapor transition. Mars’ climate is buffered as any
H,0 outgassing sublimes to ice preventing further increases of gas partial pressure.

The present state of the atmospheres of Venus and Earth, in this view, is therefore largely a result of
the proximity of the planet to the sun.
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Fig. 6.2 The runaway greenhouse effect. The solid lines show how surface temperatures increase, due
to the greenhouse effect, as water vapor accumulates in the atmospheres of the inner planets.
On Mars and on Earth the increase is halted when the water vapor pressure is equal to the
saturated vapor pressure (shown as the dark curve) and freezing or condensation occurs.
Temperatures are higher on Venus because Venus is closer to the sun and saturation is never
achieved. The temperature runs away. Note that the temperatures on the left-hand axis are
not the same for Earth and Venus as the effective temperatures in Table 6.1. They differ
because a different albedo has been used. (After S. 1. Rasool and C. DeBergh, 1970) Source:
(G. & W.).

6.2 Gray Body Transfer: The Role of Radiation on the Temperature
Structure of the Atmosphere

It is instructive to study the role of infrared radiation in a simple climate model, in which the rather
drastic assumption is made that the optical depth is independent of frequency. This is known as the
“gray” approximation. To this end, we will consider the concept of gray body radiative transfer and
further introduce the notion of radiative equilibrium—a notion that we will return to later.

In dealing with gray body transfer, let us begin with a monochromatic RTE

w T - BT (6.5)
dt
O - B(T) (6.5b)
dt
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Example 6.1: An estimate of the gray-body optical depth

The spectral optical depth is a complex function of wavelength and sev-
eral ways of spectrally averaging t exist. The approach used here is one
appropriate to the radiative equilibrium arguments introduced to arrive at
Eqn. (6.11) and follows from the following flux-mean mass absorption
coefficient (Mihalas, 1978)

k, =F;' j k,F, ,d.

The contribution to T by water vapor, carbon dioxide and other minor
greenhouse gases present in the Earth's atmosphere obtained using &, in
Eqn. (6.6), is shown below. The spectral absorption data used to derive &,
are those tabulated by Rothman (1981). The total gray body optical depth
derived from these data is T = 3.9 corresponding to w = 28 kg m™, which
is close to the global mean values of w. The value T = 3.9 is larger than
the value of the optical depth derived from later considerations. This
highlights the ambiguity of the quantitative meaning of t and to
understand the value it is necessary to understand how it is derived. The
advantage of the flux-weighted value is that it allows us to estimate <
from spectral integration and thus the contributions by individual gases.
These contributions clearly emphasize the dominance of water vapor to
the total gray body optical depth for the global mean conditions
considered.

A pie diagram showing the percentage of the gray body optical depth due to water vapor
and other greenhouse gases in the Earth's atmosphere based on typical mean global
concentrations of these gases.

where [ is the intensity, w = cos 8 where 0 is the angle of the beam from the zenith. The optical depth is
defined as

7= kp,dz (6.6)

where k& is the mass absorption coefficient, p, is the density of the absorbing gas, and z is the lowest end
point of the path. It is simple to cast these equations into equations for (see box below) upward (F") and
downward (F") hemispheric fluxes,



dF*

=F"-7xB, 6.7a
7 a (6.7a)
A - B, (6.7b)
dt
where
. 3
T==1
2

We now introduce the gray body assumption, which means if we take 7 to be independent of
wavelength (we know that it is not), then we can treat the fluxes in Eqns. (6.7a and b) as broadband
quantities and replace B with o7”. The factor of 3/2 is a form of diffusivity factor and its interpretation
follows from the considerations discussed below.

Let us introduce the notion of radiative equilibrium, which for our purpose means that at the top of the
atmosphere

F+(?=0)=%(l—a)=Fw (6.8)
where Os is the global-annual mean incoming solar radiation at the top of the atmosphere and a is the
planetary albedo (mote: these are all broadband quantities). Radiative equilibrium also implies that
throughout the atmosphere (why??)

FE  =F"(T)-F (T)=const (6.8b)

net

(we are also assuming that no solar radiation is absorbed in the atmosphere). Given this condition, it
follows from Eqn. (6.7a) that

F*(T)+ F () =27B(7)
and further from (6.8b) that
F'(D)+F (1)=F,7+C.

On combining these equations we obtain

B(7) = i(f +1).
2T

6-6



Example 6.2: A further derivation of the flux equations

It is a relatively simple matter to convert Eqns. (6.5a and b) into flux
equations if we define a direction g such that the flux

F* =27 J‘OHI(‘u)yd‘u — 7l(7@).

Thus it is straightforward to write down the RTE at g = ¢. By multiplying

each side of this equation by a factor of m we arrive at Eqns. (6.7a and b)
with u =2/3.

The solution to these equations follows by first differencing these equations
to yield

s _(p* 4 Fy-21B (6.9a)
dt

(remember F,,, = (F" - F)) and summing the equations to obtain

dF+F) _p (6.9b)
dt

which provides two equations for the two unknowns F,,, and (F" + F"). We
will now explore these solutions given an additional assumption about
radiative equilibrium.

At the top of the atmosphere, we have 7= 0 and F~ = 0, so that F,,; = F,and C = F,,. Further, under the
gray body assumption

oT* (%) = %(f +1)

At the bottom of the atmosphere, where 7= 7,, we have F'= 0Ts4 and it follows that

and that

oT' ~F(£)=F,

oT' +F (%) =F, (%, +1)

OT! ="=[2+7 ]

Y e

(6.10a)

(6.10b)
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=T (6.10c)
at the surface.

Example 6.3: Skin temperatures and temperature discontinuities

The solutions represented by Eqns. (6.10a) and (6.10b) provide rather
interesting insights into the temperature profiles that are predicted by these
equations. One of the results of this model is an estimate of the 'skin'
temperature, which we think of as a measure of the stratospheric temperature.

We obtain this using Eqn. (6.10a) with 7 =0

0T4(f=0)=%

and with F., =235 Wm™, it follows that this temperature is Ty, = [117.5/5.68
x 10*1*# =213 K.

The solutions in Eqns. (6.10a) and (6.10b) predict a discontinuity
between the surface temperature 7; and the air temperature just above the

ground 7(7, ). Differencing these equations and with 7= 7,

F,
an—aT“(is)=7°°.

The results of the model are presented in Fig. 6.3a, showing the profiles of upward and downward
fluxes and the profile of the temperature that is contained in the profile of flux mB. Highlighted are the
skin temperatures and the discontinuity at the surface. At first sight, the model does not seem to bear any
resemblance to the real temperature profile. This is because the coordinate T is not an easy coordinate to
interpret. Let us suppose that t is largely defined by water vapor and that

p(H,0) = p,e”*'

where H,, = 2 km. To simplify matters, we assume that T varies with z in the same way o(H,0) varies
with z

T=1e"" (6.11)
and

oT*(z2) =%[l+%r*e"/2}

The profile of temperature with height equivalent to Fig. 6.3a is presented in Fig. 6.3b. For comparison,
the profile defined by a 6 K km™ lapse rate is presented. We note that the radiative equilibrium profile is
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unstable throughout most of the atmosphere, at least to where the 6 K km™ profile cuts the radiative
equilibrium profile. This radiative equilibrium profile is unstable w.r.t. vertical motion and is destroyed
by convection, which we may think of in this simple model as producing the constant lapse rate profile.
Where the latter intersects the radiative equilibrium profile at about 10 km is where this simple model
predicts the position of the tropopause.
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Fig. 6.3 (a) The flux profiles and blackbody function predicted by the simple gray body model as a
function of optical depth. (b) The radiative equilibrium temperature profile as a function of
altitude predicted by the flux model and assuming the profile of optical depth in Eqn. (6.11).

6.3 The Greenhouse Effect and Water Vapor Feedback

Theories of the evolution of the atmosphere of Venus are a subject of some debate. Conjectures other
than the runaway greenhouse-hydrodynamic loss hypothesis have been forwarded to explain the present
climate of Venus. A contrary view is that the atmosphere of Venus never contained water vapor at the
levels required for the runaway hypothesis and that most of the planet's water remains fixed in its interior
(Kaula 1990). Whether this runaway greenhouse model proposed for Venus actually occurred or not is not
the issue here. The runaway hypothesis serves to illustrate a feedback between water vapor, the
greenhouse effect, and the surface temperature of the planet—a feedback that is also thought to occur on
Earth although on a much more limited scale (Manabe and Wetherald 1967). In fact, it is the water vapor
feedback in present day climate models that contributes the major portion of the global warming predicted
for increasing concentrations of atmospheric CO,.

Figure 6.4a provides a schematic depiction of how this water vapor feedback is thought to take place
under the influence of increasing concentrations of carbon dioxide. As the sea surface temperature warms
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from the rising levels of CO,, increased evaporation of water from the oceans leads to an enhanced water
vapor content of the atmosphere (Fig. 6.4a), which further warms the oceans. The total warming
calculated by a typical climate model is also given in Fig 6.4a as is the amount of warming calculated for
a doubling of CO, without any water vapor feedback. While these results apply to a specific climate
model (Manabe and Wetherald 1967), most models give similar responses and half of the projected
observations, like those shown in Fig. 6.4b, suggest that a kind of thermodynamic equilibrium exists
between the sea surface temperature and water vapor content in a manner closely resembling the

Clausius-Clapeyron relation.'

Fig. 6.4
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(a) An illustration of the water vapor feedback as it is thought to occur on Earth when
triggered by a small warming induced by increasing atmospheric CO,.
feedback is thought to account for more than half of the final warming simulated by present
day climate models (adapted from Ramananthan, Manabe and Wetherald, 1967). (b) A
necessary condition for the existence of water vapor feedback on Earth. Water vapor exists
in equilibrium with the oceans in a way that is related to the sea surface temperature largely
through the Clausius-Clapeyron relationship.
thousands of observations of water vapor over the world’s oceans (Stephens, 1990).

The water vapor

The curve shown is established from

climate models. For further discussion see S. H. Schneider, 1990: The global warming debate heats up: an analysis
and perspective, Bull. Amer. Meteor. Soc., 71, 1292-1304.
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Unlike Venus, however, the water vapor feedback loop on Earth is interfered with by condensation of
vapor into clouds, which in turn imparts a substantial influence of their own on the greenhouse effect.
The actual way this interference by clouds takes place and the specific connection between water vapor,
cloudiness, and the greenhouse effect on Earth are still not well understood, poorly observed, and largely
unexplored.

(a) A simple Estimate of the Water Vapor Feedback
We can devise a simple way of estimating the strength of this feedback. Consider our energy budget

and suppose we can seek to determine the magnitude of the perturbation of temperature A7, due to a small
change AQ _ in solar flux. It follows then that:

3 AQs
40T, AT, =T((1—a) =AF, (6.12)

and then

T
AT=AFOO( < j=0.63K (6.13)
4F,

[

But this sensitivity does not take water vapor and its feedback into account. One way to think of the
feedback is to consider Fig. 6.5 and

F, = A+ BT; (6.14)
where 4 ~203.3 Wm?and B =~2.09 W m>° C. It follows then that:

A7 o AF _0.01(A+BT) 5o (6.15)

310 1
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Fig. 6.5 The longwave flux emitted to space at different locations on Earth as a function of the surface
temperature measured at that location (Stephens et al., 1993).
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Thus the presence of an atmosphere (chiefly water vapor), which is modeled via the Budyko relationship
(IR emission varies with T, by a factor less than a T%), increases the sensitivity of 'climate’ to solar forcing
by approximately a factor of two.

(b) Studying the Greenhouse Effect and Water Vapor Feedback from Space

It is not possible, in principle, to observe the direct effects of feedbacks occurring in the climate
system since we observe the collections of responses. We can, however, observe key components of these
feedbacks. First, let us introduce a measure of the greenhouse effect. Perhaps the simplest way is to use
the difference between the mean radiating temperature of the planet and the surface temperature
(Kondratyev and Moskalenko, 1984; Stephens and Tjemkes, 1992). However, the relationship between
this temperature difference and the concentration of emitting species cannot be simply and conveniently
defined. We will make use of our relationship in Eqn. (6.10b) and define a greenhouse parameter as

4

T,
G=25205@F +2) (6.16)
F,
or more generally
oT!
G= r =a+brs (617)

©

where from Eqns. (6.8) and (6.10a), a = 1 and b = 3/4. This definition identifies the gray body optical
depth as the key parameter in defining the strength of the greenhouse.

Let us simply assume that in the case of water vapor, the gray body optical depth is
7, = [k p,dz = k,w. (6.18)

This assumption, together with Eqn. (6.17) then leads to the following (e.g., Stephens and Greenwald,
1991b)

G=a+tcw. (6.19)

The advantage of this relationship is that all factors in Eqn. (6.19) are independently observed over the
global oceans, primarily from satellites. For example, the SST can be obtained from independent analyses
of blended ship, buoy, and satellite data (e.g., Reynolds, 1984). The OLR available from ERBE data and
w follow from microwave measurements. The annual, January and July monthly mean values of G
derived in this way are plotted against corresponding mean values of w in Fig. 6.6. The solid line through
the scatter of annual mean points depicts the average of these points and the slope parameter ¢ = 0.00634
(kg m?)", which is estimated via a least squares fit of the data (shown as the solid line in Fig 6.6), is a
measure of how the greenhouse effect changes for given changes in w and is potentially important in the
analyses of water vapor feedback.

The relationship in Eqn. (6.19) may be explored using data over the Earth's oceans where suitable
global measures of the SST, F. and w are available from existing satellite observations. Since the
relationship between w and SST is well defined, it is also possible to consider G as a function of SST. An
example of this kind of relationship derived from satellite data is taken from Webb et al. (1994) and
shown in Fig. 6.6a for July 1988 and Fig. 6.6b for January 1989. When plotted in this way with the
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relationships for each hemisphere indicated by the different symbols, a dramatic seasonal branching of the
relation between G and SST emerges. Webb et al. (1993) identify this as largely due to a seasonal effect

associated with changes in the vertical profile of atmospheric temperature in the middle latitudes.

Fig. 6.6
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Example 6.4: Another estimate of the gray body optical depth

We can use Eqn. (6.17), together with the data listed on Table 6.1 to arrive at
an estimate of T, for Earth and Venus. For Venus

(750)“ o

244) 4

(288)4 A
253) 4

or T, = 0.9. The parameter T, is therefore a direct measure of the strength of
the greenhouse effect.

ort, = 117. For Earth,

Physical properties of the three inner planets of the solar system

Distance from Solar constant T, T, *
Planet sun (1 0f km) (W mz) Albedo (K) (K) T
Venus 108 2620 0.71 244 750 117
Earth 150 1367 0.31 253 288 0.9
Mars 228 593 0.17 216 220 ~0

6.4 Post Satellite View of the ERB

Figure 6.8 shows the globally and monthly averaged components of the ERB derived from measure-
ments made on satellites (these are from a composite of various pre-ERBE satellite measurements).
Figure 6.9 shows the net flux separated by winter and summer hemispheres. These diagrams highlight
the annual cycle in F,., a, and F... Some notable points:

»  Upper panel: planetary albedo - note the maximum during NH winter months. This is associated
with illumination of snow covered land surfaces.

e Middle panel: maximum emission NH summer related to heating of land masses.

* Lower panel: net flux maximum in SH summer (perihelion) and minimum during NH summer
(aphelion). Sun-Earth distance effects on solar insolation produce an annual cycle ~26 W m-
compared to 22 W m™ observed. (Note offset in observations about ~9 W m™.)

Zonally averaged profiles of the three components are shown in Fig. 6.10a, b and c. Emitted flux
distributions show a bimodal distribution with a minimum about the equator (due to deep, cold
convection) and maximum in subtropics (clear sky). Albedo increases poleward due to increasing
reflectivity of clouds and other reflecting surfaces as the solar elevation decreases. Note areas shaded
show both the surplus of net flux and deficit of net flux in the Polar Regions, implying a transport of
energy out of the equatorial regions toward the poles (see §6.6). This is the fundamental drive of the
atmosphere and oceanic circulations.
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Fig. 6.8

Fig. 6.9
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Figs. 6.10a and b show regional distributions of net flux and albedo. These show significant longi-
tudinal variations (e.g., along the equator). The east-west variations in the individual components is as
large as the north-south variations. The hot spot of the globe is the maritime continent.

ANNUAL EMITTED

ANNUAL NET

S

Fig. 6.10  Mean annual infrared flux (W m’), planetary albedo (%), and net flux (W m”) (after
Stephens, et al., 1981).
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6.5 The Energy Budget of Earth

So far we have considered only the part of the budget that applies to the top of the atmosphere. The
ERB is also the planetary energy budget since the only exchanges of energy between earth and space take
place via radiation. We now examine this energy balance in more detail.

(a) Annual-Global Mean Energy Balance

The annual and globally averaged radiative balance of the atmosphere, unlike for the ERB, is not zero
but distinctly negative: LW balance=G - (E+ M) - (F + K )=-174 W m” and SW balance =4 - D - B
=68 W m™. That is the atmosphere constantly loses energy via radiation by an amount —174 + 68 = -106
W m™ and the earth's surface gains energy by the same amount to balance this loss. Heating of the lower
boundary of a fluid while cooling its interior is the classical mechanism for inducing convective
instability and turbulence. Turbulent heat transfer (S = 16 W m™) and condensation of water (the excess
of condensation over evaporation—in the form of precipitation falling to the ground, H# = 90 W m™) make
up the radiative deficit. The combination of these non-radiative processes is loosely called convective
heat transport and the balanced state of the atmosphere is termed at radiative-convective equilibrium.

The surface budget is made up of a balance between net solar radiation at the ground (B = 169 W m™)
plus the net longwave budget at the ground (E + M — G = 63 W m™) and the heat transferred to the
atmosphere via sensible heating (S) and latent heating (/). While the global average shows the transfer of
energy (H + L) from the surface to the atmosphere, there are times and places where the transfer is in the
other direction.

Representations of this budget have varied in detail over the years since the original version of Dines
(1917), which is reproduced in Fig. 6.11a. For instance, the planetary albedo, estimated by Dines to be
50%, has been considerably revised to the value of D/A = 30%, largely because of modern satellite ERB
measurements. One issue of concern to Dines at the time of his study was the precise value of the
Stefan-Boltzmann constant.

(b) Schematic View of IR Radiative Transfer in the Atmosphere

An important observation noted above is that the atmosphere loses IR radiation by the amount of -174
W m™. This gives rise to an overall atmospheric cooling (to be discussed later). This is a result of
longwave radiative transfer in the atmosphere. Longwave radiation is absorbed, emitted and to a much
lesser extent scattered from layer to layer in the atmosphere thus creating a transfer problem of some
complexity. The chief absorbers of this radiation are:

» Trace gases - CO,, H,O and O; (these absorptions are quantized processes, which produce
discrete absorption "lines". The absorptions occur through quantization of rotation and vibration
of the molecular bands and is discussed in more detail in the next chapter).

e Cloud droplets and crystals.

* Aecrosol (such as dust, soot, etc.).
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Fig. 6.11 (a) The modern view of the energy budget (Stephens and Tsay, 1991). (b) Original view of
the energy budget of the planet as envisaged by Dines (1917).

Figure 6.12a provides a schematic of the longwave flux measured at the ground. This flux is a result
of radiative transport processes in the terrestrial atmosphere. Of particular importance to the energy
budget of the Earth-atmosphere system is the so called "atmospheric window", which is fairly transparent
to radiation processes in the clear atmosphere but this is "filled in" by cloud. Figure 6.12b provides an
example (the reverse of Fig. 6.12a) of radiation emitted by Earth and other planets. The radiation is
expressed as an equivalent temperature, which is the spectral equivalent of 7). It is this kind of
measurement that enables us to deduce the composition of planetary atmospheres via remote sensing.
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Fig. 6.12  (a) The emission from a clear sky (solid curve) and a cloudy sky (dashed curve) measured by
a hypothetical radiometer on the ground. (b) A low-resolution depiction of the absorption by
the main greenhouse gases of the Earth’s atmosphere (upper part of (b)) spectra of IR
emission, plotted as brightness temperatures, for four planets and Titan (Hanel, 1983).

6.6 The Meridional Transport of Heat by the Planet

(a)  Observations

The profound role of the general circulation on temperature is illustrated by reference to Fig. 6.13.
Without horizontal transport of heat, the temperature of each latitude would be governed by radiative
equilibrium alone. In this case, summers in mid-latitudes would be warmer than without transport, and
winters much colder. Heat is transported by the atmosphere and oceans out of the equatorial regions and
subtropics to the Polar Regions where it is mixed mechanically to produce more moderate temperatures at
higher latitudes
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(Additional reference, Oort and Vonder Haar, 1976: On the observed annual cycle in the ocean-
atmosphere heat balance over the Northern Hemisphere, J. Phys. Ocean., 6, 781-800.)
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Fig. 6.13  Comparison of theoretically derived radiative equilibrium and observed vertically averaged
temperature profiles for the summer and winter.

We can calculate this total transport required from simple principles of energy conservation. Consider
the 'system' as in Fig. 6.14 that loses (or gains) energy through its upper boundary and transports energy
across its lateral boundaries. The rate at which energy changes inside this system is

% =F,, —divT, —divT, (6.20)

where

F... = netradiation input into the top of the atmosphere (e.g., Fig. 6.15)
* divT, = divergence of energy from the atmosphere due to atmospheric transports
* divT, = divergence of energy from the ocean due to oceanic transports.

dE/dt is the energy gained by the "system" which is then stored in the atmosphere and ocean, i.e.,

1—E=SA+SU+SL+S, (6.21)
t

where Sy, S,, S;, and S; are energy storage terms associated with the atmosphere, ocean, land, and ice,
respectively.
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Fig. 6.14  Schematic diagram of the different terms in the earth's energy balance (Oort and Vonder
Haar, 1976).

Figures 6.15a and b provide zonally averaged estimates of heat storage by the atmosphere and oceans,
respectively (i.e., of Sy and S,) as a function of time year. The atmosphere storage plays only a minor role
in the energy budget. This storage occurs by incoming solar energy, which is used to increase internal
energy (temperature), and the specific humidity (i.e., latent energy). The maximum storage occurs around
May and maximum depletion is around September. By contrast, the storage of energy by the oceans
plays a far more formidable role in the time varying energy budget of the climate system. This reaches a
maximum in excess of 100 W m™ at about 40°N. Most of the storage occurs east of North America in the
Gulf and east of Japan. The land and ice storage terms are smaller although estimates of S; are poorly
based.

On the annually averaged basis, we consider each latitude zone to be in steady state, i.c.,

<%> =0 (6.22)
where <> is an annual average.
Thus,
(F,,)={(divT,)+(divT,) (6.23)

or
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Fig. 6.15 (a) Rate of heat storage in the atmosphere (S,) based on radiosonde data as a function of
latitude and month of the year. Units are in W m™. (b) Rate of heat storage in the oceans (S,)
based on hydrographic stations, MBT and XBT data as a function of latitude and month of
the year. Units are in W m™. To obtain typical oceanic values divide by the percentage of the

horizontal area covered by oceans (factor = 0.61 for the Northern Hemisphere as a whole).

1 aT
(Fo(9)) = J9g (6.24)

where a is the mean radius of the earth and ¢ is latitude and 7 is the combined oceanic and atmospheric
transport. We can numerically integrate Eqn. (6.24) to obtain the transport required to balance the net
radiation deficits (e.g., Carrissimo et al., 1985: Estimating the meridional energy transports in the
atmosphere and oceans, J. Phys. Ocean, 15, 82-91). For example, integration of Eqn. (6.24) over the polar
cap (Fig. 6.16a) yields

T@)=T,@)+T,(¢) =270’ [ (F,)@)cospdg’ (W) (625)

The total transport is estimated this way using satellite data for F,,. The meridional energy transports by
the atmosphere may be obtained from analysis of conventional meteorological data (e.g., Oort and
Vonder Haar). The ocean transports (Fig. 6.16b) can be derived as a residual.

An alternate way of estimating the heat transport by the Earth's oceans is to consider the average form
of the terrestrial branch of the energy balance, i.c.,

(Frug-suy ) = (divT,) (6.26)
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where, on an annual average basis, the storage terms are zero. The estimate of the oceanic energy
transport derived according to this balance is also depicted in Fig. 6.16b (after Sellers). The significant
discrepancy between the two estimates has been a topic of debate for some time.

North Pole
|
(a) I ‘
Z Fnet
/
Z
7
Z
7
T A
Equator
(b) 4
U=
’ o~ e OT

€00008 01’s

Fig. 6.16 (a) Principle of integration over the polar cap. (b) Variation of net energy transport with
latitude over the northern hemisphere: RF = total required energy transport inferred from
satellite measurements;, AT = measured energy transport by the atmosphere;, OT = oceanic
energy transport derived from RF and AT; OT; = oceanic energy transport according to
Sellers (1965). Uncertainty in the OT values is denoted by the shading. Minus values indicate
net transport to the south (after Vonder Haar and Oort, 1973).

The heat flux distribution around the oceans, based on a similar analysis of the surface budget, is
depicted in Fig. 6.17a. The fascinating aspect of the analysis portrayed in this diagram is the consistent
northward transport depicted for the entire Atlantic Ocean. However, we should view this analysis as
being somewhat speculative given the comparisons of Fig. 6.17a and b. The only real convincing estimate
of heat transport of the oceans is from direct estimates from measurements conducted in the ocean. Figure
6.17b shows the results of these kinds of estimates in limited portions of the ocean. The two estimates of
Fig. 6.17a and b are broadly similar but differ in important detail.
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Fig. 6.17  (a) The circulations of heat (10" W) around the world ocean, as deduced by Strommel (1979)
and Baumgartner and Reichel (1975) from the global patterns of energy. (b) The circulation
of heat 10" W in the world ocean deduced from oceanographic measurements at a few
trans-ocean sections (Bryden 1982).
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(b) Model Comparisons with Observation

(ref Glecker et al., 1995: Cloud radiative effects on implied energy transports as simulated by
AGCMs, Geophys. Res. Letters, 7, 791-794.)

Recent model comparisons have revealed how radiation processes in clouds in different AGCMs lead
to an unacceptable large spread in the implied meridional transport. Figure 6.18a shows To., inferred
from TOA net radiation as observed from ERBE and derived from ERB simulations from models. Figure
6.18b is the atmospheric component of this total transport as deduced from observations (Oort), analyses
(Trenberth/Savijarvi) and derived from models. Figure 6.18c shows the zonal average net surface energy
flux as simulated from models and as derived from observations (complete with error estimates on the
latter). Various observational estimates of 7, are given in Fig. 6.18d and these are contrasted with model
deduced transports on Fig. 6.18¢ also derived from model surface fluxes. The spread in these results and
the difference from 'observations' was attributed by Glecker et al. to model differences in treatment of the
radiative effects of clouds (Fig. 6.18f). The quantity shown in Fig. 6.18f is the quantity Cgy introduced in
the next section. When the combined transport of Fig. 6.18a and the atmospheric transports of each model
(Fig. 6.18b) are used, the residual ocean transport of Fig. 6.18g is obtained. Together Fig. 6.18f and g
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suggest that the implied energy transport in the oceans is not correct largely as a result of poorly
represented cloud-radiation processes.
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Fig. 6.18 (a) Annual mean northward meridional energy transport of oceans plus atmosphere. (b)
Annual mean northward meridional energy transport of the atmosphere. (c) Net ocean
surface heat flux, (d) Observed annual mean northward meridional energy transport of the
ocean. (e) Annual mean northward meridional energy transport of the ocean derived from
model surface fluxes. (f) Zonal, annual average net TOA cloud flux differences as defined in
the next section. (g) Annual mean northward meridional energy transport of the ocean
derived from model atmospheric transport and observed TOA ERB.
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6.7 Problems
Problem 6.1

Suppose that a cloud layer whose temperature is 7°C moves over a snow surface whose temperature
is 0°C. What is the maximum rate of melting of the snow that could be supported by net LW radiation
convergence at the surface if the absorptance of the cloud is 1.0 and of the snow is 0.95?

Problem 6.2

If one assumes that the planetary albedo of the earth is 30%; that the atmosphere transmits all SW
radiation; and that the atmosphere acts as a single isothermal layer that absorbs all longwave radiation
falling on it, find the radiative equilibrium temperatures of the atmosphere and the earth's surface.

Problem 6.3

A so-called greenhouse is depicted below. Assume a solar zenith angle 0, that the top of the house
transmits all SW radiation and has an infrared emittance €rop. The ground absorbs all LW radiation and
has an albedo pge. Assuming radiative equilibrium, derive an expression relating the temperature of the
ground to the emittance of the roof and the solar zenith angle. Derive a second expression for the
equilibrium temperature of the roof as a function of the ground temperature if e70p = 1 and pgq = 0.2.

Problem 6.4

If the average surface temperature of the earth is 288° and the average albedo of the earth and
atmosphere for solar radiation is 30%, find the "effective absorptance” of the atmosphere for longwave
radiation.
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AT622 Section 7
Earth’s Radiation Budget

Here we examine the effects of the atmosphere and clouds on the Earth's radiation budget (ERB).
While the notions described deal with the simpler aspects of these effects and are heavily based on TOA
observations, the material presented provides important insight into atmospheric radiation. More detailed
and rigorous understanding will come when the topics of this section are revisited in later sections in the
context of radiative transfer.

7.1 The ERB Measured From Space: An Overview of the ERBE

The history of the ERB measurements closely parallels the overall space effort within the United
States and other countries of the world. A reference that details the history of the ERB observation is that
of House et al., 1986: History of satellite missions and measurements of the earth radiation budget
(1957-1984), Revs. Geophys, 24, 357-377. Discussion of pre-satellite ERB studies is provided by Hunt,
1986 (same issue of Rev. Geophys.). Table 7.1 provides a convenient overview of this history. The first-
generation instruments were narrow spectral channel scanning radiometers. These provided spectral
radiance measurements for limited ranges of angle. Models of the angular distribution of radiance were
required to convert these to flux (via bi-directional models). The second-generation instruments were flat

Table 7.1: Historical Overview.

18\/2[1itseslﬁ)t§ Launch Date R:;l;?zi;) li?l;llten?(tile();) Orbit Time | Lifetime(s) Contributions
First-Generation Missions
Explorer 7 Oct. 13,1959 | 550-1,100 51 Drifter 7 months First dedicated satellite
providing usable ERB data
TIROS 2 Nov. 23, 1960 | 717-837 48 Drifter 1-5 months First scanning radiometer with
five SW/LW channels
TIROS 7 June 19, 1963 | 713-743 58 drifter 12 months Provided 1 year of radiation
balance observations
Second-Generation Missions
Research/ESSA | 1960s =~ 1,500 102 0900/1500 | 3-15 months | Global data sets from WFOV
nonscanning radiometers
Nimbus 3 Apr. 14,1969 | 1,100 99 Noon 1 year Detailed global radiation
balance for 1 year
NOAA 1970s =~ 1,500 102 0900 Years Combined data sets provided
NOAA- 1978-1981 ~ 840 99 1500/0730 Years 10 years of observations
N/NOAA
Third-Generation Mission
Nimbus 7 ERB | Oct. 1978 950 99 noon 6+ years Total and spectral solar
To the present monitoring; bi-directional
reflectance and directional
albedo models
Geostationary Missions
GOES-E/W 1970s/1980s 36,000 0 24 hours Years Diurnal variations of SW/LW
(75°-135°) exitances and cloud
METEOSAT % | 1977/1982 36,000 0 24 hours Years distributions: satellite
(0° longitude) mission simulations

plate broadband instruments that measured a quantity more closely resembling the hemispheric flux (Fig.
7.1) although some deconvolution is required to obtain fluxes. The third generation instrument suite
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includes wide field of view, broadband instruments, and narrow field of view scanning instruments. One
advantage of the latter is the spatial resolution.

(@)

(b)

Fig. 7.1 (a) Flat plate instrument versus (b) Scanners.

One of the significant problems of the early studies is the lack of sampling of the diurnal variations.
Single satellite missions cannot provide enough observations to pull out the seasonal and diurnal
variability at scales varying from the global scale to the synoptic scale to the more localized regional
scale. ERBE proposed a three-satellite strategy for sampling the globe (Fig. 7.2a and b) involving two
polar orbiters and the ERBS at a 57° inclined orbit. The resulting sampling is given in Fig. 7.2a.

The ERBE instruments are built in two packages: a scanner package and a nonscanner package. The
scanner contains three scanning radiometers and capabilities for onboard calibration. The scanner (Fig.
7.3a) consists of a shortwave, longwave, and total radiometer mounted in a single scan head to receive
radiation from the same FOV (usually scans across the track). The nonscanner (Fig. 7.3b) contains a total
wide FOV (WFOV- view of the entire earth disc) radiometer and a shortwave radiometer. There are also
medium FOV radiometers (MFOV) and an active cavity radiometer to measure solar output.
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Fig. 7.2 (a) Local time coverage of Nimbus 7 satellites upper and the three satellites combined
(lower). (b) The three satellite orbit configurations.
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(a) Scanning radiometer. (b) Nonscanning radiometer.

Fig. 7.3
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7.2  Satellite Classification of Clouds

Clouds provide a first-order effect on the radiative budgets and water exchanges in the atmosphere.
They also play a fundamental role in studies of climate and climatic change. Several attempts have been
made to classify the global distribution of clouds based on measurements obtained from radiometers
flown on satellites. Two examples of these radiometric classifications of clouds will now be discussed.

(a) Emission Classification in the Split Window

Inoue (1989) developed a simple way to classify clouds according to the difference in their emission
properties at 11 and 12 wm. As mentioned earlier, AT = Tyos - T, is a good indicator of the opacity of
clouds. Thick clouds, radiating approximately like a blackbody, possess small values of AT whereas thin
clouds exhibit more variable values of AT as described earlier in a way that depends on particle size and
other factors.

A
12-Type I3-Type
High Ci Low Ci
Clear
II-Type N-Type
AT Alto stratus Stratus Clear
1°C
B-Type U-Type
Cb Cu
|
-20°C Clear
Thos

Fig. 7.4 An example of a cloud-type classification diagram introduced by Inoue (1989).

Inoue's classification scheme is based on threshold analyses of the T - AT diagram like that shown in
the example shown in Fig. 7.4. Two threshold values of AT can be identified, one at AT = 1 K
corresponding to optically thick clouds and another to a slightly larger value corresponding to the clear
sky value of AT. Two threshold values of the brightness temperature 703 are also introduced in the Inoue
scheme; one is the high cloud threshold, which is set at -20°C, and the other corresponds to clear sky
temperatures. Data representing different cloud types fall in the different classification boxes. For
example, cumulonimbus clouds are thick, possess ATs less than 1 K, and are cold. These fall in the type B
category. Low level cumulus and stratocumulus clouds fall into Inoue's category U. Thin cirrus clouds are
characterized by values of AT that exceed the clear sky threshold value and fall in categories 12 and 13
for thick and thin clouds, respectively. Stratus clouds have opacities between cirrus and cumulus clouds,
and fall into categories II and N.

(b) The International Satellite Cloud Climatology Project (ISCCP)
ISCCP formerly began in 1983 with the collection of the first internationally coordinated satellite

intensity data. The original plan called for this collection for only a five-year period but the ISCCP
extended this collection to 1995. This program was the first of its kind involving routine collection of
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operational satellite data. Many key problems needed attention including lack of global converge and
cross calibration of satellite radiometers. These issues are addressed elsewhere.

The cloud detection scheme used in ISCCP is different from the emission scheme highlighted above
as it uses both visible reflection information as well as emitted radiation. The detection approach
examines all of the data for one month to collect statistics on the space/time variations of the VIS and IR
intensities. The key assumptions used in the analysis are that the intensities in clear scenes are less
variable than those in cloudy scenes and that it is the clear scenes that compose the darker and warmer
parts of the VIS and IR intensity distributions, respectively. Estimates of the clear sky values of VIS and
IR intensities for each location and time are made and composited into maps (these are referred to as the
"clear sky composites"). This approach is novel in two respects. First, all of the complicated tests usually
used to detect cloudiness directly, many of which were first proposed by other investigators, are used here
to identify clear scenes. The use of time variations at one location to identify clear scenes also differs
from many other methods.

The differences between the intensities measured and the estimated clear sky intensities are compared
to the uncertainties in estimating the clear intensities. If the differences are larger than this uncertainty and
in the "cloudy direction" at either wavelength (colder IR or brighter VIS), then the pixel is labeled cloudy.
Once each pixel is classified as clear or cloudy, the measured intensities are compared to radiative transfer
model calculations that include the effects of the atmosphere, surface and clouds. The intensity data are
then converted into two-cloud properties—the "visible" optical thickness (defined at 0.6 um) and a
cloud-top pressure. The optical thickness parameter determines the amount and angular distribution of
sunlight reflected by the cloud layer (the full effects of multiple scattering are included in the model and
we will examine the form of this model later}—the cloud-top pressure is supposed to account for cloud
emissivities less than 1. At night, when only IR intensities are measured, no cloud optical thickness is
reported and IR variations are associated with the cloud-top brightness temperature.

Thus, the ISCCP clouds are categorized in terms of cloud-top pressure and optical-depth properties as
schematically shown in Fig. 7.5a. A second category group, based on a combination of those in Fig 7.5a,
is given in Fig 7.5b. Two examples of the two-dimensional categories as defined in Fig. 7.5a for July
1983 are presented in Figs 7.5c and d for two different latitude zones. Maps of the categories introduced
in 7.5b are shown later in Fig. 7.9. In the subtropics during winter (Fig. 7.5¢), the predominant cloud type
has low tops and relatively low optical depths (probably associated with highly broken cloud). The
tropical distribution is more complicated showing a prevalence of high, optically thick clouds and low,
relatively thin clouds associated with highly broken low-level clouds.
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Fig. 7.5 (a) Radiometric classification of cloudy pixels in terms of optical thickness and cloud-top
pressure. (b) A second category group based on a combination of those in (a). (c) The
frequency distribution of cloud optical thickness and cloud-top pressure for July 1983 for the
southern subtropics and (d) the northern tropics (from Rossow and Shiffer, 1991).

7.3 The Effects of Clouds on the ERB: The Idea of Cloud Radiative Effect

Our every day experience tells us that clouds are white and reflect significant amounts of solar
radiation. Conversely, clouds are dark at infrared wavelengths, strongly absorbing and hence also strongly
emissive. These characteristics are used to detect clouds in the ISCCP algorithm. What we will learn in
later sections is that the ability of clouds to reflect solar radiation is related to their ability to emit
radiation in a complex manner. When viewed from the top of the atmosphere, clouds produce a curious
impact on radiative transfer, on the one hand increasing (solar) radiation leaving the planet, yet on the
other hand inhibiting the emission of (infrared) radiation to space by absorbing radiation emitted from
below and replacing it with a reduced amount of radiation emitted by the colder cloud particles
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themselves. These two competing processes produce a net effect that is in somewhat delicate balance—a
balance that depends on height, thickness, amount of clouds, and even on the size of the particles in the
cloud that governs the ability of cloud particles to scatter and absorb radiation.

Example 7.1: Golden Arches

One of the advantages of satellites as observational platforms of clouds is
their ability to record patterns and structures of clouds over wide ranges of
space and time. A method that exploits this particular advantage, as well as
using the properties of cloud emission, is the spatial coherence technique
introduced by Coakley and Bretherton (1983). The idea behind the approach
is portrayed in the upper panel in Fig. 7.6. It schematically shows a group of
2 x 2 neighboring pixels of 11 wm radiances expressed in this specific
example as brightness temperature. These pixels are processed to provide the
average 11 wm brightness temperature of the group and the standard
deviation about this average. The latter is a measure of the texture of the
image on the scale of the pixel array chosen. These two pixel group
quantities are then plotted on a scatter diagram in the fashion given by Fig.
7.6. The satellite data used to construct this scatter plot are the 11 wm
radiances obtained with the NOAA-9 overpass at 2242 GMT on July 7
obtained from the AVHRR viewing marine stratus clouds off the west coast
of California (Coakley, 1991).
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Fig. 7.6 A schematic demonstration of the method of spatial coherence
(upper panel) as it might be applied to brightness temperatures.
Spatial coherence analysis of 11 um intensities for a (250 km)’
region over stratus clouds off the west coast of California. Each
point represents values for a 4 x 4 array of (I km)* AVHRR pixels
(Coakley, 1991).
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Example 7.1: Continued.

The scatter of points on the diagram resembles an arch. The feet of the arch
contain important information about those regions of the image that are
relatively homogeneous across the group of neighboring pixels. One foot is
associated with the relatively clear sky portion of the scene and the other to
the pixel groups that are completely filled by a cloud with the same
temperature. This provides a way of discriminating clear sky brightness
temperatures from partially cloudy skies (7porn) and from the brightness
temperature (7)) of a homogeneous layered cloud. For the case shown, only
two effectively homogeneous surfaces exist, one is the clear sky background
and the other is that of the solid cloud portions of the image. The point in the
arch corresponds to a partially filled pixel group of cloud cover N. This
approach relies on the statistical nature of the observations that can be used
to identify both 7., and T

We consider and refer to the two largely compensating effects as follows:

* The albedo effect—clouds reduce the net solar input into the planet by reflecting more solar
radiation to space. This is also sometimes referred to as a cooling potential of the planet.

* The 'greenhouse' effect—clouds reduce the longwave output by effectively raising the level of
emission to levels specified by colder temperatures.

A graphic example of these two processes, manifested in the ERB, is shown in Fig. 7.7 in which the
annual cycle of the ERB quantities of o, F., and F,,, are presented for a region of the Asian monsoon.
What is remarkable is how nearly complete is the cancellation of these opposite effects. The fundamental
question is do these effects cancel globally or does one component dominate over the other?
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Fig. 7.7 The annual cycles of a, F«, and F,., for the Asian monsoon region indicated.
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(a) The Cloud Radiative Effect

One way of studying these compensating radiative processes on the ERB is in terms of a comparison
between the TOA fluxes in cloudy portions of the atmosphere to equivalent fluxes in clear skies. Flux
difference quantities derived in this way are often mistakenly thought of as the measure of a forcing
applied to the Earth-atmosphere system by radiative processes of clouds. As we will see it is not, but these
quantities do serve as a useful and helpful diagnostic of the effects of clouds on the ERB. Unfortunately,
these diagnostics do not provide the insight needed to determine just what properties of clouds govern
these effects although we will hint at these governing properties here and return to these later.

The flux difference quantities are introduced as follows. Suppose for the moment the shortwave
component of the reflected radiation can be written as

F (observed) = F; (clear) (1 - N) + NF; (cloudy) (7.1)

where N = cloud amount, Fy (clear) is the radiation reflected by the clear sky portion of the atmosphere
and Fy (cloudy) is that flux associated with reflection from the cloudy skies. It should be stressed that we
use Eqn. (7.1) only to fix ideas as a relationship such as this and has no theoretical basis. Ignoring this
with rearrangement

_CSW

F;' (Observed) = Fcleur + N(FLloudy - Fvclear) (72)
Cyy =F, (clear) - F, (observed) <0

The quantity Csy refers to the specific contribution to the ERB by reflection from clouds. It can be
derived independent of the dubious assumptions of Eqn. (7.1) provided we know the clear sky flux. In
going from Eqn. (7.1) to Eqn. (7.2) we can think of Cgy as containing a factor due to how much cloud
exists (i.e., N) and a factor that defines how readily clouds reflect sunlight when they exist. The flux
quantity Cgy is negative by convention since clouds increase the reflection to space relative to clear skies.

Using entirely similar arguments
Crw = F. (clear) — F, (observed) > 0 (7.3)

is the effect of clouds on the longwave component. As noted, this component generally exceeds zero as a
result of reduced emission from colder clouds. The net effect of clouds is

Cher = Csw + Crw (7.4)
(b) ERBE Results of Cloud Effects

Once clear sky fluxes are derived, then Csy and Cpy readily follow. Examples of these flux difference
quantities are shown in Fig. 7.8. Monthly average fluxes derived from ERBE are composited together to
produce JJA and DJF maps of C.y, Csy, and C,,,. Features of most relevance to note are:

* Longwave cloud forcing is a measure of the reduction by clouds of the longwave radiation
emitted to space; hence it is a measure of the greenhouse effect of clouds. Clouds reduce emission
to space because at their bases they absorb radiation emitted by the warmer surface and at their
tops they emit to space at colder temperatures. Deep cold clouds such as occur as part of the
monsoon cloud systems over the Indian Ocean and Indonesia have the largest greenhouse effect.
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*  Because clouds reflect more shortwave solar radiation than the adjacent clear skies, the shortwave
forcing is negative—a 'cooling' effect. Surprisingly, the magnitude of this effect is almost
precisely as large as the longwave forcing over the tropical cloud systems, and is even larger than
the longwave effect over the mid- and high-latitude oceans in the summer hemisphere.

* The net cloud radiative forcing (shown as the bottom panel) is the sum of longwave and
shortwave cloud forcing. The averages range from -100 to —140 W m™ (dark blue) to 10-40 W
m~ (red). The net globally averaged effect is largely negative; hence clouds overall act to cool the
planet (see Tables 7.2 and 7.3). The strongest cooling is caused by the persistent maritime stratus
off the west coast of continents and storm-track clouds in the summer hemisphere over the mid-
and high-latitude Atlantic and Pacific Oceans.

Csw
-166.8 -132.6 -108.0 -B4.8 -80.0  -36.@ 36.8 HD
SWOCLOUD FLUKY CLZMES2 ) '
Crw
-2.8 8.8 24 438 ce.@ 729 ge.8 1848 (280 HO
Lk CLOUD FLUX CHoAMER2 ) DHTA
Cnet

N -
-132.6 -182.8 -84.6 -50.8 -I8.8 -12.8 12,8 ; HO
HET CLOUD FLUK CHeMEe2 s DATA

Fig. 7.8  Cloud radiative forcing for JJA 1985 (scales expressed in W m™).

Because the effects of clouds on C;y and Cgy are largely reciprocal, processes that affect one
component by a disproportionate amount offers greatest potential for significantly influencing the ERB
and thus the Earth's climate. We will study some of these processes later in this course and return to this
reciprocity in Section 7.6.



Table 7.2 Nimbus 7 cloud short, long, and net radiative forcing (W m?). ERBE estimates are in
parentheses for middle month of the three-month cycle.
CSW CLW Cnet
JJA -42.1 (-46.4) 244 (30) -17.6 (-16.4)
SON -44.0 (-45.2) 24.5(32) -19.4 (-17.4)
DJF -44.6 (-44.6 222 (30.6) -22.4 (-21.3)
MAM  -44.7(-44.7) 252 (31.3) -19.5 (-13.2)
Table 7.3  Contributions to flux effects by type.
Type 1 Type 2 Type 3 Type 4 Type 5
high, thin  high, thick mid, thin mid, thick low
JJA-. DJF JJA DJF JJA DJF JJIA DJF JJA DIJF Sum
Average
Ni 10.2 10.0 8.5 8.8 10.7 10.7 6.5 82 272 259 633
OLF 65 63 84 88 48 49 24 24 35 3.5 25.8

7.4

Albedo 1.2 1.1 4.1 42 1.1 1.0 27 3.0 58 5.6 14.9

Net

24 23 64 -75 14 08 -6.6 -85 -15.1 -182 -27.6

Classification of Cloud Effects in Terms of Cloud Type

results for selected regions, JGR, 86, 9739-9760.

Ockert-Bell and D. L. Hartmann (OBH), 1992: The effect of cloud type on earth's energy balance:

In this study, the effects of different cloud types, as defined by ISCCP are regressed with ERBE data.

For convenience, a reduced cloud category was introduced (Fig. 7.5b) and the 1985/86 DJF and 1986 JJA
distributions are also shown in Figs. 7.9a and b for reference. High cloud types occur preferentially where
convection occurs in the tropics and in mid-latitude storm tracks. High thick clouds occur over a smaller
portion of these areas than high thin clouds. Low clouds appear to be predominantly oceanic and most
abundant in the eastern subtropical oceans where the SST is relatively low and the mean vertical motion
is downward. Total cloud cover is greatest over the high-latitude ocean where stratus regimes are well
developed and in regions of intense tropical convection.

regression analysis of the form

R=aq, +ial.Nl.

i=1

To isolate the contribution of each cloud type to the TOA ERB cloud flux effect, OBH uses a simple

(7.5)
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Fig. 7.9a  Geographic distributions of the cloud fraction as given by the categories of Fig. 7.5b for the
JJA season of 1996. Missing values occur where insolation is small.
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Fig. 7.9b  As in (a) but for DJF 1995/1996.
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where R is the relevant flux quantity of interest (the net flux, OLR or albedo), N; is the fractional cloud
coverage by type i and g; is the coefficient of the regression. If this regression approximates the effect of
cloud on radiation, its interpretation is as follows

R=R

clear

+ zS“ARiNl. (7.6)

i=1

where R...., = ay is the radiation flux in the absence of clouds and AR; is the change in radiation associated
with overcast cloud of type i. This interpretation does depend on how well the data fit this equation (e.g.,
if the scene is overcast most of the time it will be difficult to deduce the intercept ay).

Figure 7.10a, b and c¢ shows zonal average values of the OLR flux difference, the shortwave flux
differences, and the net flux difference derived as the sum for all cloud types (i.e., the curves labeled
ISCCP are the summation terms of Eqn. (7.6)) compared to the flux differences formed from ERBE data.
ERBE values suffer in regions where persistent overcast conditions prevail and the differences between
the two estimates tend to be greatest in these regions, particularly poleward of 60°S.

The contributions by cloud type are more easily seen in Fig 7.11a, b and c. From these diagrams we
note:

* Highest clouds contribute most to the longwave flux effect (type 1 and 2 of Fig. 7.5b) although
middle and low clouds contribute in high latitudes.

* The largest effect on shortwave fluxes comes from thicker high clouds in the tropics and low
clouds in mid-to-high latitudes. Optically thin clouds (type 1 and 3) contribute little.

* The largest contributions to the net flux difference are provided by low clouds especially through
their effect on solar radiation in the summer hemisphere.

The flux differences by type are given in Table 7.3. The longwave effect is about 26 W m~, some 5
W m™ lower than the ERBE value of 31 W m™. The albedo effect is about 15% for both ISCCP and
ERBE but the net flux of -27 W m™ is more negative than the ERBE value by approximately 10 W m™.

7.5 Other Relations
(a) SST

The Cy provides a direct measure of the reduction of longwave radiation by absorption and emission
of clouds in the atmosphere relative to clear skies. Figure 7.12a presents 12 months of C;y derived from
ERBE data as a function of SST and compares the same flux quantity derived from the CSU GCM. The
general behavior of C;y with SST appears to show two distinct regimes of behavior; in one regime, Cpy
decreases over much of the SST range varying from values of 40 W m™ at 7, =~ 273 K to about 0-10 W
m?> at 7, ~ 300 K. The second regime occurs over water warmer than about 300 K, where Cry
dramatically increases to values near 80 W m™. This behavior is partly indicative of the increased
cloudiness both equatorward and poleward of the subtropics, which are indicated on this diagram by the
minimum in Cyy, and partly a result of the changing macroscopic properties of clouds in these regions
where cold deep clouds prevail over the warmer equatorial regions and give rise to the largest values in
Crw. The comparison between the simulated relationship and that observed suggests that these two
regimes are actually well simulated by the model although the magnitudes of C;y over the warm ocean
regime are larger than observed and slightly smaller than observed over colder waters. Two possible
sources for the discrepancy over the warmest SSTs may be related to specific assumptions in the model
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regarding how clouds are treated. The assumption that anvil clouds radiate as a blackbody together with
the assumption that clouds completely fill the grid box will exaggerate the model values of C; over the

warm SST regions.

OLR Forcing (W/m**2)

Albedo Forcing

Net Cloud Forcing (W/m**2)

60
50
40
30
20
10
: = ISCCP.OLR fCQ
0 ERBE.OLRfcg
) -90-75-60-45-30-15 0 15 30 45 60 75
Latitude
0.4
0.3 .
021 .
i
o1} / \ .
! e ISSCP.Albedo.fcg
i ERBE.Albedo.fcg Q

0.0
-90-75-60-45-30-15 0 15 30 45 60 75 90

Latitude

ISCCP-Net fcg
ERBE.Net fcg

-90-75-60-45-30-15 0 15 30 45 60 75

Latitude

Albedo Forcing

60 T T T T T T T T T Y T
DJF
50 .
§r S
’g 40 .
g L
o 30 .
£
e
g 20
« !
o 10
0 [ ISCCP.OLR.Feg
ERBE.OLR.Fcg
- 'l | L L 1. La L L La L laata s
-90-75-60-45-30-15 0 15 30 45 60 75 90
Latitude
0.4 LM SABL s mm e oy e o T
DJF ' '
s —  ISCCP.Albedo.fcg
"‘\ ERBE.Albedo.fct
03F 7
AV
P\
H
0.2F 5 \ } ]
. g \ i
H \ - / d
o1f |/ J 3 1
; |
O.O‘A Laa d ol au1 L 1 1 L i 1 Loa
-90-75-60-45-30-15 0 15 30 45 60 75 90
Latitude
50 .' T T T T T T T T T 1 1

Net Cloud Forcing (W/m**2)

100 |

ISCCP.Net.fcg
ERBE.Net.fcg

125}

b
b
i b a Lo o b o s baa Lo b sl oot

PR B |

0
-90-75-60-45-30-15 0 15 30 45 60 75 90

Latitude
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ERBE quantities.
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Fig. 7.11  Zonally averaged cloud radiative OLR (a) by cloud category and albedo difference (b), and
(c) net flux differences.

Figures 7.12b shows the January and July values of Cgy as a function of SST. Values for each
hemisphere are shown separately to highlight the complicated variation of Csy with SST. The solar fluxes
reflected by the summer hemisphere clouds vary with SST in a way that resembles the two regimes noted
for C.y, except that Cgy increases from about -150 W m™ for the colder SST's (and thus at higher
latitudes) due to the reflection from the summertime clouds located in the mid- to high-latitude storm
tracks. Csy increases to near zero over the subtropics, followed by a sharp decrease associated with the
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bright clouds of the warmer equatorial oceans. The behavior of Cgy in the winter hemisphere poleward of
the subtropics differs from that just described for the summer hemisphere. In the former case, the
variation of Cgy with SST is a result of the product of two factors that have opposing variations with
latitude; one is the decreasing insolation and the other is the increasing albedo with increasing latitude.
The latter, in turn, is a result of both increasing cloudiness poleward of the subtropics and the decreasing
solar elevation with increasing latitude. Both factors contribute to an increase in the albedo, of cloud from
the subtropics to mid-latitudes as we show below. The two factors, that of an increased albedo and that of
a decreasing solar flux, combine to produce a variation in Cgy that starts near zero for clouds at high
latitudes and decreases to a minimum of -50 W m™ at approximately 7, = 293 K, followed by an increase
towards zero and then a rapid fall off with increasing SST, similar to that noted for the summer
hemisphere.

Cloudy-clear sky flux

Cloud-clear sky flux (Wm?)

July

07
0 ;
i
-50 .]
.50 4
-~ ]
e o
g o g
g z i
2 © 1501
O -150 4 :
200§
200 4 H
H 250 3 T ; r y
: 303
250 . = = 273 283 293
273 283 9 SST(K)
SST (K)
January July
05 < 05
0.4 4 a 0.4 4 b
0.3 1 034
g i
< 024 0.2 4
0.1 4 0.1 4
0 +—— 0 ¥ - T
273 283 293 303
Sea Surface Temperature (K) Sea Surface Temperature (K)

Fig. 7.12  (a) Cry as a function of SST. (b) January and July Cey as a function of SST. (c) Same as for
(b) but albedo (Aa = 4Csy/Q ) as a function of SST. Lines indicate CSU GCM model
results.
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Figure 7.12c presents January and July values of Aa as a function of SST. The remarkable feature of
these diagrams is how the different hemispheric behavior of Csy maps onto one broad and apparently
well-defined relationship. The albedo parameter Ao has a minimum over the subtropics where there is a
minimum in cloudiness and increases both equatorward and poleward of these clear sky regions. The
SST-Aa relationships obtained from the GCM are also given on these diagrams for comparison. The
model behavior of Ao with SST broadly follows the observed behavior, although there are significant
differences between the two sets of data. The cloud albedo predicted by the model exceeds that observed
in the equatorial warm ocean regions but is much too low for the mid-latitude clouds over regions
characterized by 7, < 285 K. These features may be due to poorly modeled cloud amount, poorly
specified cloud albedo, or a combination of both (note that Aa is a hybrid of both factors). Comparisons
conducted by Harshvardhan et al. (1989) between the total cloudiness of the model versus the ISCCP total
cloudiness reveals that the model tends to overpredict cloudiness in the subtropics (hence the larger
values of Ao at temperatures near 300 K), slightly underpredicts the total cloudiness in the equatorial
regions and greatly overestimates the cloudiness in the summer mid-latitudes. This suggests modeling
problems both with the parameterization of cloud albedo in the equatorial region and with estimating the
effect of cloud amount on the subtropics and higher latitudes on albedo.

(b) Relation to Liquid Water

We will learn later the importance of the cloud water (and ice path) to the bulk radiative effects in
clouds. In fact, it is shown that the liquid and ice water paths are directly related to the cloud optical
depth. Global cloud liquid water information is presently derived from the microwave radiance data
obtained from the SSMI operational instrument (e.g., Greenwald et al., 1993). From these data, we hope
to establish a better understanding of the links between liquid water path, temperature and radiative
properties of clouds. For example, Fig. 7.13a presents the results of the correlation between LWP and
atmospheric temperature much in the way cloud optical depth and temperature were correlated in the
study of Tselioudis et al. (1992). Figure 7.13a presents the parameter

_dan

I="7

(7.7)

derived from gridded LWP data. The clouds used to define this parameter correspond to ISCCP defined
low clouds and the liquid water is correlated with the mean temperature of the surface—680 hPa layer,
which crudely approximates the cloud temperature. These data apply to the region from 60°N to 60°S and
show that in the warmest regions of the globe a decrease in W is correlated with an increase of
temperature. This result is similar to the optical depth sensitivities deduced by Tselioudis et al. (1992)
who argue that specific regional changes in the optical depth-temperature correlation is more complex
than one simply defined by thermodynamical considerations.

The relationship between LWP and cloud albedo can be examined using global SSM/I information
and cloud albedo available from ERBE. While this is an important task, it has been difficult to find
enough coincident data to carry out correlations between albedo and LWP—a problem that will be
rectified with the launch of NASA's Tropical Rainfall Measurement Mission (TRMM) in 1997.
Nevertheless a limited match of SSM/I and ERBE was presented in the study of Greenwald et al. (1995)
in which the albedo of low overcast clouds as determined by ISCCP is presented as a function of LWP
(Fig. 7.13b). The curves shown represent relations derived from theory assuming different values of 7..
Possible reasons for differences between theory and observation as shown need to be explored and
explanations vary from biases introduced in sampling the different data to macroscopic effects that
dramatically alter the intrinsic relationship between albedo and LWP.
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Fig. 7.13  (a) Global observations between f versus temperature (C) of the atmospheric layer between
the surface and 680 hPa. Observations using composite ISCCP and microwave liquid water
are given by symbols and the light shading indicates the range of the relationship derived
from adiabatic assumptions for clouds of varying thickness and height. (b) Scatter diagram of
the instantaneous albedo measurements from ERBs at a solar zenith angle of 75 ° versus
coincident SSM/I LWP data for low clouds over the Northern Pacific and Atlantic during
June and July 1988. Also shown are relationships based on parameterized theory for differ-
ent values of r. (Greenwald et al., 1995).

(c) Net Radiation and Reciprocity

One of the curiosities of the flux difference analyses post ERBE is the near reciprocity between
longwave and shortwave effects over the tropics. We can begin to explore this reciprocity in the following
way. Consider the following

anet dCS w dCL w

- + (7.8)
aV ANV dW

where WV is some unspecified cloud parameter. To help fix ideas, we might think of WV as the cloud liquid
water path W or cloud fraction N or some combination of these such that some given increase in this

parameter leads to more negative values of Cgy and larger values of Cyy. For example, Fig. 7.14a presents
a scatter plot of C,,; as a function of satellite liquid water path for the mid-latitudes and tropics.

The results for the two regions appear to be fundamentally different with an apparent change in sign
if rearrange Eqn. (7.8) to obtain

C/ — anet —
- dCc,,

QU

CS w
CL w

+1. (7.9)

QU

In this expression, dCsy/dCry is the change in Cgy with respect to Cry. Over ocean regions it is
reasonable to suppose that these changes arise primarily from large-scale changes in cloudiness and
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perhaps large-scale changes in cloud water. The interpretation of the right-hand side of Eqn. (7.9) is as
follows,

>0 greenhouse effect dominates,

C, =41 0 greenhouse and albedo effects cancel,
<0 albedo effect dominates.
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Fig. 7.14  (a) Scatter diagram of an annual composite of C,.; versus W for the tropics (filled squares)
and mid latitudes (open squares) using the Nimbus-7 ERB flux data. (b) Scatter diagram of
Csw versus Cpy for the tropics (filled squares) and mid latitudes (open squares) using the
Nimbus-7 ERB flux data. The negative correlation indicates the general reciprocoal
influence of clouds on the shortwave and longwave components of the ERB. (c) Scatter
diagram of C,. and Cry for the same data used in (a). The slope of a linear correlation
between these flux quantities defines Cyand estimates of Crare given.
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An estimate of C; may be obtained from plots of C,., and C,j data presented in the manner shown in
Figs. 7.14b and c. The negative correlation of Csy and Cyy is indicative of the reciprocity of cloud effects
on the ERB. The results indicate that a given change in C; (the greenhouse effect) is associated with a
change in Cgy (the albedo effect) that is smaller for tropical clouds than observed for mid-latitude clouds.
From the slope of the relationship between C,., and C.y of Fig. 7.14c we deduce a value of C; and
therefore establish the combined impact of the greenhouse and albedo effects of clouds on the net
radiation budget. We estimate C, = 0.23 for tropical clouds, indicating that a change in the greenhouse
effect is more dominant than the compensating change in albedo effect although the results are scattered
and shows largely a reciprocity. On the other hand, Cy~-2 for mid-latitude clouds, which implies that the
albedo changes dominate the net radiation balance. The result of Fig. 7.14c is consistent with the notion
that the differences in the response of the ERB to tropical clouds versus mid-latitude clouds relates to the
differences in the ERB attributed to large-scale changes in cloud liquid water. The greenhouse changes
associated with changes in LWP cannot be completely neglected as previous cloud water feedback studies
have assumed (e.g., Sommerville and Remer, 1984; Paltridge, 1980, and others).

7.6  Clouds and the Surface and Atmospheric Budget

Although the net radiative effect of clouds at the top of the atmosphere is small throughout most of
the low latitudes (e.g., 7.15a and b), the partitioning of this effect between the atmosphere and the surface
is both large in magnitude and opposite of sign. This is evident in the model results presented in Figs.
7.15c and d which show the distributions of the net flux differences within the atmosphere (this will be
referred to as the atmospheric cloud radiative forcing, ACRF) and at the surface (the surface cloud
radiative forcing) for the same GCM climate model simulations used to produce the TOA distributions
presented in Fig. 7.15b. These simulations show how clouds radiatively heat the atmospheric column
(relative to the clear sky) and how this heating is largely compensated by a cooling at the surface (e.g.,
Slingo and Slingo, 1988). The heating of the atmosphere by clouds is important for a number of reasons.
The location of the maximum heating of the ACRF coincides with the maximum of deep convection and
convective heating. The coupling of these different forms of heating and feedbacks between them are
mentioned in more detail below.

Estimating the proportional effect of clouds on the radiative balance of the atmosphere and surface is
crucial for understanding links between clouds and other components of the climate system. For instance,
both the heating of the atmosphere and the cooling at the Earth's surface (specifically the ocean) by clouds
are key elements of hypothesized cloud-climate feedback mechanisms (Randall et al., 1989; Ramanathan
and Collins, 1992). Unfortunately, there are no measurements to confirm model simulations of the par-
titioning of the cloud radiative forcing between the atmosphere and the surface and it is clear that more
detailed information about the surface radiation budget is required to do this.
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Fig. 7.15  Net cloud-radiative forcing for July 1988 (all numbers are in W m™). (a) The TOA forcing
derived from ERBE. (b) A GCM model comparison. (c) The forcing derived from model
simulations for the atmosphere, and (d) surface.
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AT622 Section 8
Elementary Molecular Spectroscopy

The aim of this section is to build up some understanding of how gases absorb, why only certain
gases absorb and what dictates where they absorb in the atmospheric absorption spectrum.

References

Chapter 3: Remote Sensing Notes
Chapters 3, 4, and 5: Goody and Yung
Selected reference cited in notes.

8.1 Atomic Absorption

In 1752 Thomas Melville studied the color of flames using a prism and found that the spectrum is not
continuous like the spectrum of the sun or the radiation emitted by a blackbody. From this historical
perspective we learned that the interaction of radiation with certain gases produce not a continuous
spectrum like the emission spectrum but a discrete spectrum.

The realization that the bright line spectra of vaporized elements match the dark lines in the solar
spectra (Fig. 8.1) was the key to understanding the quantum nature of matter. The basic explanation was
forwarded by Bohr who perceived an orbital model of atoms (Fig. 8.2). Electrons falling from one level to
a lower level give rise to emission of photons

[
A 1!\!{1 E:IHI:iﬂHiIH

AN

|
I

0 00

Fig. 8.1 The bright line spectrum of the vaporized element iron is shown with the spectrum of the sun.
The wavelength regions are from 300 um to 330 um, in the ultraviolet. The solar spectrum is
in the center of each strip, and the iron spectrum is above and below it. The bright lines of
iron occur at the same wavelengths as some of the dark lines in the solar spectrum.
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hV:Eg —EIZAE (81)

* Thus absorption occurs when an electron jumps from level 1—2 (line absorption spectrum).
* Emission occurs when an electron falls from level 2—1 (emission spectrum).

g Qe

4
3 T

Fig. 8.2 Energy levels of the hydrogen atoms according to the Bohr theory. The first six levels are
shown and drawn to scale. Level 1 is the atoms’ ground state. Light is emitted whenever the
atoms make a transition from a higher state to a lower one, and the frequency of light is
proportional to the energy difference. Higher levels are closer together. The line labeled
infinity () represents the energy the electron would have if it became barely free; that is,
just able to escape from the nucleus.

The atomic line spectrum is defined by internal energy states of atoms. The molecular line spectra are
defined by the same plus the dynamic properties of the internal motions (such as vibrations and rotations).
What determines whether a particular molecule absorbs radiation depends on, among other things, the
way atoms are bonded and the geometry of the molecule.

The prevalent type of bonding is the covalent bond—viewed as a sharing of electrons. Certain
molecules, like H,O (Fig. 8.3) have a structure that naturally produces a dipole moment owing to the
geometric configuration of the molecule that creates an asymmetry in the charge distribution that arises
through this bonding. Molecules, like H,O, that possess a permanent dipole moment are called polar
molecules. Homonuclear molecules like N,, O,, and H, are homopolar as they do not possess a permanent
P . So too is CO,. Homonuclear and homopolar molecules are not active absorbers in the IR region. An

exception is pressure-induced absorption (e.g., in the atmosphere of Saturn). Polar molecules are
radiatively active—the charge separation leads to oscillating charges, which according to EM theory
produces an EM wave.
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Molecule p,mC

HCl 3.43 x 107
HBr 2.60 x 107°
HI 1.26 x 107°
CO 0.40 x 107°
H,0 6.20 x 107°
H,S 530 x 107
SO, 5.30 x 107
NH; 5.00 x 10°°
C,H;0H 3.66 x 107°

Molecules with sero dipole moment include:
CO,, H,, CH,4 (methane), C,H, (ethane), and
CCly (carbon tetrachloride).

Fig. 8.3 Schematic of atomic configuration and electronic orbitals for water molecule, with oxygen
atom at center and hydrogen atoms at an angle of 105° Dipolar character comes from
protons at H' positions and unshared electrons at e locations; the direction of the dipole
moment is along the symmetry axis. The atoms and the electronic orbitals have tetrahedral
symmetry. The table to the right lists the dipole moment for selected molecules.

8.2  Molecular Absorption Spectra

The absorption spectrum of a molecule is substantially more complex than that of an atom. Not only
are transitions possible between the energy states of the atoms that make up the molecule, but also
transitions occur between energy states associated with movements of the atoms themselves.

Since the energy required to induce a transition from a lower to a higher state is inversely
proportional to the wavelength of the photon, the types of mechanisms that induce absorption also depend
on the wavelength of the absorbed photon. These mechanisms must induce either a magnetic or an electric
effect, which can be influenced by electromagnetic radiation. Mechanisms responding fastest occur at the
shortest wavelengths whereas the more sluggish mechanisms produce absorption at longer wavelengths.
We can use this wavelength dependence as a convenient classification of the absorption mechanisms as
shown in Fig. 8.4, although the dividing boundaries are by no means precise.

* In the radio frequency regime, the absorption is associated with the nucleons and electrons, which
we consider to be tiny charged particles that spin, producing tiny magnetic dipoles. The reversal
of this dipole due to spin reversal interacts with the magnetic field at frequencies in the range 3 x
10°to 3 x 10" Hz.

* In the visible and ultraviolet region excitation of valence electrons results in moving electric
charges in the molecule. Changes in the electric dipole give rise to a spectrum by its interaction
with the oscillating electric field of radiation. These electronic transitions occur within the
individual atoms of molecules and dominate the visible and ultraviolet portions of the
electromagnetic spectrum. At even shorter wavelengths, photons can actually disrupt the
absorbing molecule by photodissociation or even produce photoionization of individual atoms.

* Absorption by molecules in the mid and near infrared occur by vibration (although a mixture of
vibrations and rotations are usually induced at these frequencies). Induction of vibrations requires

8-3



more energy than rotations and thus takes place at higher frequencies of infrared wavelengths
between about 0.7 um and about 20 um.
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Fig. 8.4 The electromagnetic spectrum and the possible types of interactions between photons and a
molecule or atom (Bandwell, 1983).
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* In the microwave and far infrared, the molecule undergoes a rotation like that depicted in Fig.
8.5a and the component of the dipole in a given direction fluctuates in a regular fashion as shown
in the lower part of Fig. 8.5a. These fluctuations are more sluggish than are the fluctuations
associated with vibrations or the fluctuations associated with electronic transitions. Rotational
lines generally occur in bands at the longer infrared wavelengths beyond about 20 um extending
into the microwave spectral region where individual rotational lines can be resolved.

As a consequence of the vibrational-rotational transitions, absorption lines are spread into bands
containing many lines (as illustrated in Fig. 8.5b), which are used, either individually or as a group, to
fingerprint molecules in the same way that atomic spectral lines fingerprint atoms. It is the vibrational-
rotational absorption spectrum of molecules that is largely of interest to topics discussed in these notes.

(a)

saze0] oo § oo ] o0

dipole

Vertico!
component
of dipole

Q

(b)

4‘ r 4
first pum——— 2
excited I— =)
siate ——— g —_—

s 4 —— p om—
—— D _)—. s ) J
ground 0 — é
electronig'oTe doct;onic electronic
vibration vibration
+
rotation

Fig. 8.5 (a) The rotation of a simple diatomic molecule showing the fluctuation in the dipole moment
measured in a particular direction (Bandwell, 1983). (b) Molecular absorption spectra
actually consist of closely spaced lines due to rotational and vibrational transitions. J and v
refer to the quantum numbers associated with the rotational and vibrational transitions,
respectively. This diagram shows how these transitions are superimposed on electronic
states.
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8.3 Simple Model Analogs of Vibrating and Rotating Molecules

Despite the complexity of the absorption processes within molecules, we can begin to understand
their spectra by drawing on results from simple mechanical analogs to vibrating and rotating molecules.

(a) Simple Model of Rigid Rotators

Consider a simple diatomic molecule (Fig. 8.6), with the moment of inertia
1= mlrlz +m2r22 ,

and the center of mass

mn =nmyr,
Thus
mm
17%2 2
I (n+n)
m, +m,
or
2
I=m'r

where m'is the reduced mass of the molecule and r is the distance between the two atoms. Quantum
mechanics tells us that the angular momentum is L =/w=.,K(K +1)i where K is the rotational

quantum number (K = 0,1,2,...). As noted above, only molecules with electric dipole moments (e.g.,
HCL) can interact with electromagnetic photons. The energy of a rigid rotator is

2
E=llw2 =L_=Mfl2'

2 21 21

Fig. 8.6 A diatomic molecule that rotates and vibrates about its center of mass.
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Thus, since
AE=FEg,, —Eg=hv

h
=——(K +1 8.2
v 2;:1( ) (8.2)
Av=v, —v —l(K+1—K)
K K-1 2.7[[

Thus, the energy levels predicted for a diatomic molecule give rise to equally spaced absorption lines

spaced Av zﬁ apart (Fig. 8.7). B= % is a basic quantity of the molecule known as the rotational
T T

constant.

Erll
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rotational
energy (b) J
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27l
Fig. 8.7 (a) Energy levels and rotation spectrum of diatomic molecule. (b) Vibration-rotation spectra
of a hypothetical diatomic molecule.
Note that:

e v —(I)". If we assume a value of 7 that is similar for all diatomic molecules, then the v spectra is

largely determined by the mass distribution within molecules. For typical molecules (H,O), Viotation
=20 uwm.
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From Eqn. (8.2) the moment of inertia of a molecule can be deduced from its rotational spectra and,
since the masses of its constituent atoms are known, the interatomic separation » can be calculated.

Rotational molecules are generally specified in terms of its three principal moments of inertia

¢ Linear molecules: CO,, N,O, C,H,...

*  Symmetric to p molecules: NH;, CH;Cl, CF5;C1, nonlinear with /; = I,, I; different

*  Spherical symmetric top: (methane) I, =1, =1I;

*  Asymmetric top: H,O, O; - all three moments of inertia are different. Absorption spectra defined

. h .
by three rotational constants = Py and three sets of rotational quantum numbers.
T

(b) Elementary Discussion of Vibrating Molecules

Excitation energy required to vibrate molecules is greater than that of rotation—so rotation always
accompanies vibration. Vibration can be treated as a simple analogy to two masses attached to a spring,
for which the restoring force related to some displacement about equilibrium is

F=-k(r—r,)

For a harmonic oscillator, the frequency of the vibrating body is

, 1 |k
V =— [ —
22 \'m'

Quantum theory predicts that the frequency of a harmonic oscillator is quantized such that

N1 [k 1,
V=V +— || —=|V,+=
2)2x \m' 2

where v is the vibrational quantum number.

The energy required for a vibrational transition is larger than that required for a rotational transition.
Vibrations, however, are typically accompanied by rotations so the rotating molecule is not exactly like a
rigid rotator. We learn from quantum mechanics however, that only certain types of vibrations and
rotations are permitted together. These are defined by selection rules, which for the diatomic molecule (or
a longitudinal polyatomic molecule like the carbon dioxide molecule), the transition Av = £1 occurs
simultaneously with a AK = +1 transition. This selection rule produces pairs of transitions of the form
shown in Fig. 8.7b. As a rule, each vibrational transition frequency is split up into a series of spectral lines
with mutual separations that approximately correspond to the respective rotational constant. In Fig. 8.7b,
the vibrational transition from v = 0 to v = 1 is shown. Two branches of rotation lines result for this
vibrational transition: one for AK = +1, which is referred to as the R branch and the other for AK = -1, the
P branch.

(c) Triatomic Molecules
The rotational and vibrational absorption spectra of polyatomic molecules are much more complex
than are the spectra of diatomic molecules owing to the higher degrees of freedom of both vibrational and

rotational motions. The absorption spectra of the CO, molecule are highly relevant to atmospheric remote
sensing. The CO, molecule vibrates in four different modes, two of which are energetically equivalent.
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These modes are referred to as the symmetric stretch mode, the asymmetric stretch mode, and the bending
mode, which has two equivalent modes of vibration. The dipole moment of the symmetric stretch mode is
plainly zero throughout the whole motion (Fig. 8.8a) and this vibration is radiatively inactive. The
asymmetric stretch produces a periodic alteration of the dipole moment and this mode is 'infrared active'
as is the bending mode (Figs. 8.8b and c). The bending mode actually permits Av ==+1, AK = 0 transitions.
These transitions then produce a large absorption peak centered on the fundamental frequency of the
oscillator. The absorption is strong at these frequencies due to the superposition of all Av =1 transitions
between all available J-levels. This absorption is referred to as the Q branch.

Another molecule of considerable importance to the study of the Earth's atmosphere is the H,O
molecule. Since this molecule is not linearly arranged like the CO, molecule, geometrically different
modes of vibration and rotation occur. Figure 8.8d indicates the three modes of vibration of the water
molecule. Superimposed on these three modes are the rotational modes around three axes of rotation. The
spectra arising from the multiplicity of vibration-rotation transitions are accordingly complex producing
absorption spectra that are more irregular in appearance.
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Fig. 8.8  (a) The symmetric stretching of a vibrating CO, molecule. (b) The asymmetric stretching of
the CO, molecule showing the fluctuating dipole moment. (c) The bending motion of the
carbon dioxide molecules and its associated dipole fluctuation (Bandwell, 1983). (d)
Vibrational modes of a water-vapor molecule.
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8.4 The Absorption Coefficient

Energy states of a molecule are more complicated in structure than of individual atoms. This arises
from complicated motions of the atomic nuclei that make up the molecule. The electronic excitation to
higher energy levels within the atoms of the molecule require much more energy and involve radiation in
the shorter visible and UV. Superimposed on these electronic transitions are the vibration and rotation
effects (Fig. 8.9 and Table 8.1).

A molecule plusaphoton of
’ wavelength less thon can
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. \ /
\\ - //
N PRt
. . [
@ _ 1000 A photoionize outer | @ -~
shell “ ,/’
I00A | photoionize inner + 37
sheil @ *—

Fig. 8.9  Possible interactions between a molecule of atom and a photon. The longer wavelength
events, which involve less energy, are at the top. Bands in molecular spectra actually consist
of closely spaced lines due to rotational and vibrational transitions.

Table 8.1 Typical energy differences and spectral ranges in electronic, vibrational, and rotational
transitions.

AW v=AW/h
[eV] [Hz]
Electronic 10 2.4 % 10"  Ultraviolet and visible
Vibration 10" 24x10° Infrared

Rotation 10°  2.4x10" Millimeter waves

Transition Spectral range

The absorption spectra are characterized in terms of the absorption coefficient &, . For an absorption
line, &, is characterized by its

* spectral position v,, (and is determined by the factors already considered)



» strength S (or effectiveness of absorber)
o shape f(v —v,) (spectral "fine structure").

That is
k, = Sf(v—v,) (8.3)

where the shape factor
jm F=v,)dv=1

by definition. We now consider the latter two factors in more detail.
(a) Line Strength
This is a product of two distinct factors

» probability that a single isolated molecule in its lower state will absorb a photon (cross section o)
+ relative population of lower and upper states

Thus
S=0 (- n) Ml

The relative populations are determined by Boltzman's distribution (and hence are a function of
temperature) according to ¢“**”. (This is not true in the mesosphere where a "breakdown" of local
thermodynamic equilibrium occurs). Here, AE is the energy associated with a particular v and K
transition. The effect of this factor on the absorption spectrum occurs in the following way:

* Since AE is proportional to K + 1 for rotational lines, the line intensities are largest (i.e.,

absorption strongest) near the shortest wavelengths of each band. The important feature is the
absorption line strength is temperature dependent owing to the temperature effects on population.

(b) Line Shape
Lines are not sharp but "fuzzy". Three main mechanisms for broadening lines are

* Natural broadening

The energy level can only be defined within the uncertainty AE defined according to

AEAt sh/2m
% 1
5 = M = UN (843)

If we take the mean lifetime in the upper state of molecules as indicative of A¢, then we can derive
an estimate of oy typically (=<3 x 10" cm™), which is negligible for absorptions in the
troposphere and stratosphere.
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Doppler broadening

Line broadening can occur through the motion of the molecules in the earth's atmosphere as
they move about in random directions. The probability that molecules in a gas at temperature 7'
possesses a velocity v is given by the Maxwellian distribution exp[-m,,V//2kT] where m,, is the

molecular mass.

The shift in frequency due to such motion is

and the distribution of Doppler shifts follows as

1 2 2
fD(V—Vg)=aD\/;eXp(—(V—V0) lay) (8.4b)

2KT

mc

where o is the Doppler half width (O{D =V, J . This derivation assumes the distribution

1/2 2

m -mv
dv)=| d
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* o 4%
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Fig. 8.10 (a) Typical width of Doppler broadened lines of light molecules at room temperature as a

function of the respective center frequency. (b) Lorenz and Doppler line shapes from

approximately equal half-widths and intensities. The corresponding Voigt profile is also
shown.

For CO, and IR wavelengths, o, ~7 x 10 cm™. Doppler broadening is mainly important in
the stratosphere and above. Accurate measurements of line width at low pressures allow
deduction of T (through 7" dependence).
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Pressure broadening

The third line broadening mechanism, and the one most relevant to our interests is through
the effects of collisions (collision/pressure broadening). No precise model of this collision exists
(the 'many' bodied problem). So simple conceptual models of collisions are employed. One
model is to treat the collision as a discontinuity in the phase of the EM wave. These phase shifts
are modeled as randomly occurring between 0, 25 and the period of collision is considered small
compared to the period associated with passage of one wavelength.

Radiation emitted by a molecule before and
after collision.

The simplest and most successful treatment of this broadening is that of Lorenz

a,ln

[ =v,)= (8.40)

2 2
v-v,) +a;

. 1 - . .. . ..
for which «; = Em (¢t =mean time between collisions, i.e., the more the collisions the broader

the line). It follows that

1/2 1/2
a, ~a, L (gj ~0.07 £ (Ej cm’
PI\T PI\T

For example P, = 1000 mb, T, = 273, a; ranges between 0.005 - 0.11 cem™,

Lorenz width is proportional to pressure (this is well confirmed by measurements).
Dependence on T is less important and less well understood. Pressure dependence of absorption is
of fundamental importance.

Some issues are:

e Line width is a function of type of colliding molecule (mostly N,). Self-broadened lines
(e.g., H,O — H,0) are broader than foreign-broadened lines (N, — H,0)

* A fundamental problem is in the wings of Lorenz lines—extended wings are important to
transparent regions of the spectrum (windows). Departures from Lorenz line shapes
(super and sub Lorenzian) in the extended wings are virtually impossible to measure and
a major source of uncertainty. In the far wings v — v, >> o and
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(v- vo)2

JLv=v,)= (8.5)

» Example of the significance of p effect on line shape: intuitive description of weighting
functions that are relevant to topics of remote sensing profiles of temperature and certain
species.
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Fig. 8.11  Approximate relationship between atmospheric height h and line width for a microwave line

of O, and an infrared line of CO, (idealized isothermal atmosphere and equal Av, values for
O, and CO; are assumed).

z 4 Avg e

‘ ) ‘n Kain2,)
avip
[ P 3}
Bvp——
avipl-ed /\—W’)
AT
Za H 2, . I

Zl, P 2. ——

a ) N

Fig. 8.12  (a) The atmospheric pressure as a function of the height. (b) The line shapes at three different
height levels and filter positions.
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8.5 Problems
Problem 8.1

The wavelength of radiation absorbed during a particular spectroscopic transition is observed to be 10
um. Express this in frequency (Hz) and in wavenumber (cm™) and calculate the energy change during the
transition in both joules per molecule and joules per mole. If the energy were twice as large, what
would be the wavelength of the corresponding radiation? Hint: Planck's constant has the value 4 =
6.63 x 10** joules-s'molecule™. Avagadro's number N = 6.02 x 10* mol ™.

Problem 8.2

The rotational spectrum of "’Br'’F shows a series of equidistant lines spaced 0.71433 cm™ apart.
Calculate the rotational constant B and hence the moment of inertia and the bond length of the
molecule. Determine the wavenumber of the /=9 — J = 10 transition.

Problem 8.3

Using your answers to Problem 8.2, calculate the number of revolutions per second that a BrF
molecule undergoes when in (a) the J = 0 state, (b) the J = 1 state. [Hint: Use (3.9) but remember that
w is in radians per second. ]

Problem 8.4

The masses of the H, Cl, C, and O atoms are 1.6 x 10?7 kg, 58.8 x 107 kg, 20 x 107 kg, and
26.5 x 1077 kg, respectively.

(a) Calculate the reduced masses of the HCI and CO molecule.

(b) If the spring constants of the HC] and CO molecules are 4.78 and 1907 kgs, respectively,
determine the wavelength of the vibrational transition 0 — 1.

Problem 8.5

Derive a relationship between the central frequency v, of a line and the pressure (in atmospheres)
at which the half-widths of a Lorenz line and a Doppler line are the same. Estimate this pressure for a
CO; and O, molecule for the frequencies and temperature used to produce the curves shown in Fig.
8.11b. Assume the reference value of the Lorenz half-width at the ground is that given in Fig. 811b.
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AT622 Section 9
Models of Transmission

The aim of this section is to introduce popular techniques used to model transmission through an
absorbing layer of gas. We have already seen how the mathematical description of absorption by the
gases of the atmosphere can be formulated in terms of transmission functions (Section 4). There are
several types of transmission functions that must be learned and the connections to one another
understood. The ultimate purpose, however is to be able to characterize the transmission averaged over
many absorption lines (band transmission). Connections between different forms of transmission
functions are shown in Fig. 9.1. There are transmission functions that apply to the transmission of
intensity and the transmission of flux. Transmission can either be monochromatic (i.e., at a single
wavelength) or broadband (i.e., an average over a band of several wavelengths), which is one of the goals
of this section. These functions can either apply to homogeneous paths (i.e., applies to uniform path of
fixed p and T such as encountered in the laboratory measurements) or to heterogeneous paths of varying p
and T (such as in the atmosphere). We will see that the transformation from intensity to flux transmission
is largely trivial and we will spend the most time discussing broadband transmission models and how we
treat absorption along variable p and T paths.

Molecular Spectroscopy

v

Absorption Line: Centers,
Widths, Strengths

Pressure and Temperature

Dependence
A A 4 A A
Band Models Direct Calculation k-Distributions Empirical

o Statistical treatment e Sum over all lines ¢ Bin spectrum

of lines e Integrate over paths according to strength
e Distribution of o Integrate over of absroption ]

strengths and centers frequency
e Neglect variations in : , —

line shape ke A=fn

.

\4
A

= 1
T T, )=—] T, (py,Ty)dv
Av (Po.To) Av IA" (Po.To) ‘Broad band’ transmission at
l fixed Po and T()

Homogeneous path
approximations

T, (5.T) = (T, (g, Ty))

Fig. 9.1 Connections between different forms of transmission functions.
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9.1 Basic Definition of Transmission Functions

The exchange of radiation with the gases of the atmosphere is described in terms of a transmission
function. The concept of transmission follows directly from Lambert's law of extinction.

dl, = —k,1,ds 9.1)

where k, is the absorption coefficient (here we consider only absorption and ignore scattering), /, the
intensity of the radiation field, and ds is some measure of path, defined such that the quantity

dr, = ks
is unitless. Solution of Eqn. (9.1) gives
1,(,)=1,(z, =0)e™ 9.2)
where

T, =e™ =1-A, (9.3)

\4

is the monochromatic "transmission" function and A, is the monochromatic absorption. Since the re-
lationship between absorption and transmission is trivial, we will develop our models in terms of either
absorption or transmission.

The absorption coefficient (and for that matter the scattering coefficient) can be defined in a number
of different ways according to how we measure the amount of matter along the path. Table 9.1 gives four
more commonly used quantities together with the specification of the amount of matter. Note again that
the product of extinction coefficient and amount of matter is unitless.

Table 9.1 provides the conversion factors between the different forms of extinction coefficient (read
extinction here as absorption). With volume extinction, the computations use distance as the independent
variable. This is generally only used in calculations involving particle absorption (and scattering). For
gases, the path length is usually defined in a way that reflects gaseous density and it is more convenient to
use one of the other forms. Of these, e, is the most popular choice by many spectroscopists and thus we
see the path lengths per centimeter at STP often used in empirical transmission formulas like those
presented later.

Table 9.1 Dimensions and conversion factors for extinction coefficients”.

Symbol e, e, e, e
Name Volume e.c. Mass e.c. Molecular e.c. e.c. per
cm s.t.p.
Dimensions cm’! g em’ cm’ cm’!
ey 1 o’ n! n/n
em P 1 m P
e, n m’ 1 ny
€ n/ng o n' 1
“ p = density of absorbing gas (g cm™) n, = molecular no. density at s.t.p. (Loschmidt no., cm™)

p, = density of absorbing gas at s.t.p. (g cm™) m = molecular mass (g)
n = molecular number density (cm™)
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Example 9.1: Two specific examples of conversion highlight the advantage of e, and
the number of molecules per centimeter as the measure of attenuation gas over the
other combinations. From Table 9.1 we deduce that

lemof gasat STP =———gem ™2,
s 224x10° °

where M is the molecular weight of the gas
1 cm — STP =2.69 x 10"’ molecules cm™.
The above expression is valid for all gases. It follows from these two examples that
for water vapor
1g cm™ (H,0) = 3.34 x 10* molecules cm™.
Thus, the unit “molecule cm™” is independent of the nature of the absorbing gas and
basic to all gases and offers a way of unifying absorber concentration units for all

atmospheric constituents.

Despite this benefit, absorption by gases is often expressed in terms of the mass
absorption coefficient. For this case, the path element is expressed as

du = p,ds
and in terms of the mixing ratio (mass)
r=pdpur
du = rp,;,ds

For vertical paths (together with the hydrostatic approximation), it follows that

22 1 P
u(z,2) =] rpa,-,dz=§jp rdp (9.4)

This is a formula that should be learned and its derivation understood.
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Example 9.2: Water vapor and sea surface temperature. Develop a relationship
between the vertically integrated water vapor path through the entire vertical extent
of the atmosphere (precipitable water) and the sea surface temperature. Assume

(a) the vertical profile of specific humidity (expressed in terms of mass mixing

ratio) has the following form r(p) = r(p/p;)* where r, is the surface mixing
ratio.

a(T;-T,)

(b) the saturation vapor pressure at the surface is e, ~ bet I such that

ry = rh0.622e/p;.

Derive your answer in terms of the surface relative humidity, A and the SST.

Answer: The column path follows from Eqn. (9.4) as

h _ )
u="""pele T")]J.p (p/p,) dp
8p; 0

or

Precipitoble Water {g-cm™?)

1
o} 10 20 30
Sea Surface Temperature {°C)

9.2 From Intensity (Beam) to Flux (Diffuse) Transmission

Transmission along a slant path s; — s,

k,,dz/
T(Sl,sz)zej ﬂzT(zl’Zznu)



Tr(z1, 7,,, 1) is referred to as the beam (or intensity) transmission function for the path defined by (z,,z5, ).

The flux transmission function is defined as (assume azimuthal symmetry)
1 1
T, (2= [ il szl [ pidp 9.5)

which is a gweighted transmission function characterizing the transmission of the irradiance (flux)
through the slab z; — z,.

As noted previously in section 4, we can write Eqn. (9.5) in the following way

T (z),2y) =2E5[2(2,2,)] (9.6)

where E; (x) is the n” exponential integral
E,(x)= Lwe‘”"dn/n”

(n = /g, x = 7). To a high degree of accuracy,
2E,(x)~e ™ 9.7
where £ = 1.66 (the so called diffusivity factor). Therefore,

—p | kdu
Tf(Zl,Zz)=e j

(9.8)
The important point here is that the flux transmission can be modeled using the transmission for intensity
with the path merely increased by the diffusivity factor B Thus in developing theories for broadband
functions, we will consider intensity transmission and note that broadband flux transmission is given by
this transmission function with the introduction of this diffusivity function.

9.3 Frequency Integrated Absorption of a Single Line

Most problems of interest require spectrally integrated transmission (or equivalently absorption) func-
tions over a variety of spectral scales varying from the scale defined by the line half width to scales
attached to broad spectral regions 10's-100's cm™ wide. Before understanding how we can do this
complicated integration, it is useful to study the heuristic properties of the integrated absorption of a
single line.

The quantity of main interest is the monochromatic absorption as defined by the frequency integrated
absorption, namely

W= [dvii-e™) = dvii—e o) (9.9a)

where u replaces s as a symbol of the measure of path. This absorption is called the equivalent width W(u)
since it measures the width of v units of a hypothetical square shaped line that gives the equivalent
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integrated absorption. It is crucial to recognize that for the developments here and in the next section, the
absorption parameters (such as line half width « and intensity S) are constant and independent of path).
This is obviously unrealistic and we will discuss later how the results below can be modified to treat this
added complexity.

(a) Limits to the Integrated Absorption of a Single Line

There are two extremely useful asymptotic limits of W(u) that occur repeatedly in discussion of
molecular absorption.

o The weak line limit (linear limit)

0

/
g - g g, i iy

Fig. 9.2 Schematic interpretation of the equivalent width.

Suppose u — 0, Sf(V)u << 1, then
eI - Sf(v)u (9.9b)
and

W:&4fwwv=&, (9.10)

which is valid no matter what the line shape.

e Strong line or square root limit:

For this limit we consider the Lorenz line shape

o, lrx
f=v,) =t
v-v,)’ +a;
1 1
Suppose | v—v, | >> a; so that - then

(v—v0)2+af (v—vz)

o
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S / Suay

uo, |t vy )2

exp| — —Lz S| —e 7=vo)
v-v,) +aj

and

Sua;

W)= [dv|1-e "7

and

W(u)=2,/Suc, . (9.11)

Conditions of strong absorption occur either as a result of abundant u absorber and/or high
pressure (i.e., large oy). Weak absorption is sensitive to abundance. A physical interpretation of
these limits is afforded by reference to Fig. 9.3. In the linear region absorption occurs at the
center of the line. A point is reached where all the energy is removed from the line center so that
as u increases, the absorption increases through the wings (strong region).

10

b

§

)

g

-]

5
2
® 0l

g

H
£

0.01 1 1 aasnl sasaal
10-¢ 10-3 10-¢ 10-3 10-2
Absorber amount pl/g cm=-2?
0

£ VC

3 (b)

£

g

E-1

£

]

i

1.0 N -
-2 -1 Q 1 2

v-~vgfcm !

Fig. 9.3 The physical interpretation of strong and weak line absorption.

(b) Broadband Absorption by a Single Lorenz Line
The equivalent width of a single Lorenzian line is expressed by the Ladenburg-Reiche function,

Suo; I w

W)= [ |1=e 7 iy =27, | ve 1, () + 1,(2)] (9.11a)

L-R function
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where y = . This can be usefully approximated by

o

5147723
W, . ~Su[1+( Su J } (9.11b)
4o,

within 1% for all values of Su/¢;.. Figure 9.3 (upper panel) provides a schematic demonstration of the
strong and weak absorption and the L-R function. We call such plots 'the curve of growth' and these are
fundamental to very important topics of atmospheric radiation.

(b) Absorption by Lines with Distributed Line Intensities

Here we consider the absorption averaged over lines that vary in intensities from line to line but not in
their width and do not overlap in any way. Since the variation in line intensity over a band of thousands of
lines is much more significant than is the variation of ¢, this is a reasonable approximation. Furthermore,
we will see how certain models of bands of overlapping lines reduce to this simple distribution of single
lines.

Figure 9.4 is a diagram of the line intensity distribution expressed as the function p(S) where p(S)dS is
the fraction of lines having intensities between S and S + dS. There have been different models derived
according to the assumed form of p(S)dS and we will now consider two specific examples:

ToE

Log,(number of lines)

Log,, (ine strength)

Fig. 9.4 A histogram (vertical bars) of all CO, lines at wave numbers between 450 and 900 cm™. Each
bar represents the number of lines in a given line group. Lines with strengths within 20% of the
mean strength of a given group are gathered into that group. Analytic line-strength
distributions obtained with the Goody (dotted line) and Malkmus (long-dashed line) models are
also shown (after Crisp et al., 1986, with modifications).

e Goody (1952)

P(S)= i exp{— i}
o

o

9-8



e Malkmus (1967)
P(S)= é exp[— %}
where o is the mean line intensity,
o= j 0°° Sp(S)ds .
if

k, =f()S

then it follows that
W= 0°° P(SW(S)dS
and
W= j-: p(S)dSI_Zol —exp[—Sf (V)uldv

Thus:

e Goody

w=| " o 1+ SFyuldy
s }—1/2 (9.12a)
u

W, = ou{l +
o,

e Malkmus

W= jw In[1+ uSf (v)]dv

1/2 (9.12b)
W = HH 4Suj _1}

2 o,

9.4 Overlapping Lines: Band Models

It is obvious that over some interval Av;, increasing the optical mass () cannot yield an increase in
absorptance indefinitely if several overlapping lines are present in Av. Thus the square root formula must
fail. Attempts have been made to modify single line absorption theory to include line overlap—but these



on the whole are not fruitful. More successful are the approaches adopted based on treating the array of
lines as a statistical entity rather than as a group of individual lines. Models of this type are referred to as

statistical band models.
(a) Regular Model

Elsasser, /1938: Mean absorption and equivalent absorption coefficient of a band spectrum. Phys.
Rev., 54, 126-129. Goody and Yung, 4.5. This model is most closely met for P + R branches of linear

molecules.

1 sinh(2ra/ 5) Rl a;

JeW)=— T -nd) +a’

= (9.13)
O coshQra /o —cos(2zv/9)

n=—o
The corresponding transmission for homogeneous paths is

= 1
T, = EIAvexp[—SfE Wuldv

where Av= 6. This integral cannot be solved in terms of elementary functions.

Consider two limits
. %L —> o0, sin K278, cos h27wal S—> o and

T, =exp[-Su/J]

Here lines strongly overlap and there is no line structure. Further increase of ¢;/d (i.e., pressure)
has no effect on the continuum. Transmission is independent of line shape.

o sinh2zay ~27xoy/0., cos 2zay/0~ 1 (small o/S)

7, =1—q)(q/ﬂSaLu/é‘):l—CD{‘/%}f= 2’;‘;“9 9.14)

where

D(x) = ““dx = probability integral

2 N
Jrdo
The agreement with observation for this model is excellent when applied to an appropriate
absorber (Fig. 9.5).

(b) Random Models (G + Y, p. 158)

Whereas the application of a regular band model to molecular absorption in the atmosphere has
limited scope, use of random band models has been far more widely used and validated against
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Fig. 9.5 (a) Line shape for the Elsasser model (after Goody, 1964). (b) Comparison of transmission
for purely exponential type (single line) and the Elsasser band model of regularly
overlapping lines, (c) Measured and fitted transmissions for a CO absorption band.

observations. One approach to the development of a random model is to take an infinite array (like the
Elsasser model) and then combine a number of these arrays by multiplication. Consider for illustration a
band of constant line intensity, then

N
k= kP
i=1

is the absorption coefficient at v due to the superposition of N lines distributed randomly in the interval
—NJ2 and NJ2 by lines located at v;. The transmission is

N N
T, = exp(— uy. ky)J = [ Texp(-uk) 9.15)
i=l1 i=1

If the probability that a single line lies in the interval dv; is dvi/6, then the joint probability that there are
lines between v; and v; + dv;, v;and v, + dv,, and so on is

lﬁ[ﬂ (9.16)

For all possible arrangements of lines in the interval

N6/2 X .
_TILT epl-uk )
e LIE ) (9.17)

N6 /2

N
Hi:lJ.—N()'/ZdVi /o

with some approximation (n — o)
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— 1 ¢
T -——| 1- —uk,]d
—>exp[ 5. exp[—uk, ] v} 9.18)

=exp[-W /0]

This states that the transmission through a random array of lines equals the exponential of the mean
absorption (W/5)

Consider now M such arrays of random lines superimposed on one spectral interval M6 wide, then

T, =exp[-W,/ M5] (9.19)

where W; is the equivalent width of one line in the 5 array. Since transmission is exponential,

M

T=]]%-= exp{—LZWl} =exp[-W /5] (9.20)
i-1

Now the average absorption W was derived according to Eqns. (9.12a) and (9.12b) for Goody and
Malkmus line intensity distribution. Thus:

T ey —Suld
Goody p_(l + §u/7z05L)”2
- (9.21)

— \1/2
— - 4
TMalkmus =exXp ;Z-;.IL [(1 + ﬂ_iu J - l:l
L

Clearly lines are not randomly distributed (they are predicted by quantum mechanical formula) and so a
random band model is just an approximation to the actual transmission by a band of overlapping lines.
The viability of the model, however, can be tested against laboratory data—with very good agreement
(Fig. 9.6).

T T T T Tr—TTrrTT

T

E

740 mm Hg

125 mm Hg

Transmission (%)

iy - LLLll_lL__I__l_L.I.I.H-H
10 100 160

u/uy

Fig. 9.6  Comparison between the random model (full line and observation (points) for sections of the
6.3 um, 2.7 um, 1.87 um, 1.38 pum, and 1.1 um band of water vapor. The different symbols
represent absorptions by different bands.
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(c) Band Parameter Fits (G + Y, p. 158)

The idea of a band model is to use Eqn. (9.21) to fit actual spectroscopic data to deduce the band pa-
rameters, namely ¢;, 5, oo We will not discuss the actual methods by which band models are matched to
observations to provide these parameters. It suffices to state that this is done by fitting in the strong and
weak limits of absorption, using Eqns. (9.18a) and (9.18b) in the form

TGoody = expl— w2+ S—2)1/2J

TMalkmus =exp| —

5° ( 4w? Jm
1+ > -1
2w Ky

where we define the w (weak) and s (strong) parameters as

1

w=—> Su

Av &

s :ALV ,~ VS,

Table 9.2
Band Interval (cm™) S/8 (em’g) wal &
H,O rotational 40-160 7210.30 0.182
160-280 6024.80 0.094
280-380 1614.10 0.081
380-500 139.03 0.080
500-600 21.64 0.068
600-720 2.919 0.060
720-800 0.386 0.059
800-900 0.0715 0.067
CO, 15 um 582-752 718.7 0.448
03 9.6 pm 1000.0-1006.5 6.99 x 10° 5.0
1006.5-1013.0 1.40 x 10° 5.0
1013.0-1019.5 2.79 x 10° 5.0
1019.5-1026.0 4.66 x 10° 55
1026.0-1032.5 5.11 x 10° 5.8
1032.5-1039.0 3.72 x 10° 8.0
1039.0-1045.5 2.57 x 10° 6.1
1045.5-1052.0 6.05 x 10° 8.4
1052.0-1058.5 7.69 x 10° 8.3
1058.5-1065.0 2.79 x 10° 6.7
H,0 6.3 um 1200-1350 12.65 0.089
1350-1450 134.4 0.230
1450-1550 632.9 0.320
1550-1650 331.2 0.296
1650-1750 434.1 0.452
1750-1850 136.0 0.359
1850-1950 35.65 0.165
1950-2050 9.015 0.104
2050-2200 1.529 0.116
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Fig. 9.7
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Absorption in the spectral region from 4400-2800 cm™ where CO; and H-O overlap.

Example 9.3: Transmission in the CO,-H,0 overlap band. In the 15 pum region, the
transmission associated with two overlapped absorption bands has the form

THZO+C02 = THZO X TCOZ

From the band parameters listed in Table 9.2, we have

CO, s/0 =718.7 mald = 0.448
H,O s/6 =2919  zal/d =0.06
then
~2.919% fuy; 4
THzO =Cxp 172
1+ 2.919 X fiu
U006 "
= T18.7% Puco,
TCOz =CXp 172
14 718.7 % fu
U 0448 T

where upo and ucp, are the respective path lengths of water vapor and carbon
dioxide under consideration. A typical column value of water vapor (see Example
9.2) is uz0 = 2.8 gem™ and a typical value of the column carbon dioxide path is uco,
= rpy/g ~44 x 330 x 101300/(980 x 29) = 0.5 gem™. These values together with =
1.66 lead to

T 11.0vco, =0.406x6.6x107 =2.68x10™
and for double the amount of CO,,
TH20+C02 =0.406x7.0x10" =2.84x107"

We conclude that the CO, portion of the band is highly opaque and increases in this
absorber only marginally reduce the already small transmission.
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9.5 The Method of &k Distribution

The k-distribution method for transmission is based on grouping of the absorption coefficients k, in
some spectral interval (or band) (Fig. 9.8). In a homogeneous atmosphere, the spectral transmittance is
independent of the ordering of & for a given spectral interval. Hence, the wave number integration may be
replaced by an integration over the & space. If the normalized probability distribution function for £, in the
interval Avis given by f (k) and its minimum and maximum values are k,,;, and k.. , respectively, then
the spectral transmittance may be expressed by

_ 1 —k,u _ @ —k,u
T(w)=— jme dv = jo e F (k)dk
where k,,;, — 0 and k,,,,x — ©

j: FU)dk =1

Tk

v

Fig. 9.8 The concept of the k-distribution approach. Divide the plot into n horizontal slices, centered
on values k;, k..., k. F; denotes the area of the v axis covered by points where

- <p 8K
2 2

Moreover, a cumulative probability function may be defined in the form
k
g =[ f 922)

where g(0) = 0, g(k > ) = 1, and dg(k) = f(k)dk. By definition, g(k) is a monotonically increasing and
smooth function in & space. By using the g function, the spectral transmittance can be written

1 L N
T(u)= J‘Oefk(g)“dg = Ze ke Agj (9.23)

j=1
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Since g(k) is a smooth function in k space, the inverse will also be true here: that is, k(g) is a smooth
function in g space. Consequently, the integration in g space, which replaces the tedious wave-number
integration, can be evaluated by a finite and relatively small number of exponential terms.

The steps to implementing the k-distribution approach are highlighted schematically in Fig. 9.9.
Figure 9.9(a) shows the spectrum of %, in a portion of the 9.6 um O; band at a pressure of 30 mb and a
temperature of 220 K. Figure 9.9(b) shows the probability distribution f{k) as a function of k derived
from this spectrum (we will not discuss the details of how this is done although it is portrayed in Fig 9.8
and discussed further in G+Y). In Fig. 9.9(c) the cumulative probability function g(k) is shown as a
function of £&. We may then compute k(g) as a function of g from Eqn. (9.22). This curve is illustrated in
Fig. 9.9(d). Since g is a smooth monotonic function, a few quadrature points suffice to achieve a high
degree of accuracy in the transmittance computations.

\
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Fig. 9.9 (a) Absorption coefficient k, in units of cm”atm™ as a function of wave number with a
resolution of 0.05 cm™ in the 9.6 ym O; band p = 30 mb and T = 220 K. (b) The probability
function f(k) of the absorption coefficient. (c) The cumulative probability function of f(k)
shown in (b), plotted as a function of k. (d) Same as (c), except that values of the absorption
coefficient are expressed as a function of g.

The physical foundation for the £ distribution is quite simple, but it offers clear advantages in the

computation of broadband transmission. It has also been discussed by Domoto (1974) on some aspects of
the theoretical foundation and the Laplace transforms for a number of band models. The idea of
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scrambling and ranking absorption lines was described in the work of Ambartsumian (1936) of stellar
atmospheres.

There is a second way to approach the k distribution and it follows from a closer look at Eqn. (9.22).
It follows by definition that the transmission can be expressed as

T(u)=LLf (k)]

where £ is the Laplace transform. Thus the transmission is the Laplace transform of f{k) and this
distribution is obtained as the inverse transform

SO = LT )]

For some functions, this provides a convenient way to obtain the spectral function f{k). As it turns out, the
inverse Laplace transform of the Malkmus model is obtained analytically as

o o4

where k =o /& and v=a,/0.

9.6 Selected Empirical Transmission Functions

A wide variety of empirical transmission models based on laboratory measurements have been em-
ployed in the literature. For example:

W,z =Au W<w,
=B+ Clogu W>W,
u=u(p/prp)”
where A. B, C, W,, and n are empirical constants. # is absorber mass, p is pressure (subscript "LAB"
refers to laboratory conditions). Most only involve single path parameter u. All empirical models should

be used with caution: unless based on theory, applicable only to a range of parameters for which they are
fitted.

Two widely used empirical approximations to the solar weighted broadband absorption function

jFMA (u)dA

A
="

for the path u were derived by Lacis and Hansen (1974) for UV and visible ozone absorption and near
infrared water vapor absorption. (The transmission is just 1 — 4 ). The formulae are:

0.02118X
14+0.042X +0.000323X 2

A2 (Q)= (9.242)
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1.082X 0.0658X
(1+138.6X)"%°  1+(103.6X)°

A (Q) = (9.24b)

where X is the ozone amount for the slant path expressed in cm STP and X = Qm, where Q is the column
ozone amount above some specified level
354,

122447 +1

”

and p, = cos 6. This factor (referred to as the relative airmass) differs only from sec 6, for 6 near 90°

due to refraction effects of the solar beam at these glancing angles.
The formula for water vapor is

2.9u

A (w)=
o () [(1+141.5u)"% +5.925u]

(9.24¢)

where 1 = wm, such that w is the column water vapor amount (precipitable water) in units of gem™ (this is
equivalent to cm STP). The total broadband absorption with respect to the entire solar spectrum is

A A, () + 47 (Q) + 4,7 (Q)
given that the three absorptions occur in three different portions of the solar spectrum such that they
overlap in a simple additive way. Figure 9.10a presents comparisons of the two formulae against actual
spectrally integrated ozone absorptions. Figure 9.10b shows the broadband water vapor absorption
derived from a number of different sources of both absorption data and spectral solar flux. Much of the
difference can be explained by the actual choice of /', for integrating the spectral absorption. These
differences lead to significant differences in calculating the solar flux.

Example 9.4: Broadband transmission of the direct solar beam. Consider the

following
Y Qoo

QQ_"}‘O ’T(‘*‘)

w 1) 777

\ Qo po T (+uz)

Two overlying absorbihg layers of path u; and u,. In the shaded upper layer, the
absorbed flux is

AF, = Q@ﬂaz(“lmr)
where m, ~ 1/cos 6 The absorption in the lower layer is then
AF, = QCQ#({)[Z((uI +uy)m,) - Z(ulmr )]
The transmission through the two layers is 7 =1- A4 ((u, +u,)m,)
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Fig. 9.10 (a) Percentage of the total solar flux absorbed as a function of ozone amount £2. (b) Same as
(a) but as a function of water vapor amount.
9.7 Transmission Along Inhomogeneous Paths (Section 6.4 Goody and Yung)
So far all our discussion of transmission applies to the case of homogeneous paths (i.e., paths over
which temperature and pressure and hence k(v) are constant) such as might arise in the laboratory. We
now must modify this view as

e Most problems of transmission in the atmosphere apply to paths for which p and T vary.

e Laboratory data are obtained for fixed p and T, which might not be representative of atmospheric
conditions and some adjustment is needed.

Figure 9.11 provides a schematic illustration of the consequence of transmission along a pressure varying
path. The atmospheric line profile is no longer Lorenzian.

Low-prassure

High-pressure Lorentz profile

Lorentz profile

Frequency, ¥

Fig. 9.11  Schematic composite showing how an actual line profile over a variable pressure path forms
as a composite of the individual Lorenz profiles. The atmospheric line profile is not Lorenz in
general: it is more sharply peaked because of low-pressure contributions, with broader wings
due to high-pressure contributions.
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In treating inhomogeneous effects, the assumption is made that the absorption for paths along which p
and T vary can be approximated by absorption expressed in terms of a homogeneous path with the
parameters scaled in some way. Two principal forms of scaling are used. Before discussing these, it is
worthwhile considering one case for which an analytic solution exists.

(a) Constant Mixing Ratio, Isothermal Atmosphere—An Exact Solution

There is one hypothetical case for which the algebra can be done. Consider a line centered at v, = 0
for convenience, then 1(v) has the form

w_SMayp/py) (9.25)

O 7 Lo/ 20T

du= Ldp =mdp (m = absorber 'mass')
g

Also, assume the property
rS = constant (9.26)

such as occurs for an isothermal atmosphere (S constant) with a uniformly mixed absorber (» constant).
Then

S}”p D 5
(v) = s dp 9.27
) Mogjpz wia) +p" 27

where p=p/p, and

5 B
7(v) =17 log, {LJ +p? n==Sul/2ra,
a(}
i (9.28)
2 2\
Tv = e—r(v) = (—V + alz j
vV +a;

for a; =a,p,. Figure 9.12 in Example 9.5, shows the comparison between the transmission derived
according to Eqn. (9.28) with - = 1 and the transmission calculated assuming the mean pressure

P =(p,p,)"* in the homogeneous path formula

S a,(p/p)u
T, =——; — -
7 v +la,(p/p,)]

(b) Scaling Approximation

The simplest and most common way of dealing with nonhomogeneous paths is the 'scaling' or one
parameter approximation. Let us start with the assumption that pressure and temperature effects on the
absorption are separable according to
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ku(p,T) =¥ ()@ (p) x(T) (9:29)
Example of factorization: v — v, > ¢ as occurs in line wings, then

_Sa;ln
ey,

o o

:>‘P(v)~[ j ®(p)~-L, and

N To 1/2
X T
Then

T

uy (py,T)
[ ke, (p, T)au(p,T)

u (pr>Ty)
approximates to
k, (p,.T,)

=R T X D

(P, T, (9.30)

where

ﬁ‘f O(p) x(T) du
D(p,) x(T,)

It is generally assumed that

O(p)~ p"

and

2(T)~(T)™

ﬁ:j[p%j [TFJ du 9.31)

Table 9.3 provides some often used values of # and m for various absorbing gases.

thus
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Table 9.3: Generally accepted values of n and m for various absorbing species.

Gas Spectral Region n m
Water vapor 0.9-1 0.45
Carbon dioxide  Shortwave 1.75 11-8
Ozone 0 0
Water vapor Longwave 0.5-09 045
Carbon dioxide 1.75 11-8
Ozone 0.4 0.2

It is generally assumed that there is no foundation for Eqn. (9.25) other than it seems to work. While
this statement is generally true, we see in the strong absorption limit that the absorption coefficient
actually factors in this way with n = 1.

(c) Two Parameter Approximations: The Van de Hulst - Curtis - Godson (VCG) Approximation

The previous method relies only on a scaling of the absorber amount to correct for path inhomo-
geneities. In general n varies depending on the absorption regime (n = 1 strong, n = 0 weak) and so is
poorly defined in general. Obviously, a better and more sophisticated approach would be to employ two
disposable parameters to simulate the absorption (e.g., # and #» in the scaling approximation). The most
useful two-parameter method proposed is the Curtis-Godson approximation, which attempts to define a
scaled absorber amount specified for a mean pressure. The approach was developed independently by
Curtis (1952) and Godson (1954) and earlier by Van de Hulst (1945) in a rather intriguing article (unfor-
tunately in French)—thus I prefer to call the approximation VCG. The aim of the VCG approximation is
to provide such a fit of the transmission. To discuss this approximation, consider isothermal paths (for
convenience only). The criteria adopted are to match the absorptions exactly in the strong and weak
limits. To proceed, we start with

A= o iJ‘Avl —epr— kvdu]dv
1 (9.32)
:A_VLV1—exp“Sf(v)du]dv

e  Weak limit

We obtain the weak-line limit directly by considering the exponent in Eqn. (9.32) as it
approaches zero

F_ J‘e-fsf(”"“dv “ﬁj‘ [1 —J.Sf(v)du]dv ~1 —deu

Since /f{v)dv = 1 for regular band models, ¢; and S; are constant over the interval chosen and
thus the VCG approximation in this context states.

Sit = deu (weak limit)

or
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Y
Il

jdu (9.33a)

Strong limit

The strong-line limit follows in an analogous way to the derivation of the strong limit for
homogeneous paths. For the inhomogeneous case, in the strong limit where |v - v,| >> ¢ then
for a single line

%:L exp{—jsaf /Zﬁdu}dﬁ
AvJav )

where v=v-v, . If

-1/2
‘= ‘7“ SaLdu}
T

then

~ 1 12 |
T = EU Sa, /7zdu} j N exp[— 7jdx

and since Av>> ¢, the integral limits are effectively infinite. Thus
~ /2
T~1- ZU(SaLdu)T

and by matching the equivalent homogeneous limit, we obtain

o = J.adu (strong limit)

(9.33b)
B = j B
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Example 9.5: Band model example revisited. Suppose that the vertical distribution of

absorber has the form 7(p)=r,p° where p=p/p,. Then under the VCG
approximation,

Ezj-duz%j;?dﬁzr;r_?

and that
1
pu = fpdu = pxjoﬁdu
since du = rdp/g,

2 2
~~ Pyl 1—4 Ts Dy
P IOP P s

and thus p=0.8p,. Now this may be simply applied to either the Goody or

Malkmus band models in the following way. Consider the Goody band model: for a
uniform path

(—o/0)u
7 u)=exp ———————
GOOdy( ) p|:(1+07/l/7l'0{L)1/2
where for a nonuniform path
~ (—o /o
7, U)=ex
Gondy (1) p{(1+ o77/7ijS1~9)”2

where ¢, is the band line half width defined at pressure p,. Using the parameters
from our earlier example, with # = 2.8 gcm™ then

~2.919%2.8
(1+2.919%2.8/0.06x0.8)"'2

T Gooay (U =2.8) = exp{ } =0.536

compared to the homogeneous path value of 0.498.
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Example 9.6: A test of the VCG. The accuracy of this approach can be tested for the
hypothetical case considered above. Consider the atmospheric layer as shown below,
which extends between pressure p; — p,. Set

p2=fp1

then according to Eqn. (9.28)
exac V2 + a (1)2
7, t(1,2) = 771n 2—L2
vi+a,(2)
which can be written in the form
— 2
T]c:xact (1’2) — 7]11’1 (V/aL) 2+ l/f
via,) +f
where @, is the mean half width defined as @, [, e, (2)]"*. The VCG
approximation expresses the optical thickness in the form
T S ——
2ra; (via,)” +1
where u and «, are defined by Eqns. (9.33a) and (9.33b). It is straightforward to
show that

i="La=y)
g
a, :(1 -;fJaL(l)

for the case considered here. Thus the optical thickness of the layer predicted by the
VCG approximation in terms of fand «; is

106y =gy A=) 2
T, (a) 77(1+f)(V/&L)2+1

T
s‘ ISOTHERMAL -

e CURTIS = GOBSON
=== G000Y

ERROR 1 %)

| L
agy al Ll

Fig. 9.12 Percentage error of the VCG for a single line and a constant mixing ratio

forf=0.
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9.8 Problems
Problem 9.1
Briefly explain or interpret the following:
(a) Two sealed chambers contain the same amount of water vapor and are at the same temperature.
One contains only water vapor, while the other holds a mixture of water vapor and air. Which has
the smaller transmissivity averaged over a narrow spectral region containing a single water vapor

absorption line?

(b) The two sealed cells of (a) now both contain some amount of water vapor mixed in air. The
concentration of water vapor in one cell is adjusted so that the transmission of 10 um radiation
through one cell matches the transmission of 6.3 pum radiation through the other cell. Which cell
contains the most water vapor?

(c) The temperature of both cells is now increased thus raising the pressure within the cell but
assume no other changes occur. At which wavelength is the transmission a maximum (ignore any
temperature effects on absorption)?

Problem 9.2

Develop a relationship between the vertically integrated water vapor path through the entire vertical
extent of the atmosphere (precipitable water) and the sea surface temperature. Assume

(a) The vertical profile of specific humidity has the following form g,(p/p;)* where ¢, is the surface
specific humidity.

(b) es = bexpla(T, — T,)]. Derive your answer in terms of the surface relative humidity, A, and the
SST Ts.

Problem 9.3
Compute the optical path for:
(a) Water vapor of a 100 mb thick homogeneous layer of mixing ratio r.
(b) Total atmospheric CO, if the mixing ratio is 330 ppm by volume.
Problem 9.4

The following function

day?
ry)=r, Urap)?

reasonably resembles the vertical profile of ozone mixing ratio such that with ¢ = 1600, the maximum
occurs at y = p/p, = 0.025. Assuming a value r, = 1 x 10 kg/kg, derive the total column ozone and
express your answer in Dobson units (the density of ozone at S.T.P. is 2.14 kgm™).
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Problem 9.5

The rationale for the surface pressure measurement using two frequencies in the O, A band is
discussed in Section 3.5. Given the definition of optical thickness, obtain an explicit form of the function
t(ps) given in (3.41) assuming (1) a Lorenz line and frequencies at the line center (v = v,), and (2)
frequencies in the line wing | (v — v,) | >> ¢;. Neglect the effects of atmospheric temperature on line
intensity and half-width. Express your answers in terms of S, the line strength; ¢, the line half width
defined at some reference pressure p, the mixing ratio » of the gas, py, the satellite pressure, and the
acceleration by gravity g.

Problem 9.6

Absorption in the atmospheric window between 8 and 13 um is represented by an absorption
coefficient of the form k,e where e is the water vapor pressure (in kPa), k, = 10" (g cm™)" kPa™. If the
water vapor pressure near the surface is 1 kPa, calculate (1) the transmission of a horizontal path 1 km
long near the surface, and (2) the transmission of a vertical path of atmosphere assuming that the
distribution of water vapor pressure is proportional to pressure units of atmospheres) raised to the fourth
power.

Problem 9.7
The absorption coefficient in the continuum has the form
k,~k,,e
where e is the water vapor partial pressure in units of atmosphere. Assuming a hydrostatic atmosphere

p= pse—z/H

where p; = 1013.13 mb, and assuming that the mixing ratio profile of water vapor is similarly exponential
with

H,=H/3
where H, is the scale height of vapor

(a) Derive an expression for the optical mass u for the vertical path from p=0 to p where
p=p/ p, is the pressure in atmospheres. Express your answer in terms of 7, the surface mixing
ratio of water vapor, and p.

(b) Assume that the temperature dependence of the absorption parameter k; , has the form

k2,v = k2,v,s /p

show that

T, = exp[- 4]
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where

pork

2,v,8

4354
where e=rp/0.622.

Problem 9.8

Assume the following profile for water vapor mixing ratio:

Calculate the broadband water vapor absorption of solar radiation in 10 adjacent 100 mb thick layers from
the top of the atmosphere (0 mb) to 1000 mb and plot this absorption as a function of the mean layer
pressure.

(a) Contrast the vertical profiles of absorption assuming the following values of ;- 5.4, 10.2 and 18.4
gke.

(b) Calculate the Planck weighted broadband flux absorption using a Goody band model and the
parameters given in Table 4.4 (p. 11) for the rotation band and the vibration band. Calculate this
transmission for a path extending through the column for the model atmosphere of 1 above (do
only for r, = 10.2 gkg™"). Assume 7' =270 K in calculating the Planck Function.

(b) Calculate the broadband transmission as in (2) above but for a path extending up from a reference
level located at 800 mb to the top of the atmosphere and for a path extending downwards from
this reference level to the surface. Plot these transmissions as a function of either pressure or
altitude (your choice).
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AT622 Section 10
The Atmospheric Absorption Spectrum

The aim of this section is introduce the characteristics of the atmospheric absorption spectrum as
summarized in Fig. 10.1.
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Fig. 10.1 (a) The broad characteristics of the atmospheric absorption spectrum. (b)The spectrum of
solar flux between the ultraviolet and infrared with molecular absorption features indicated.

10.1 Visible - UV

Atmospheric absorption calculations in the visible and UV spectrum are commonly done on the basis
of empirical data and at a level without requiring the degree of understanding applied to vibration-rotation
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bands. Figure 10.2 shows the absorption by O, and O; by electronic transitions. It doesn't show the near
UV Huggins bands of the visible Chappuis bands of O;. Both of these electronic bands are of some
importance to solar absorption but the absorption is weak.

200+

Fig. 10.2  Depth of penetration, defined as altitude at which T = 1 of solar radiation in the ultraviolet
spectrum as a function of wavelength. The line shows the altitude of unit optical depth. The
vertical arrows indicate ionization limits. The broken line represents predissociation for
molecular oxygen. After Herzberg (1965).

10.2 The Near IR

The predominant absorption of near infrared wavelengths (0.7-4.0 um) is by several vibrational-
rotational H,O absorption bands. CO, also contributes to near IR absorption by bands centered at 2.7 and
2.0 wm and weak bands at 1.6 and 1.4 wm. These features appear in Fig. 10.1b.

10.3 The Far IR

Again the most dominant absorption in the far IR is that of water vapor. Figure 10.3 shows the H,O
absorption spectra based on use of a theoretical line shape. Superimposed on this absorption is the
absorption centered at 15 um and at 4.4 um by CO, and weaker bands at 10 and 5 um. Ozone has a strong
vibration-rotation band centered at 10.6 wm and a weaker band at 14 um.

10.4 'Greenhouse Gases'

A variety of trace gases absorb in the far infrared and may be considered as greenhouse gases (e.g.,
CH4, ... etc.) and the prevalence of the absorption by these gases is highlighted in Fig. 10.4.
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Theoretical absorption coefficients of pure water vapor at 1 bar and 296 K. The vertical axis
is the molecular absorption coefficient divided by a 'radiation term",
fv/c)=(v/c)tanh(hv/2kB), which is approximately equal to v/c (the frequency in wave
numbers) for v/ic > 500 cm™. After Clough et al. (1980).

Fig. 10.3
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Fig. 10.4  Some general properties of absorption by greenhouse gases.
Molecule Lifetime Concentration  Spectral Range Band Strength
(years) (ppbv) (cm™) (cm”atm™) at 296K
CO, 2 3.39x 10° 550-800 220
0; 0.1-0.3 variable 950-1200 312
N,O 120 300 1200-1350 218
CH,4 5-10 1650 950-1650 134
CFCI; (CFC11) 65 0.18 800-900 1828
CF,Cl, (CFC12) 110 0.28 875-950 1446
CF;Cl1 (CFC13) 400 0.007 1075-1125 1758
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10.5 Water Vapor Continuum Absorption
An especially important form of absorption for atmospheric problems is the more or less continuous

absorption in regions where line absorption is weak. The continuum occurs at all frequencies (Fig. 10.3)
but is most important in window regions in which continuum absorption exceeds line absorption.

The absorption in these windows has special properties such that
k, =k p+k,e
where p = atmospheric pressure, e = water vapor partial pressure, and &k, > k;. Thus,
k, ~ ke

T, ~ J-kzedu

This is called "e-type" absorption. The mechanism for this absorption is not decisively known at this
time.

Mechanism?

* Qverlapping foreign broadened lines, but

P - Sal IT

v

k.e
(v—v0)2 :

in wings. This was the historical explanation. It was discovered however that continuum
absorption was much stronger than this (especially in the tropics)

*  Overlapping self broadened lines (water-water collisions)?

Sa; /
k, ~L”2~k2e
v-v,)

since «; proportional to e.

*  Dimer absorption?
Temperature variation is the reverse of line absorption and has the approximate form

d(T)=exp(1800/T)
Roberts provides a parameterization of &, such that

@(T)
(7,)

kv(pﬁT)= lp(V’T:;)e
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where

W =4.18 + 5578 exp(-0.00787v)g ™" cm™

for T, =296 K with v in crn™.
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Wovenumber, cmi?

Fig. 10.5  Absorption coefficients for water-water collisions in the 1000 cm™ window. n, is Loschmidt's
number.
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AT622 Section 11
Broadband Infrared Fluxes

The aim of this section is to introduce the more common, approaches to solving broadband infrared
radiative transfer. This will culminate in Section 11 in an understanding of the factors that define the long
wave radiative heating and cooling in a cloud free atmosphere.

11.1 A Return to the Radiative Transfer Equation

Here we employ the radiative transfer equation developed previously in Section 4 for an absorbing
and emitting horizontally stratified atmosphere

(T, +u) = I[(t%, wu)e” " 4 j B(z)e-“ niu 4t (11.1a)
U

for 0 < u < 1 which defines radiation that upwells from the atmosphere, and

I(7,—u) = 1(0,—p)e™™“ + jor B(t)e” ™D % (11.1b)

for 0 > u > -1 for downwelling radiation. We now develop this equation in flux form and seek to solve it
when it is integrated spectrally.

11.2 Flux Equations and the Infrared Emissivity

It is trivial to transform Eqns. (11.1a) and (11.1b) from an equation of intensity into a radiative
transfer equation for flux. First introduce

T(t,7, 1) = exp[=(t = 7)/ u] = T’ (¢,7, ) = exp[- f(t = 7)]

where f = 1.66 is the diffusivity factor, then
F,(7) = F,(t%)T (r,7%) + J.T*JrB(t)de (t,7)
or equivalently

Fi(z)=F}(z= O)Tf(o z)+J.7rB (z) (z z)dz'
(11.2)
F(z)= j B (z) (z )z’

Broadband fluxes are then obtained by



F*(z)= j:F; (2)dA (11.3a)

In evaluating the fluxes via the radiative transfer equation (11.2) and subsequently integrating these fluxes
over the entire IR spectrum, four basic A scales of dependence need to be resolved (Fig. 11.1)

e slow A variation of B,

* the unresolved contour of absorption bands

* line structure, separation, etc.

* the finest scale on which Lambert’s Law (and thus on which the RTE) applies.

The usual strategy to accommodate these variations is to:

1. Resolve Planck variation by dividing the spectrum into N discrete intervals (typically ranging
from 4-20 intervals). Models at this resolution are referred to as coarse or wide band models).

2. Develop a model of the transmission function for each of these intervals. This can be done using a
band model or the k-distribution model of transmission

3. The broadband fluxes are then obtained for example by summing over all  intervals, namely

N
F =Y FAA (11.3b)
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Fig. 11.1  Schematic of the various frequency scales encountered in the calculation of atmospheric
longwave flux. These scales refer to (a) the Planck curve, (b) atmospheric gaseous
absorption spectrum for longwave radiation reaching the ground, (c) higher resolution
spectral absorption highlighting individual lines and line separations, and (d) the
convolution of the absorption spectrum and the Planck function to give atmospheric flux
(shaded area).



(a) Emissivity Approaches
Obviously the problem of calculating flux can be significantly simplified by keeping the number of
spectral intervals to a minimum. An approach designed to do this is the emissivity method, which in

principle seeks to reduce N — 1.

If we note that
T{(z,z') =1-4,(z,z")

then
F*(z) = j :JrB,l (2)[1 = 4,(0,2)]dA + j: da j ZOJTBA(Z,)%(Z, 2\dz’
F(2)= j: i j j 7B, (z’)%(z, 2)dz'
Define
£(z,2") = % j A, (z,2)B, (T)dA
ol 70
as the "emissivity" (note this is a function of temperature in principle), then

F*(z)=0T, (1-£(0,2)) + joaT“ (z’)d—‘i(z’,z)dz’
] : dz (11.4)
F (2)= L %(z, 2oT*(z")dz'

The approach is then to estimate the value of the absorption path u defined along the path (z, z’) and
deduce the value of ¢ from an a priori relationship between € and u. Examples of such relationships are
given in Figs. 11.2a and 11.2b. The latter shows the emissivity for three broad spectral regions and
indicates how the temperature dependence reverses from one region to another to produce a much weaker
dependence on the broadband emissivity.

(b) Illustrating the Emissivity Approach

Consider an n-layer atmosphere as shown in Fig. 11.3. Suppose we require to calculate the up- and
downwelling broadband fluxes at some level between layer m and m + 1 (i.e., at level m + 1). For
illustration, consider the contributions to the upwelling flux by the €™ layer as illustrated. In calculating
this contribution, we consider two basic approaches;

* Use Eqn. (11.1). The first step is to establish the path length. For example, the path length
extending from level £ to level m + 1 is
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Fig. 11.2  (a) The emissivity € and the modified emissivity €’as a function of water vapor path u. These
relationships are taken from a variety of sources. R. Rodgers (1967), S. and J. Staley and
Jurica (1970), RAM-Ramanathan et al. (1983), S. Sasamori (1969). The upper curves show &
for three different temperatures and the lower curves show comparisons of € and ¢’ (b) The
contributions to the total water vapor gray body emissivity by three broad spectral regions,
which include the water vapor rotation band, 6.3 um band and the atmospheric window
(excluding e-type absorption). These contributions are shown as a function of u (of u as the
case may be) for two different temperatures (from Staley and Jurica, 1970).
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u, = u(ﬂ)(Mj +u_
P,

where

u_=u(l + 1)(MJ +...+ u(m)(MJ

o o

where the overbar on pressure denotes the layer average, and the power n is the scaling factor
(note we again neglect temperature here for simplicity). The contribution to the broadband
upwelling flux at m + 1 by the €™ layer is

AF*(m+1,0)=oT * (0)[e(u,) - e(u_)]

and the total flux follows as

F*(m+1)=iAF*(m +1,0)

=1
* An alternative approach is to integrate Eqn. (11.1) by parts to obtain

doT* ,(z') 5

F*(2)= 0T} + £(0,2)(0T} - oT}) + j Ozg(z’,z)
Z

i (11.5)
F(z) =0T (1 - &(z,%)) + re(z,z’)wT—,(Z)dz’

* z
where T is usually set to zero and where 7' is the air temperature just above the surface (and
allows for a temperature jump there). The contribution to the flux at m + 1 is thus

AF (m +1,0) = e)[oT* (¢ =1) - oT * ()]

where u is the scaled path extending from the mid-point of the £™ layer to the m + 1 level. This is
usually the preferable way to evaluate the integral term as AoT” is known more accurately in
principle than is A (i.e., this implies that the temperature variation with z is better known than is
the variation of ¢ with z).

There are two important issues to bear in mind in performing these calculations. First, calculation of
the flux at each level requires the evaluation of the transmissivity/emissivity for all n levels. Thus the
computation of the flux profile therefore goes as n’. The second point is that no matter which approach is
taken, the integration through the adjacent most layer (i.e., the m™ layer for the example considered here
for upwelling radiation) should be performed by dividing the layer into sublayers to resolve the cusp (Fig.

11.3a) in the transmission function (note that 7(z, z) = 1 - &(z, z")). Both issues pertain to band model

schemes as well as emissivity schemes.



Example 11.1. The emissivity of the atmosphere. Consider a single isothermal layer
atmosphere of temperature 7; overlying a black surface radiating at a temperature 7.
The temperature of this surface is maintained through absorption of solar radiation by
an amount Q,(1 — @)/4 and the atmosphere is transparent to this radiation. Assuming
the atmosphere, planet, and surface are in radiative equilibrium, we seek to estimate
the emissivity of the atmosphere and T that give rise to the 7, = 288 K for O, = 1370
Wm™and a =0.3.

Q

From Eqn. (11.1) it follows that the outgoing longwave radiation at the top of the
atmosphere simplifies to

F*(z=0)=0T, (1-£(0,%)) + £(0,%)oT*
and the radiative equilibrium condition at the top of the atmosphere is

O.(1-a) —oT*
4 g

(I1-¢e)+oTe

where we simply write & for £0,%). The equilibrium condition for the atmosphere is
T, =21

and it follows that 7; = 242 K for 7, = 288 K. The equilibrium at the surface is

O.(-a)

T+£O’Tl4 =0T;

where the second term of the left-hand side is the atmospheric emission to the
surface. Rearrangement gives

. 2{1 _o.a _ﬂ
40T,

and a value ¢ = 0.78 [Compare this with the value you estimate from Fig. 11.2
assuming 2.8 gm™ for a global mean value of 1.]




(a) Overlapping Gases in the Emissivity Approach

REF: Staley and Jurica, 1970: J. Appl. Met. When two overlapping gases, such as CO, and H,O,
absorb in the same spectral region, the combined transmission may be written as the product

T e =Tco, xT, ,

over

provided the transmission function for each species is of a pure exponential form (as applies to the
random band model). For broadband emissivity,

T=1-¢
and, since ¢ is not a simple exponential function of path u (c.f., Fig. 11.2), the following is NOT true
Tover = [1 - g(uHZO )] X [1 - €(MCO2 )]

An approach to treat this type of overlap in the framework of emissivity models is to define the emissivity
of the combined path

EQUy o +tuco )=y o)+ Eucy, ) —Ae(Uuy o,ucp,)
where A¢ is an overlap correction factor.

11.3 Intercomparison of Different Methods and Some Selected Results

Performances of both emissivity and coarse band models were tested as part of an international
intercomparison program, the Intercomparison of Radiation Codes for Climate Models (ICRCCM). The
results of these intercomparisons are summarized in a special issue of J. Geophys. Res., 96, D5, 1991.

(a) Features of the Clear-Sky Results (Ellingson, et al. 1991)

The range of in-model flux calculations and the manner by which these have changed over the course
of ICRCCM is given in Fig. 11.4a through a comparison of the 1984 (open) and 1988 (shaded)
distributions of downward fluxes at the surface relative to line-by-line calculations. The LBL calculations
are from the Fels-Schwarzkopf (GFDL) model, and the MLS profile with all of the constituents (i.e., H,O,
03, and 300 ppmv CO,) was used as input to all models. For this case, the 1988 data show nine more
non-LBL models that agree to within +2% of the GFDL LBL results, seven of these being from new
participants. Of the 22 climate model type calculations for this case, 13 are within the +2% range, and all
but one fall within the £6% range. On a percentage basis, 67% of the 1998 non-LBL model results agree
to within 2% of the LBL results as compared with 58% in 1984. Similar results hold for the net flux
comparisons at the tropopause and the upward flux at the top of the atmosphere for this atmospheric
profile.

The increase in the fraction of models agreeing closer with the LBL results also holds for the change
of the net flux between the surface and tropopause (13 km), denoted AF,.,, as illustrated in Figure. 11.4b.
The 1988 data find more than twice the number of models agreeing with the LBL results to within 2%
than the 1984 data. About 82% of the 1988 and 75% of the 1984 model data agree with the LBL results
when the range for agreement is increased to 6%, or a rate of temperature change of about +0.1 K/d.



However, only 60% of the climate model type calculations fall within this £6% range. It should be noted
that comparisons of vertical profiles of flux divergence have not been examined in detail, but our
experience with the 1984 data suggest that much larger differences than those noted above will be found
in some layers.
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Fig. 11.4 (a) Comparison of 1984 (open) and 1988 (shaded) distributions of downward fluxes relative
to a LBL calculation. (b) The flux divergence of the troposphere (0-13) km. (c) The 1988
distributions of downward flux differences relative to a LBL result with vaporlines only
(open) and lines plus continuum (shaded). (d) Change in the net flux at the tropospause after

doubling CO, from 300 ppmv relative to the LBL calculation.

i3

Although Fig. 11.4a and b give some confidence in the general ability of the less detailed models to
reproduce the gross features of the line-by-line results, this confidence is shaken somewhat when we
examine the results when H,O is the only absorbing gas as shown in Fig. 11.4c. When only the local lines
of H,O are included in the downward flux calculations more than half of the results are outside of the
+2% range, which was also seen in the 1984 data (not shown). The continuum masks many of the very



large positive differences, but it also amplifies many of the large negative ones. In general, the effect of
the continuum and the overlap of different species tends to mask many of the large differences between
absorption parameterizations of individual gases. Although this masking reduces the range of flux values
expected from absorption differences alone, it also prohibits extending the range of agreement of this
study to significantly different atmospheric conditions.

One of the major areas of study for ICRCCM was the sensitivity to changes in the concentration of
the major absorbers, particularly CO,. An important quantity calculated in CO, doubling studies is the
change in the net flux at the tropopause as CO, doubles, denoted as OF,.. Figure 11.4d shows the
distribution of &F,, relative to the LBL calculations clear-sky MLS conditions. The LBL models agree on
this result to about =1% of 5.6 Wm™. However, the various band model results differ by up to 50% of this
value. Of the 17 codes actually used in climate models, six fall within £5% of the LBL results, and one
differs by more than 25%. The close agreement with LBL results for some of these models is not
surprising because of tuning.

11.4 Flux Profiles

Figure 11.5a shows the vertical profile of the change in net upward longwave, net downward short-
wave and total flux due to doubling the amount of CO,. The solar flux change AS is negative due to
enhanced absorption by CO,, and the longwave flux change AF is positive indicating enhanced emission
of approximately 1 Wm™.
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Fig. 11.5  Effect of CO; doubling on net radiative fluxes at 30 °N. S is the net downward solar flux, F
the net upward IR flux, and R = S — F is the net downward radiative flux. The symbol A
preceding a quantity denotes a change in the flux due to doubling of CO,. The arrow
indicates the value at the top of the atmosphere for AR.



11.5 TOA Clear Sky Longwave Fluxes

Slingo and Webb (1992) apply a 10 cm™ band model, together with data from the operational archive
at the European Centre for Medium Range Weather Forecasts (ECMWF) to simulate the clear sky olr.
Temperature and specific humidity data on 19 model levels were directly incorporated into the
simulations along with analyzed surface pressure. The radiation model is constructed around a high
spectral resolution radiative transfer model (Shine, 1991) that incorporates the ECMWF analyses from the
operational archive. The accuracy of the radiation model employed by SAMSON was checked using a
single column version applied to ICRCCM test profiles (Ellingson et al., 1991). Calculations of clear sky
outgoing longwave radiation (hereafter represented as F'.) for five standard atmospheres with effects of
water vapor, carbon dioxide, and ozone differed from line-by-line calculations of F. by approximately 1
Wm? suggesting excellent agreement with these reference calculations (Slingo and Webb, 1992).
Comparison of clear sky values of F, depend to a small extent an the specific details of how the
continuum absorption is dealt with in the model. The treatment of the continuum is described by Shine
(1991) and is based on the far wing treatment of Clough et al., (1986). Variations of the treatment of this
continuum can introduce uncertainties in calculations of the surface flux up to 10 Wm™ (Ellingson et al.,
19912). SAMSON simulations of F, agreed with reference ICRCCM calculations of this flux within 3
Wm™.

Simulations of the monthly mean clear sky fluxes over the ice-free oceans were carried out for the
period March 1989 to February 1989, which is also a period for which both ERBE and SSM/I
observations are available. As in the original Study of Slingo and Webb (1992), these simulations apply
to a horizontal resolution of 5 degrees. The radiation code applied to each daily analyses (a mean of four
6-hourly analyses for each day) and then averaged to produce the monthly mean flux distributions, which
are used in the analyses described below. Both Slingo and Webb (1992) and Webb et al. (1993) discuss
the differences between the simulated fluxes from SAMSON and the clear-sky values of F. obtained
from ERBE. Figure 11.6a presents examples of scatter diagrams of the SAMSON F,, versus the ERBE F'..
for April, July and September 1988 and January 1989 to highlight some gross features of these
comparisons. For instance, a slight positive bias of 3-5 Wm™ exists between the SAMSON and ERBE
fluxes, a bias similar in both sign and magnitude to that of the ERBE clear sky flux data (Harrison et al.
1988). As Webb et al. (1993) show, there are regions (not shown) where the differences between the
simulated fluxes and ERBE derived fluxes exceed this small bias, such as over the areas of marine
boundary layer clouds off the west coasts of the major continents where differences may be as large as 10
Wm? (Fig. 11.6b). These areas can be traced to biases in the ECMWF water vapor data (e.g. Liu et al.,
1992; Stephens and Jackson, 1994) as highlighted in the difference between TOVS and SSMI column
water vapor.

11.6 Longwave Fluxes at the Surface - A Satellite Retrieval

In Section 4, we derived a relationship between the longwave flux to the surface and the OLR (Eqn.
(4.16c)). With arguments similar to those introduced in Section 6.2(b), we introduce the relationship
(rearrangement of Eqn. (4.16¢)),

s

F
Fetebr (11.6)

and suppose that a simple relation exists between JF and precipitable water w of the form
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Fig. 11.6  (a) Scatter diagrams of SAMSON simulated F . versus ERBE analyses of clear-sky longwave
fluxes for April, July and September, 1988, and January 1989. (b) Comparison of the OLR
difference between ERBE and the ECMWF simulation (upper) and the TOVS precipitable
water and SSM/I precipitable water (lower).

F=a,+c,w 117

in an entirely analogous way to Eqn. (6.5) where a, = 0.937 and ¢, = 0.0102 kg"'m”. Unfortunately, we
do not have global observations of F, and thus we cannot derive F solely from independent observations

to test this relationship. The relationship between predicted fluxes and w is shown in Fig. 11.7

11-11



SAMSON simulations from
March 1988 to February 1989
T ¥ L] 'I

VR e N
1.6 e

a,=0.9369
c,=0.0102

Downward fiux at surface/ Clear-sky OLR
P
1

- 4 4 Arctic Cruises - .
i a - o Mediteraneon Cruises
- /‘A < TOGA COARE 8 SAMSON
0.8}~ + SAMSON with .
: McClatchey profiles -
i 1 ] i L 1 1 i i i i
0 20 40 60

Downword flux ot surfoce / Clear—sky OLR

Column Integroted Water Vapor {kg/m?)

o8Bl o o 1w 0 oy
Q0 20 40 60
SSM/I Integroted Water Vapour

Fig. 11.7  The flux ratio 7 derived from combined simulations of January and July fluxes as a function
of w.

Except for particular regions, the simulations of clear sky F.. from SAMSON generally agree with
ERBE estimates of this flux to within 5-10 Wm™, which is considered to be of the same order of
uncertainty as the latter. There are also no a priori reasons to expect the simulations of clear-sky F, to be
grossly in error although how the specific details of how the continuum absorption is modeled may
introduce an uncertainty of the order of 10 Wm™. Bearing this possibility in mind, simulated distributions
of F, over the ice-free oceans are presented in Figs. 11.8a and b in the form of the surface net flux (i.e.,

o' -F , F,,). The distributions in Figs. 11.8¢c and d were derived from satellite distributions of w and
OLR and the specified relationship that best fits the data in Fig. 11.7. The maps of the surface net flux

derived by this approach and are presented here for comparison with actual model simulations shown in
Figs. 11.8a, and b and match the simulations to =6 Wm™.

The smallest net fluxes of around 40-50 Wm™ occur in the tropical convergence zones over the
Pacific and Indian Oceans and in the Northwest Pacific in July. A significant annual variation close to the
northern continents also appears to exist which is associated with changes in the atmospheric circulation
associated with the summer and winter monsoons.
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Fig. 11.8 (a) and (b) are distributions over the oceans of the July and January SAMSON simulations of

surface net longwave flux. (c) and (d) are the same as (a) and (b) but the net flux is deduced
using a linear regression of the flux ratio, ERBE air and SSM/I precipitable water.
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AT622 Section 12
Heating

Figure 12.1 provides a perspective on the topic of radiative heating. For infrared radiation, a layer in
the atmosphere emits radiation at a rate defined by its temperature and the emissivity of the layer. This
layer also receives radiation from layers above and layers below. When it receives more than it emits, the
layer radiatively heats and vice versa. We think of this as an exchange process: radiation is exchanged
between the reference layer and the surrounding atmosphere and surface. The aim of this section is to
consider the dominant exchanges and how they shape the radiative heating distribution in the atmosphere.

Cooling
to
Space

Fig. 12.1 A schematic of two different contributions to the radiative cooling by a layer. The first is by
cooling to space (this occurs mainly in the transparent regions of the absorption spectrum in
which contributions by surrounding layers are small). The second is by mutual exchange
between layers, such_as illustrated between layer A (reference) and layer B.

12.1 The Radiative Heating Rate

X

ox

Consider a volume of atmosphere irradiated by a flux F, - dx/2 on one face and a flux

F
F o+ a—xdx/2 exiting on the other face (Fig. 12.2). The net flow of energy into the volume along x is
X

F
O Seover

0x

net = —

In three dimensions, the rate at which heat is added per unit volume of air is

. oF
O=-V-F=- an+ y+aFZ OV (12.1)
0x dy 0z

For monochromatic, radiative equilibrium
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V-F, =0

where the wavelength dependence of the flux is brought to view.
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Fig. 12.2  Energy budget of a volume of atmosphere used to establish the heating rate equation.

From the first law of thermodynamics, the heat added to a volume per unit mass is

Q=C,dT -Vdp
from which it follows
. dT dp
=C 2Ly 12.2
0=6, dt dt (12.2)
Combining Eqns. (12.1) and (12.2), we obtain
dT dF,
C,—=—~(V-F)OV=~-—L-6V 12.3
r (V-F) ~ (12.3)

C
And, using the specific heat ¢, = —~ and assuming that heat is added at constant pressure, we derive

m

ar 1 dR, (1240
dt pec, dz

(12.4b)
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for a plane parallel atmosphere (for which x and y variability is neglected). This is the radiative heating

rate and defines the potential of radiation for heating or cooling the atmosphere.

Heat added at constant temperature (e.g., tropics)

dz _ 1 g p_ 1 dF
. pg pg dz
or
% _ dE1et
dt dp

which defines the potential of radiation for inducing vertical motion.

Example 12.1: The heating rate of the atmosphere

Based on Fig. 6.13, we deduce that
dF - 100

net

dp  1013x100

in which case it follows that

ar _ g dF,, __ 98 100 86400 = —0.83 Kday™

X
dt ¢, dp 1004 1013x100

P

or alternatively that

d_dfy =190 06400 = -85 mday

dt dp 1013100

12.2 The IR Radiative Heating From Satellites

The rate of cooling of the atmospheric column follows from Eqn. (12.4b) as

au___ g

dt ¢, Py

where the flux difference

AFnet=_(07154_Foo _Fg)

(12.4c)

(12.4d)

(12.5)
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which can be written as

the column heating becomes

ar _ gk,

[G-F-1], (12.6)
dt  c,p,

where we introduce the ratio terms defined earlier in Eqns. (6.5) and (11.7) and which vary in a

systematic way with the PWC w. Furthermore, for a given w, the heating of the column varies

proportionally with the clear-sky outgoing longwave radiation F...

Using the retrieval strategy to estimate clear-sky values of F, from satellite measurements of /. and
w as described earlier and substituting a value of 1013 mb for p, and use the monthly mean SST of
Reynolds for 7} in Eqn. (12.6), we arrive at monthly mean distributions of the column averaged clear-sky
heating rates shown in Figs. 12.3a and b (negative values represent cooling) for July 1988 and January
1989, respectively. A reasonable estimate of the uncertainty of the monthly averaged values of .. and F,
is 10 Wm™ based on published estimates in ERBE clear-sky flux uncertainties and in the uncertainties in
F, expressed by the rms differences discussed in relation to the comparisons shown previously in Fig.
10.8. These flux uncertainties in turn imply an uncertainty of approximately +0.2 K/day in the column
cooling rate. The SSM/I fields of w for July 1988 and January 1989, which are used to produce these
heating rate distributions, are also shown in Figs. 12.3¢c and d for comparison. It is evident that the clear
sky column heating rate distributions resemble the distributions of w, which is consistent with Eqn. (12.6)

and the relationship between G, F and w. The largest coolings occur in the moist equatorial regions and in

the areas of moisture convergence over the northwest Pacific and Atlantic Oceans during July as well as
in the South Pacific Convergence Zone.

The association between the column averaged heating rate and w is explored further in Figs. 12.4a
and b, where the data displayed in Fig. 12.3a and ¢ and Figs. 12.3b and d, respectively, are plotted against
each other. Based on Eqn. (12.6) and the relationships assumed between the ratio quantities and w, we
expect the cooling rate to increase in an approximate linear way with increasing w as confirmed in Figs.
12.4a and b. Linear fits of both F and G as a function of w yield the following slope coefficients: ¢, =
0.01015 (kgm?)" and ¢; = 0.00524 (kgm™)", respectively, which, according to Eqn. (12.6), implies a
slope of -0.005 (kgm?)"'. An example of a relationship with this slope, defined using the global-mean
value F..= 266 Wm™, is also given on each diagram for reference. The column cooling rate deviates from
this simple linear dependence on w in such a way that the rate of increase of column cooling with
increasing w above about 40 kgm™ decreases.

When the column cooling rate is expressed as a function of SST rather than as a function of w as it is
shown in Figs. 12.4c and d, a number of features emerge. The first is the general change in the
cooling-SST slope for SST exceeding approximately 295 K due to the rapid increase in w as the SST
increases beyond this value. The second feature that emerges from Figs. 12.4c and d are the
winter-summer hemispheric branches in the column cooling similar to those noted in the G-SST
relationship. The characteristics of the relation between the column cooling rate and SST, especially the
increased rate of cooling with increasing SST, may be better understood by reference to Fig. 12.5. This

12-4



diagram presents scatter diagrams of fluxes as a function of SST. The left panels are F. and F, derived
from satellite data for July 1988 (left panels) as a function of SST and the matching fluxes derived from
SAMSON are shown to the right. We can deduce that the enhanced rate of change of cooling for SSTs
greater than about 295 K is a result of the enhanced emission from the atmosphere to the surface
associated with the increasing water vapor with SST at these temperatures. The rate of increase of
emission from the atmosphere as the SST increases exceeds the rate of change of the emission from the

surface (i.e., oT, §4 ). The latter is represented by the solid curve in the lower two panels of Fig. 12.4. For

the SST > 290 K, we deduce that AF,/ASST ~ 15 Wm™ K™ and that AoT' / ASST = Wm? K",

Column Heating Rates from SSM/I and ERBE Column Heating Rates from SSM/[ and ERBE
JUL 1988 C JAN 1989

-0.8

-1

-2.2 . -16 -1.4 . . —-2.2 -1.8

-1.6 =14 -1.2
SSM/! Precipitable Water SSM/I Precipitable Water
JUL 1988 JAN 1989

0 5 10 15 20 25 30 35 40 45 50 55 60 65 5 10 15 20 25 30 35 40 45 50 55 60 65
Fig. 12.3  (a) and (b) clear-sky column cooling rate distributions for July 1988 and January 1989
(in units of Kday). (c) and (d) same as (a) and (b) except for vertically integrated water

vapor (in units of kgm?).
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Fig. 12.4
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12.3 The IR Radiative Heating Rate Exchange Equation

We start with the flux Eqns. (11.2) written as

+ + f ‘ 4 dTif ' 4
F ()= F (2= 0T/ (0.2)+ [ 78,z Ci (2 2z
0 dz
o0 (f
F (2)= J. 7B, (z") dT, (z,z")dz'
z dz

The clear-sky column cooling rate correlated with the SSM/I derived column water vapor
obtained from the data of (a) July 1988 and (b) January 1989. The solid lines are simple
linear relationships implied by Eqn. (12.6), Fig. 1.3(a) and (b) and F. = 266 Wm™. The
clear-sky column cooling rate correlated with SST for (c) July 1988 and (d) January 1989.

(12.7)

12-6



Ciear-Sky OLR (to.a)

Downwelling clear-sky longwave flux at the surface

3001

2801

2401

20F

200

ERBE and Reynolds July 1988

T T T T T T T T

1 1 | 1 1 ! i i)

SAMSON July 1988

T T T T T T

3004

2801

260

240

Clear-Sky OLR (1.0.0.)

220p

200l \ ! ! 1 ! !

!

270 275 280 ZBS_ 280 295 300 305
Sea Surface Temperature

Retrieval using ERBE & SSM/I|
July 1988
1] 1

L T T

3

L ! ! 1 1 ! ! !

200
270 275 280 285 . 290 295 300 305

Sea Surface Temperature __

400

270 275 280 285 290 295 300 305

____Sea Surfoce Temperature
SAMSON July 1988

Downwelling clear-sky longwave flux at the surface

{

270 275 280 285 290 295 300 305

_..Seo Surface Temperoture

Fig. 12.5 F. as a function of SST (upper two panels) from ERBE (left) and SAMSON (right). F, as a

function of SST (bottom panels) derived from the retrieval method described in the text (left)
and from SAMSON (right). The solid line on each of the bottom panels represents black body
emission at the prescribed value of the SST and the scale on the left represents the scale of

this blackbody flux.

for the i spectral interval. The heating rate for this interval at level z is

dF., .
hi (Z) _ d_T _ _L net i
dt poc. dz

P

(2)

where the net flux at this level is
F,..(2)=F'(2)- F (2).

Combining the above into Eqn. (12.8) and differentiating w.r.t. z yields

hy(2) = —p% (78, (0)

P

s

dT, =
?(0, Z) +J0”Bi (Z )

02T/

0

T, w
- (z,z’)dz'+j 7B, (z")

20z

T
" (z,z")dz’'
0zdz' (z2)

(12.8)

(12.9)

,
(12.10)
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where we suppose the surface emits as a blackbody such that F;" (z = 0) = zB(0). If we note that

: 27/ T/
j B (=) aazazl' (z,2')dz' + 7B(z) ddzl (2,0)=0
and
3 - ;
|78, 22+ () (2, =0
z 020z dz
then we can add each to Eqn. (12.10) to obtain
I a7/ a7/ 1
- 7B(z)——(z,%)-2[B;(0) - B(z)]——(z,0)
dz dz
1 A B
h(z)=——oo (12.11)
'OCP z i a 2Tif ! ! @ ! a lef ! !
~x[ 1B,z - B,(2)] L2z -x| [B,(z)-B,(2)] GRSl
L c D J

: . . T/ : .
TERM A: is the exchange with z and space. Since ddl (z,0)>0, Term A < 0 and this term contributes
Iz

to cooling at z. This is referred to as the cooling to "space" term and generally the most dominant term
in the heating rate equation (Fig. 12.6b). It represents radiation escaping to space primarily through
the more transparent regions of the spectrum at lower levels and through the more opaque spectral
regions at higher levels. This is discussed in more detail below.

TERM B: this represents the exchange with the underlying surface. Since B(0) > B(z) generally and since
T/

(2,0) <0, this term is positive and contributes to heating at z.

TERM C+D: these represent the exchanges with the layers below z (C) and above z (D). For both terms
3’7/

i

0zoz'

for term C as z' refers to levels below z and thus are typically at a higher temperature. Since z' is
above z in term D, this term usually contributes to cooling.

(z,z") <0 'so that these terms define a heating whenever B(z") > B(z). This is usually the case

"It is relatively simple to demonstrate this. Suppose the transmission function has the form
T/ (2.2") = exp[—k(z - )]
then it trivially follows that
27 f ,
—il(Z’Z/) = _kZe—k(Z—Z) < O
0z0z
since k> 0.
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Figure 12.6a presents an example of the IR cooling rate profile from a radiative transfer model. This
diagram shows the contribution to the net cooling by different spectral regions. In general, the
troposphere cools at a rate of approximately 2-3 Cday™' primarily through emission by water vapor bands
and by the continuum at lower levels although this contribution diminishes rapidly away from the moist
tropics. The cooling in the stratosphere is dominated by emission from the 15 wm CO, band throughout
and by water vapor in the lower stratosphere. Ozone emission gives rise to cooling in the stratosphere (in
the vicinity of the ozone layer) and small warming below this. Figure 12.6b presents the profiles of
longwave cooling separated into the exchange terms discussed above. The cooling to space term (A)
dominates in the troposphere and exchange terms contribute in the stratosphere (B, C and D).
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Fig. 12.6  (a) Total and spectral cooling rates in a clear tropical atmosphere (after Foewe and Liou).
(b) Contributions of exchanges with surface, space and other layers to the total infrared
cooling rate as functions of height.

(a) The Spectral Distribution of Longwave Cooling

The spectral distribution of the infrared cooling rate for selected layers in a model atmosphere is
presented in Figs. 12.7a and b. These diagrams indicate how the cooling of layer shifts in its spectral
properties from a maximum in the window (continuum absorption) low in atmosphere for the example of
a tropical atmosphere shown to the stronger absorption regions of the rotation band higher up. The shaded
bar in Fig. 12.7a is the cooling by the layer and the unshaded bars represent the heating of the layer by the
surrounding atmosphere. Both this and Fig. 12.7b demonstrate how the net cooling of the layer is the
residual of larger exchange terms. A clearer perspective of the spectral contribution to the cooling and
how this contribution changes with pressure is presented in Fig. 12.8. The upper panel shows the cooling
by a mid-latitude summer atmosphere by water vapor lines alone (no continuum) and the lower panel
shows this cooling with the continuum added (both a foreign broadened continuum in the water vapor
bands—especially the rotation band and the self broadened e continuum in the window). Note how the
former enhances the cooling in the upper troposphere and the latter at lower levels.
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Fig. 12.7  (a) The contribution to the overall radiative cooling by emission from the layer itself (shaded

area) and the absorption of radiation that originates from layers adjacent to the reference
layer. The separation distance between the reference layer and the surrounding layers is
shown on the upper horizontal axis. The total cooling by the reference layer is found from the
sum of each individual contribution shown on (a). Note that the shaded area represents
cooling, while the open areas define the heating by adjacent layers. (b) The spectral
distribution of cooling for the three reference layers shown in (a). The contributions are
separated into net cooling of the layer, heating from adjacent layers surrounding the
reference layer and heating from all other layers (modified from Wu, 1980).

12.4 Curvature Effects on the IR Cooling

The dominance of the cooling to space term suggest that a convenient approximation to the IR

cooling rule

%(z) — €O'T4(Z) (local emission at z).

C . . dT . .
However, the situation is more complicated than this as — depends also in a complicated way on local

dt

curvature of temperature and moisture.
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Fig. 12.8 Spectral cooling rate for water vapor for an mls atmosphere. Color scale is in units of Kday
"(em™)". The top panel is for no continuum and the bottom panel includes both a p and e
continuum.

12.5 Climatology of Radiative Heating

e troposphere generally cools ~ 2° Cday™ except at poles where the smaller water vapor decreased
emission

* upper tropical troposphere, lower stratosphere - slight warming
* cooling increases with z in stratosphere.

(a) Solar and Net Heating Rates
We have not discussed solar heating rates in any detail. If we make some (reasonable) assumptions

such as neglect Rayleigh scattering and multiple scattering, the clear-sky solar heating can be deduced by
treating only absorption of the collimated solar beam, namely
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— /‘n
F,()=F, "
T/

where we use empirical function for transmission (refer to Section 8). For example, water vapor
absorption

2.9a
(1+141.52)"% +0.5125u

T/ =1-4=1-

Scatter indicative of effects
e different absorption data
* different treatment of pressure scaling
» different solar flux data and others.
*  Oj; heating increases systematically with z
* troposphere heating ~ 1° Cday™ decreasing to winter pole
* combined heating-minimum in lower stratosphere

(b) Net Heating Rates

An example of the vertical profile of solar heating and IR cooling is shown in Fig. 12.9 derived from
a climate model (after Manabe and Strickler, 1964). These profiles can be thought to be representative of
globally averaged clear sky conditions. The net (solar+IR) profile highlights the radiative cooling of the
troposphere of approximately 1 Kday™ and a stratosphere that is in radiative equilibrium. Here, the solar
heating by ozone absorption is balanced largely by CO, emission and to a lesser extent by water vapor
emission.
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Fig. 12.9  Radiative cooling profiles associated with a temperature inversion and different degrees of
“sharpness” in the water vapor profile. T and T, are the dry and dewpoint temperatures,
respectively (after Staley, 1965).
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Tropospheric Heating—Mainly by H,O
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Fig. 12.11 Clear sky solar heating rate profiles due to water vapor absorption in model mid-latitude
summer and subarctic winter atmospheres. The profiles were calculated for 6, = 60 °and o
= 0.07 for a variety of different absorption parameterizations that use either different absorp-
tion data and/or different extraterrestrial solar fluxes (refer Table 4 and discussion in text)
(from Wang 1976).
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Fig. 12.12 (a) Mean solar heating (°Cday™) by O; for December-February. (b) Mean solar heating
(°Cday”) by H,O + CO; + O, for December-February.
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AT622 Section 13
Elementary Dielectrics: Interaction with Condensed

Matter

The object of this section is to introduce elementary properties of dielectric materials that shape the
properties of scattering from homogeneous slabs and particles.

13.1 Polarization of Matter

The polarization of matter, in contrast to the polarization of radiation, is a property that relates to the
ability of the material to form dipoles. This polarization occurs either by mechanisms that are induced
(Fig. 13.1) or when molecules possess a permanent electric dipole moment so that they align themselves
with the dipole moment parallel to the applied electric field. As a consequence of either induced or
permanent dipoles, a piece of matter placed in an electric field becomes electrically polarized and the
material polarized in this way is called a dielectric.

Fig. 13.1 Polarization of matter under the influence of an electric field.

The polarization per unit volume of matter is defined as
P=(¢, e, (13.1)

where ¢, is the electric permittivity in a vacuum. This macroscopic expression states that the electric field
and polarization are directly related and the proportionality constant, &, is referred to as the relative
permittivity or alternatively as the optical or dielectric constant.

Various mechanisms cause displacement of charge in matter and therefore contribute to its
polarizability. Under the influence of oscillatory fields of different frequency, the constituents of matter
vibrate on different time scales and thus contribute to the observed properties in different portions of the
electromagnetic spectrum. Figure 13.2 schematically depicts the three principal polarization mechanisms
that are relevant to atmospheric radiation. Lightest parts (electrons) vibrate fastest (UV), the heavier parts
(atoms and molecules) are more sluggish-IR and microwave. One of the mechanisms of interest involves
oscillations and the other relaxation.
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Fig. 13.2  The three main mechanisms of polarization under consideration are (a) electronic (b) atomic,
and (c) orientation.

Let us now consider what happens to an individual dipole when an electric field is applied to it. The
dipole moment of an individual atom or molecule p can be related to the locally active electric field &£
by which « is the polarizability” of the material. If there are N of these molecules per unit volume of
matter, then the polarization per unit volume of the material is P = Np .

b=af’ (13.2)

We cannot yet combine Eqns. (13.1) and (13.2) to establish the link between the macroscopic
parameter &, to the microscopic parameter «. The problem is that in condensed matter, where molecules
are tightly packed, the field £ acting locally on the dipole is not the same as the external field £ applied to
the material. We will not discuss the way that we can express the local field in terms of the applied field

here and references elaborating on this topic are given at the end of this chapter. Suffice to say that the
field at the dipole may be derived by imagining that it sits in a spherical hole in a surrounding dielectric

material. The field in such a hole is increased over a uniform static field £ by an amount P/3¢,. The same
argument applies for an electric field in the form of a wave so long as the wavelength of the wave is much

longer than the spacing between atoms and molecules. In this case, the field locally is increased by the
fields associated with the neighboring dipoles such that

8’=S+i=§(5r+2). (13.3)
& 3

Combining Eqns. (13.1) and (13.3) produces

"There are different forms of polarizability that can be defined. The polarizability introduced later is referred to as the
atomic polarizability, the ratio of P to £ defines the volume polarizabilty (i.e., Na) and the quantity N,« is the molar

polarizability where N, is Avocadro’s number.
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-1
Na =3¢, Sr=~ | (13.4)
g, +2

which is known as the Clausius-Mosotti equation.

13.2 Classical Theories

The relative permittivity &, a property relating the response of dense matter to the action of an electric
field, is obviously related to the properties of atoms and molecules of the material as suggested by the
discussion of Fig. 13.2. In this section, we provide a more quantitative, albeit phenomenological, account

of how this quantity relates to these properties.

Actual calculation of &, reduces to the calculation of the polarizability of atoms or molecules. This
amounts to determining the effects of an external field on the motion of charge in the material following
the laws of quantum mechanics. For our purposes, simplified mechanical models suffice to approximate

the permittivity.

(a) The Lorentz Model

We often picture in our minds a model of an atom represented by electrons whirling around a nucleus
in a kind of fuzzy orbit. So far as problems involving nonresonant interaction with radiation, these
electrons behave as though they are attached to springs producing a distortion of charge in response to an
oscillating electric field. These electrons react to electromagnetic radiation in such a way that they vibrate
just like a classical harmonic oscillator (Fig. 13.3). H.A. Lorentz introduced his model of electronic and
atomic polarization around the beginning of the last century based on the principle of a classical harmonic

=
&

‘ Fig. 13.3 The Lorentz model of matter.

oscillator.

\
VR

J00000g

The equation of motion of such an oscillator is

2
md X, " &, (13.5)

where m is the mass of the oscillator, ydx/dt is the damping force exerted by neighboring dipoles, and £ is
the 'spring' constant. In this expression, ¢& is the driving force produced by the local electric field £, and
x is the displacement of the mass from its equilibrium position. This is not really a legitimate model of an
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atom but simple cases of correct quantum mechanical theory gives results equivalent to this model. In a
crude sense, the effects of quantum theory are accounted for by the appropriate choice of the properties of
oscillators.

If the electric field acting on the dipole vibrates with a frequency w, the displacement x of the charge
oscillates at the same frequency. Assuming that x = xye’”, then x can be solved for in terms of &
producing

(g/m)&'

X=—g——, 13.6
wf—a)z—i)/a) ( )

where y = b/m and w, =vk/m is referred to as the resonant frequency of the oscillator. This

displacement is complex and it is convenient to express it in the form Ae'?(q/m) & where A(q/m) & is the

amplitude of the oscillation and @ is its phase relative to the driving force of the electric field. Simple
algebra provides us with

1
A= [(@0F —0®) + 0] (13.7a)

1 yw

2
W, -

d =tan” (13.7b)

which follow from Eqn. (13.6). An interpretation of these results is provided in Fig. 13.4a and b where 4
and ® are shown as a function of frequency w. How these properties of the oscillator vary with frequency
depends on the value of w relative to the resonant frequency w, of the oscillator. For ® >> w,, the
nonresonant oscillations are weak and out of phase with the driving force of the light. The amplitudes of
the oscillation for this range of frequencies, according to Eqn. (13.7a), decreases at a rate proportional to
1/w”® (Fig. 13.4b). In the spectral range of low frequencies o << w,, the nonresonant oscillations are
again weak but, in this case, in phase with the driving force (Fig. 13.4a). In this spectral range, the
amplitude approaches a constant value as w is decreased from resonance. Only the resonance case (w = w,
and @ = 0) corresponds to a transition from one quantum state to another.

Given the response of the single oscillator to a time-harmonic electric field, the relative permittivity
can be derived using the definition of the dipole moment for a single oscillator as p = gx, and since p =

af', then

2
q-/m

a=— 2

W, -0 —iyw

and the polarization per unit volume, P for N oscillators in a unit volume follows as

Pl ¢ (13.8)
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Fig. 13.4  (a) The response of an oscillator to a periodic driving force serves as a model of how charges
in matter react to an electromagnetic driving force. The response of the oscillator depends
on the frequency of the forcing w to the oscillator’s resonant frequency ,. (b) The oscillator
amplitude and phase as a function of the ratio between the frequency w and the resonant
frequency w, The amplitude approaches a constant value when the frequency of the driving
force is much below resonance as in the case of N, and O, molecules exposed to visible light.

where a)f, = Ng?/ e,mis the plasma frequency. The difference between the local field and the external

field is ignored since a proper treatment of local field effects only complicates matters without adding
further insight. With this assumption, it follows by matching Eqn. (13.1) to Eqn. (13.8) that

wz

g, =l+ 0—7F— (13.9)
w, - —1lyw

which has the following real and imaginary parts

2 2 2
e =1+ @y (@, ~ ")

13.10a
@ -0") +7°0’ (o

2
" a)p;/a)
o T i (13.10b)

respectively. The frequency dependence of each of these components is schematically shown in Fig.
13.5a. The complex component provides the dampening of the oscillations and is a maximum at
resonance and coincides with the most rapid change of the real part of the relative permittivity with
frequency.
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DIELECTRIC
FUNCTION

(b)

Fig. 13.5  (a) The frequency dependence of the real and complex parts of the relative permittivity. Note
that when the damping terms are neglected, y = 0 and ¢! = 0 and the unphysical result

occurs at the resonant frequency (dashed curve). Damping is not a result of the viscous
movement of the oscillators but represents transitions from one state to another and therefore
represents absorption processes. (b) The frequency dependence of the real and complex
parts of the refractive index.

Quantum mechanical solutions provide similar results but with the following modifications. Atoms
and molecules have several natural frequencies and each has its own dissipation constant. The effective
strength of each mode is also different and we represent this by the strength factor . Summing over all
modes leads to a modification of Eqn. (13.9) of the form

Nq’ f,
e —-1= L 13.11
, , mzwz (13.11)

i_wAd%w‘
(b) Orientational Polarization-Debye Relaxation

Lorentz's classical model describes polarization arising from the distortion of charge in nonpolar
molecules. In solids and liquids composed of polar molecules, the orientation of the dipoles with respect
to an electric field produces an additional low frequency contribution to the polarization. The ability of a
molecule to reorient depends on its shape and its interactions with the environment. The nearer to
sphericity and the lower the dipole moment, the more easily and faster the molecule reorients itself in a
changing electric field. An asymmetrical molecule like H,O has several stable orientations and changes
direction relatively slowly from one stable orientation to another. The average time between these
changes is the relaxation time.
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The polarization that results via orientation of dipoles can be computed from methods of statistical
mechanics. We consider only very simple aspects of these methods here. Consider a molecule with a
permanent dipole moment p, aligned at some angle & to the electric field. The potential energy of the
dipole is (e.g, Kittel, 1971)

U=-p,E'cosb, .

Statistical mechanics tells us that in a state of equilibrium, the relative number of molecules with a
potential energy U is

e—U/K T
and the number of molecules oriented at an angle 6,

}’1(6 )=}’l epué"cosﬁv/KT
o o

where K is Boltzmann's constant and 7 is temperature. For normal temperatures and & fields, this

approximates to

A p,Ecosb,
KT

n@,)=n, (1

where n, is N/4r (we find this by integrating n(d,) over 6, and this should just be &, the total number of
molecules). The net dipole moment per unit volume follows from the integration of the moment p, cos 6,
over solid angle dQ = 27 sin 6,d6,,

P= 271'].0;;1((90 )p, cos@, sind do, ,

resulting in an average dipole moment

Np?
3KT

P= £ (13.12)

and by combining Eqns. (13.4) and (13.12) leads to

2
o Lo
3KT

Debye (1929) has given an elegant discussion of dielectric relaxation of polar molecules in liquids.
He supposed that dipoles initially aligned themselves in the direction of a field only to relax their
orientations back to an equilibrium state as defined by the average dipole moment above relevant to a
static field. This relaxation occurs on a time scale 7. The central result of Debye’s theory is that the
orientational part of the polarizability depends on the applied frequency w such that

2
g=Lo 1 (13.13)
3KT 1+iwt
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Using the Mosotti field for £, then

2
-1
Na= N | p, 1 _£ ‘ (13.14)
3¢, 3¢, \3KT l+iwr | €, +2

o

From this expression, the complex permittivity is given in terms of the permittivity defined at the limits
w—0 (&4, the static permittivity) and w—>o0, the high frequency permittivity) and the effective relaxation
time constant is,

£, +2
T,=T ,
£, +2
and it follows that
e =g, 4o " Em (13.15)
l+iwt,

This expression is the Debye relaxation formula for the permittivity of a friction-dominated medium in
which the internal field is assumed to be the Clausius-Mosotti field. The relaxation time is lengthened
from tto 7, due to the difference between the internal field and the applied field.

The real and imaginary parts of &, follow from Eqn. (13.15) as

e'=¢ +L
g 1+ w7’
Awr (13.16)
£/l= e
1+w’t]

where A = ¢, — &;. The imaginary part of the dielectric function, according to Eqn. (13.16), is a maximum
at w = 1/7,, and its behavior with frequency is broadly similar to & predicted for the Lorentz oscillator.
The real part behaves quite differently: it has no maxima or minima but decreases monotonically with
increasing frequency from a value of ¢, at low frequencies to &, at high frequencies. At low frequencies,
permanent dipoles react to the more slowly oscillating electric field in enough time that they become
aligned, producing a significant polarization and large values of . At higher frequencies, this part of the
matter is unable to respond quickly enough to produce any polarization.

The Debye relaxation model has been successfully used to describe measured values of the dielectric
function at microwave frequencies as demonstrated in Fig. 13.6. Both the real and complex parts of &, for
water at microwave frequencies are compared to the Debye theory on this diagram. The parameters &
& and 7 are chosen to provide the best fit to the data. An especially relevant consequence of the
relaxation spectrum of H,O to remote sensing lies in the change of the spectrum of & with the phase
transition from liquid to solid water. To understand the differences in &, as this transition occurs it is
helpful to consider the simple classical expression Debye derived for 7, namely
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3
_ dmna” (13.17)
KT
for a sphere of radius « in a fluid of viscosity 7. This time constant is a ratio of the viscous-restoring
torque applied to the sphere that maintains alignment to the thermal forces that act to disrupt this
alignment. When numerical values are substituted into Eqn. (13.17), the derived relaxation time
corresponds approximately to that estimated from measurement. A naive interpretation of the phase
transition from liquid water to ice is to consider a large discontinuous increase in viscosity that occurs
when water freezes. Thus, the permanent electric dipoles that were free to rotate in the liquid are now
immobilized. The relaxation time for ice is significantly larger than it is for water leading to smaller
values of ¢’ and a dramatic shift in the maximum of & to smaller frequencies. The consequences of

such large changes in & as ice melts are observed when microwave radiation transmitted by a radar
system is backscattered by melting ice particles producing the "bright band" in vertical profiles of radar
reflectivity.
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Fig. 13.6  The dielectric function of water at room temperature calculated from the Debye relaxation

model with T= 0.8 x 10" sec, &, = 77.5, &, = 5.27. Data were obtained from three sources
(after Bohren and Huffman 1993).

(c) Summary

We learn from both models that when a sunusoidal electric field acts on a dieletric material, there is
an induced dipole moment that is proportional to the electric field. The proportionality constant & — 1
depends on the frequency of the oscillating field and is a complex number, which means that the
polarization does not follow the electric field but is shifted in phase. A schematic diagram summarizing
the frequency dependence of ¢, and ¢ for an ideal nonconducting substance is shown in Fig. 13.7. At
the low frequency end, & is composed of contributions by all three mechanisms with the largest
contributions resulting from dipole orientation processes. As the frequency increases, the dipoles are
unable to respond fast enough, and this mechanism ceases to contribute to &, instead the atomic

polarization processes that produce vibrational motions contribute. For the water molecule, the
resonances associated with these processes are found at infrared wavelengths. At even higher frequencies,
inter-atomic vibrations cannot respond fast enough to the applied field. At these frequencies, the
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electronic oscillations that are induced by the electric field now contribute to ¢, and the resonant

frequencies associated with these oscillators are typically found at UV wavelengths. Finally, as the
frequency increases beyond the point where all electronic modes are exhausted, &, approaches unity.

2
Q
:
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w Eu~t
2 V V 1L0G FREQUENCY
INFRARED
MICROWAVE ULTRAVIOLET

Fig. 13.7  Schematic diagram of the frequency variation of the dielectric function of an ideal
nonconductor (Bohren and Huffinan, 1983).

Where ¢ changes most dramatically with frequency there is an associated peak in &, which

characterizes the absorption of radiation by the substance. This absorption arises from the resonances
associated with the vibrations of atoms and molecules of matter. In dense matter, the molecules are so
tightly packed together that significant interactions exist between them. The internal modes of the
oscillations are therefore modified and the natural frequencies of the atomic oscillations are spread out by
the interactions producing a broadening of the absorption lines much in the same way as pressure
broadening occurs in gases. In place of the precisely defined characteristic energy levels associated, for
example, with the vibration and rotation states of the individual molecules, are energy bands composed of
a continuum of levels. Thus the energy levels of the vibration and rotation states of, for instance, a water
molecule, form a continuous absorption band resulting in a broad absorption spectrum as indicated in Fig.
13.7. Figure 13.8 provides a schematic illustration of the electron energy bands of two different types of
material.

Since the energy bands in a solid form as a superposition of the energy levels of the individual
molecules, the spectral positions of the more continuous absorption bands for solid matter more or less
overlap the absorption spectrum of the individual molecules. Thus the infrared absorption spectra of
liquid water and solid ice, for instance, occur at roughly the same wavelengths where absorption bands of
water vapor lines are found.

There are features of the energy bands that have a significant bearing on the way radiation interacts
with condensed matter and which are therefore important to our understanding of particle scattering. The
energy bands of certain materials overlap, as depicted in Fig 4.8, and the electrons in such a material have
a continuous distribution of energy within these overlapped bands. If one of the overlapping bands is
partially empty, application of an electric field readily excites electrons into adjacent unoccupied states
and an electric current results. The material is said to be a good conductor of electricity and its electrical
behavior is determined by both the energy band structure and how the bands are normally filled by

13-10



electrons. This is the case for metals that can absorb radiation at any wavelength. When a photon is
absorbed in a metal, the electron jumps to an excited state. A photon of the same energy is immediately
re-emitted and the electron returns to its original state. Because of this rapid and efficient reradiation, the
surface of the metal appears reflective rather than absorbant. Another type of material is the
nonconductor, which possesses energy bands that are separated by intervals referred to as forbidden
bands, absorption of radiation by such material is therefore only likely for photons possessing energies
greater than this energy gap.

cone
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Fig. 13.8  Electron energy bands in nonconductors and conductors. The filled bands are shown hatched
(Bohren and Huffman 1983).

13.3 The Refractive Index

The two sets of quantities that are often used to describe optical properties of matter are the relative
permittivity & and the refractive index m'. Both are related according to
’ 2 2
£ =n"-K
! (13.18)
£, =2nK

where n and x are used here to denote the real and imaginary parts of the refractive index, respectively.
The spectral variations of both » and x from the near infrared to the microwave regions are depicted in
Fig. 13.9. Certain features of the hypothetical spectra of &, and & shown in Fig. 13.7 can be identified

in the refractive index spectra. Readily apparent are the relaxation spectra extending from about the
millimeter wavelength range into the centimeter range. For water and ice, the values of x lead to
significant absorptions in clouds when wavelengths are greater than about about 1 um. For ice, x
decreases again beyond wavelengths of about 100 um. At microwave frequencies, ice particles in the
atmosphere are more effective scatterers of radiation than absorbers, whereas the reverse is true of water
drops. There are also significant differences between values of x for water and ice in the near infrared
especially around 1.6 and 3.7 um, which also happen to be channels associated with radiometers flown
(or to be flown) on meteorological satellites. The consequence of the different values of n to the transfer
of solar radiation through clouds at these wavelengths has been proposed as a way discriminating ice
clouds from water clouds.

T The refractive index is sometimes written as m = 1 + ik and other times as m = n - ix.. The latter applies when the time
dependence of factor of the wave is exp(iwr) rather than exp(-iwr). Both will be used in these notes.
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Fig. 13.9 Typical values of the refractive indices for water and ice.

Determining the refractive indices of atmospheric aerosol is quite a complex problem and a topic of
apparent controversy. In Fig. 13.10, the spectra of the imaginary parts of the refractive index of several
materials that exist in atmospheric particles are shown. Results are given for water, ammonium sulfate,
crystalline quartz, sulfuric acid, carbon, sodium chloride, and hematite over selected spectral regions. As
we have come to expect from our previous discussions, x is large (around unity) in the infrared and
ultraviolet spectral regions and small at visible wavelengths for all materials, except for carbon and
hematite both of which significantly absorb visible light. To emphasize the transparency of the material in
the visible region, the dashed line is the value of x corresponding to a 1% transmission through a 1 cm
thick homogeneous slab of material. Only carbon, which has metal-like overlapping electronic energy
bands (e.g., Fig. 13.8), has high values of & throughout most of the spectrum. The mineral hematite,
although a very minor constituent of the atmospheric aerosol, is one of the few known materials that are
also highly absorbing at visible wavelengths.

The hatched region in Fig. 13.10 shows the values of x obtained from remote measurements using a
retrieval scheme based on the particle scattering theories discussed in the following chapter. Clearly these
derived values of x do not seem to match those of any of the pure materials that make up the particle, and
are presumably some kind of average of a mixture containing a small amount of a highly absorbing
material. The meaning of such an average value and its direct application to theories of particle scattering
must be treated with caution. Measurement of the refractive index of a substance in a pure homogeneous
slab form is difficult enough, and these results highlight the complexity of estimating the refractive index
when such material is broken up into small particles of heterogeneous material.
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Fig 13.10 The imaginary part of the refractive index of several solids and liquids that are found as
atmospheric particles (Bohren and Huffman, 1983).

13.4 Dielectric Slab

The formal analogy between scattering by a particle and by a slab is shown in Fig. 13.11 in its most
general aspect. The wave scattered by a particle is analogous to the waves reflected and transmitted by a
slab. However, there are important differences between these two cases that need to be noted. We will
learn that particles scatter in complicated ways depending on the direction of scatter, whereas the
scattering by a slab occurs through interference effects such that radiation is concentrated in only two

1 . . ]
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TRANSMITTED INCIDENT /
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Fig. 13.11 A schematic depicting the analogy between scattering by a slab and by a particle. The
scattered wave by a particle is analogous to the wave transmitted and reflected by the slab

(from Bohren and Huffman, 1983).
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General expression for a propagating plane wave along the z axis is

E=E (13.19)

o

where, in a slab of condensed matter of refractive index m,
kz =mk z (13.20)

which is defined relative to the wavenumber £k, in a vacuum. In an absorbing slab, m is complex and thus
k is complex. For the simplest case of plane wave propagation along the z direction, and with m =n + i in
Eqn. (13.20), Eqn. (13.19) may be written as

£ = [/ pithzon. (13.21)

The first of the exponential factors describes the rate at which the radiation is attenuated in the slab. The
second exponential factor represents the oscillatory part of the wave and we observe that the real part of
the refractive index determines the phase speed of the wave. The attenuation factor can be written in
terms of a bulk absorption coefficient f = 4mk/A, such that the intensity of the radiation is attenuated
according to the formula

I=1Ie". (13.22)

A useful and convenient way of interpreting this attenuation is in terms of the penetration depth d; = 1/8,
which is the depth to which the intensity is reduced by 1/e of its incident value.

Example 13.1: Depth of Penetration

Water and ice possess refractive indices that are strongly frequency dependent
and thus have a penetration depth that varies significantly from wavelength to
wavelength. Calculate the depth of penetration d; in a water and ice slab for the
following wavelengths and refractive indices. What inferences would you make
about scattering versus absorption processes by water and ice particles at each

wavelength?

Wavelength Instrument Refractive Index (”’. X)
water ice

0.7 um AVHRR (1.33,0) (1.31,0)

1.6 um AVHRR (1.317, 8 x 107) (1.31, 0.0003)

3.7 um AVHRR (1.374, 0.0036) (1.40, 0.0092)

10.8 um AVHRR (1.17, 0.086) (1.087,0.182)

0.8 cm k-band radar  (8.18, 1.96) (1.789, 0.0094)

10 cm S-band radar  (5.55, 2.85) (1.788, 0.00038)

The depths of penetration are listed on the table above. From these we can make
a number of inferences about the difference between water and ice scattering at
the wavelengths given. For example we expect that water surfaces and clouds
will be relatively dark (relative to ice surfaces and clouds) at 3.7 um, that ice
particles are relatively transparent at 0.8 cm and more so at 10 cm, and that 1.6
um may be useful in discriminating ice properties in clouds from water
properties (glaciated clouds will be darker, all things equal, than water clouds).
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AT622 Section 14
Particle Scattering

The aim here is to provide a conceptual grasp of particle scattering without inundating with
complicated recipes.

Particle scattering is a complex topic—but we can simplify the view of particle scattering by
visualizing the scattered radiation as composed of contributions of many waves generated by oscillating
dipoles that make up the particle (Fig. 14.1). The complication is that each dipole affects the other such
that the resulting field emitted by an oscillating dipole has a contribution that is due to stimulation by the
incident field and a contribution due to stimulation by the fields of neighboring dipoles. Another
complication is that the charge distribution in the particle forms higher order poles than dipoles and these
multipoles also contribute to the scattered radiation.

—-ﬂ
——————r

Fig. 14.1  The radiation scattered by a particle and observed at P results from the superposition of all
wavelets scattered by the subparticle regions (dipoles)—from Bohren and Huffiman (1983).

14.1 Scattering by a Single Dipole: Rayleigh Scattering

Assume that a spherical wave is emitted from a (spherical) dipole, i.c.,

E— g—oe"@
kr

where ® = (kr — w¥) is the phase of wave and k is the wavenumber. Based on arguments of geometry
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—ik(r—ct)
£ =£, {e—}kza

r
(14.1)

e—ik(r—ct)

&, =50{—

}kza cosf
r

where o is the polarizability (this is a parameter that is a 'measure' of how readily matter polarizes
charges—refer to Section 4), and where radiation scattered by a single oscillating dipole is a spherical
wave, which is represented by the factor in parentheses. In terms of intensities, the two components of
polarized radiation therefore take the form

I, =1,k al*/r

(14.2)
I,=1,k* al’ cos’ 6

Diraction- of scattering
{out of the paper)

Fig. 14.2  (a) Geometry for scattering by a single dipole. Shown are the plane of reference and the
orthogonal components of both the electric field and the dipole moment, which lie parallel
and perpendicular to the plane. The scattering angle 6 is defined on this plane. (b)
Scattering pattern of a single dipole.

A special but nonetheless important case applies to an unpolarized beam of radiation, like sunlight,
scattered by small particles. Unpolarized radiation can be viewed as a mixture of two independent linearly
polarized beams of the same intensity. Therefore /. = I,, = I,/2 and

1
I=2(, + 1) =21+ oos* 0k [/ (14.3)

describes the scattered intensity of unpolarized radiation by small particles. The scattering pattern pre-
dicted by Eqn. (14.3) is also shown in Fig. 14.3 for unpolarized incident radiation.

There are a number of consequences of Eqn. (14.3) including:
* under pure Rayleigh scattering as much radiation is scattered forward as backwards

e at # =90, Rayleigh scattering completely polarizes unpolarized incident light (such as from the
sun).

 the amount (i.e., intensity) of light scattered varies as k* or as A*. Consequently, the blue portions

of white light are preferentially scattered whereas the red portions of white light are
preferentially transmitted.
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1

Fig. 14.3  Two isolated dipoles emit waves in all directions. At some point P far from the 'particle’,
these waves superimpose to create the scattered wave along the direction 6. These waves
either constructively or destructively interfere depending on their relative phase difference
A®, which is defined in terms of the extra distance the incident wave travels first to the
second dipole () less the extra distance from the first dipole to P(r cos 6).

14.2 Radiation From Multiple Dipoles: Towards Understanding Scattering
by Large Particles

Phase difference between waves 1 and 2 (simply proportional to the difference in path length)
AD = 27’”(1 — cosd)

The EM waves from dipoles 1 and 2 superimpose (i.e., they add)
Eiy = £, + £, (14.4)
and in terms of intensity (= radiance, which is proportional to | £]%)
I(=N),,, = constant[E} + £5 +2E,E, cos AD] (14.5)

(Assume & = &). Now for certain phase conditions, such as A® = 7, 3, ... the fields cancel (are out of

phase). For other conditions, A® = 0, 2mx, ... and the fields reinforce (Fig. 14.4a). The latter condition is
always met in the forward direction, -M radiating dipoles (Fig. 14.4b) each radiating with an intensity / at
@ = 0 produces an intensity which is M* times the intensity of a single dipole in the forward direction.
Some other general inferences are

* The larger the particle, more radiation is scattered forward

* The larger the ratio 2mr/A (size parameter) the more convoluted is the scattering (i.e., more maxima
and minima are expected as #is varied, e.g., Fig. 14.5).

Although the simple discussion of multiple dipoles given above ignores the complicating effects of

dipole-dipole interactions, the broad behavior predicted carries over to the more complete calculation of
particle scattering illustrated, for example, in Fig. 14.5.

14-3



incident
et
1
forward scattered w
-— {
W backscattered
v /\/-\/‘2
1 ; e T T
——— FOUR DXPOLES
08 ~——TWO IIPOLES .
——ONE DIPOLE

o } 1 3 i L i1
0 0 0 9% 120 150 180

SCATTERING ANGLE (degrees)

Fig. 14.4 (a) Excited by an incident wave, two dipoles scattering all directions. In the forward
direction, the two waves are exactly in phase regardless of the separation of dipoles. (b) The
greater the number of dipoles in the particle array, the more they collectively scatter toward
the forward direction, For the example shown here, all dipoles lie on the same line, are
separated by one wavelength, and interact with each other. The scattered intensity is
obtained as an average over all orientations of the line of dipoles (from Bohreu, 1988).

x =10
.02

x =15

x =20
240
’ 48000
Fig. 14.5  Polar plots of the scattered intensity for the values of size parameter stated derived from
Lorentz-Mie theory. The numbers indicate magnitudes in the forward and backward direc-
tions (note the scale change) - from Bohren and Huffman (1983).
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14.3 Particle Extinction

Forward scattering is a special measure of the totality of the interaction. Depletion of forward propa-
gating radiation is referred to as extinction, BUT we cannot distinguish scattering from absorption along
this direction. So in addition to a measure of extinction (this is measured by the extinction coefficient), we
also need a parameter that defines the ratio of extinction by scattering to extinction by absorption. This
ratio defines the single scatter albedo

amount of scattering

, = — = single scattering albedo
total extinction

@, = 1allscattering (conservative)

@, = 0 allabsorption (absorptive).

Some idea of the general properties of @, for spherical particles of a size that is typically found in
clouds is provided in Figs. 14.6a and b. Example spectra of @, for 5 and 50 um water and ice spheres are

shown for wavelengths between 0.3 and 50 um. The spectra presented in these diagrams illustrate a
number of important properties of @, :

{a) 1 10
\ | F xa g
08
08F
3 045 0.99999 ~r ; - T
F (b) &, = JFacat (drop)

0.2 O Text (drop)

#
X 09999} | T
L by !
0.8F At
f o999l 5& _ Tscot(drop) |
ok . ' NRE. LA Sl e
3 0 6: b “E Text (drop +
0.4F ] zé’ qas)
of ; 0.99
: 1 L JJIlI[ 1 1 1 llljll L ll.
R — e 4,00
E ~—— complex U 0.9
] l.4:- e 5
— 1.2F Ve 10
| :_*--__//
|.6F 3100
5 1.5F 1.O 1.5 2.0 2.5
5 L3 Ji07® WAVELENGTH (gLm)
3 P
I'Z-n J\r-/xjujl r oy sl i
1 10
Wavelength [/.un]

Fig. 14.6  (a) The single scatter albedo as a function of A for 5 um water and ice spheres. (b) The
single scatter albedo of a model cloud as a function of wavelength. The solid line refers to
droplet absorption alone, whereas the dashed line to droplet plus vapor absorption (from
Twomey and Seton, 1980).

* values of @, = 0.99 are typical of wavelengths less than about 1.5 um (this is made clear in Fig.

14.6b). The spectra of @, in the visible and near infrared region is actually complex.
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* The minima in @, represent absorption features by ice and water and these align with the

corresponding maxima of the complex part of the refractive index x. This is consistent with our
expectations from the simple theories described below.

o Particle absorption (to the extent it is defined by the co-albedo 1-@, ) is dependent on particle
radius.
o There are a number of spectral regions where the differences in @, between ice and water

spheres are large. Differences that exist in the near infrared region (such as near 1.6 um)
cannot be seen but others can.

o The single scatter @, is a volumetric quantity defined as the ratio of the scattering properties

of the volume to the properties that define the total extinction by the volume. For most
wavelengths of interest, this extinction is a result of both absorption and scattering by cloud
particles as well as absorption by the minor gases in the volume, especially water vapor. An
example of the effects of water vapor absorption on @, over the wavelength range 0.5 to 2.5

um is presented in Fig 14.6b. What makes the problem of multiple scattering particularly
troublesome at these wavelengths is the fact that both liquid water and bands containing
thousands of water vapor lines overlap in the same spectral region.

(a) Cross Sections and Efficiencies

Particle extinction is conveniently defined in terms of a quantity called the extinction efficiency Q..
way of visualizing this quantity (but not an entirely correct way) is provided by reference to Fig 14.7. In
this simplistic view, we consider radiation as a stream of photons that flow into a volume containing the
scattering particles. Each particle within the volume blocks a certain amount of radiation resulting in a
reduction of the amount of radiation directly transmitted through the volume. The reduction in the
radiation as it passes through a volume of spheres can be expressed in terms of a cross-sectional area C,,,,
which is generally different from the geometric cross-sectional area of the particle. For spherical particles
of radius r, the definition of Q. then follows as

Qo =—5 (14.6)

Fig. 14.7  An approximate view of particle extinction. Particles 'block’ a certain amount of radiation
from penetrating through the slab. The reduced transmission can be described in terms of a
cross-sectional area C., shown as the shaded area around the particle. While this view of
extinction is a simple one, to visualize it is not entirely correct as extinction occurs through
subtle interference effects.
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When C,,; exceeds the value of the geometrical cross-sectional area of the particle, Q.. > 1 and more
radiation is attenuated by the particle than is actually intercepted by its physical cross-sectional area.
Since this extinction occurs by absorption or by scattering or by a combination of both, it follows that

ext = Qabs + Qsca . (147)

We expect that Q,,, depends on the refractive index of the material, the wavelength of radiation and
the size of the particle. Figure 14.8 shows a plot of Q,.,, calculated from Lorentz-Mie theory, as a function
of the size parameter x for water sphere illuminated by light of a wavelength of 0.5 um. Somewhat
obvious are the large maxima and minima with a superposition of finer scale variations (referred to as
ripples). Another familiar phenomenon that follows from consideration of Fig. 14.8 is the reddening of
white light as it passes through a collection of small particles. This is depicted by the rapid rise in
extinction as x increases (i.e., toward shorter wavelengths) and is a general characteristic of nonabsorbing
particles that are smaller than the incident wavelength. Thus, blue light is extinguished (scattered) more
than red light, leaving the transmitted light reddened in comparison to the incident light. This reddening is
a phenomenon that is not only limited to sunlight in the Earth's atmosphere but also for starlight reddened
by interstellar dust particles. It is obvious from Fig. 14.8 that extinction is highly dependent on the size of
the particle.

4.0 T T T T T T T T T
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Fig. 14.8  Extinction efficiency for water droplet in air calculated for A = 0.51 um as a function of size
parameter x. There are two ways of presenting results of this type. For the example shown,
the size parameter can also be varied by changing the wavelength, while fixing the size of the
particle. The results are not the same because as wavelength varies so does the refractive
index and extinction depends not only on the size parameter but also on the refractive index
(adapted from Bohren and Huffman, 1983).

(b) Extinction by a Cloud of Many Particles

The opposite spectral effect of reddening is the blueing of transmitted white light that occurs as the
extinction decreases with increasing x on the high x side of the extinction peaks shown in Fig. 14.8.
Unlike reddening, this blueing phenomenon is highly dependent on the character of the particle size
distribution and occurs rarely: "once in a blue moon." In fact, this extinction feature and others that
depend on particle size are obscured, if not totally obliterated, when the extinction is determined from
observations of light scattered by a small volume of air containing particles of a variety of sizes. Under
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atmospheric conditions, the intensity of radiation scattered by such a volume of particles may be simply
obtained as the addition of the intensities of light scattered by individual particles.

Suppose
n(r) = constant =" (14.8)

represents the size distribution of (say) water droplets in a given volume of cloud. Some basic properties
of this distribution are:

° Ymode = (b - I)I"m
° Vmean = brm

d
. FQ=K=M=(b+2)Vm
A In(r)rzdr
. _i 3 . =M
LWC =210,y Norn [ /()= =05

. A= ;zjn(r)rzdr =N, 2 £(2)

The parameter b is a measure of the distribution variance and thus the width of the distribution.
When the scattered fields from all particles in the volume are added, we see a general smoothing of the
extinction spectrum as b increases. The very fine ripple structure in extinction for the monodispersed
cloud (i.e., b = 0) disappears as b is systematically increased from zero and the interference structure (i.e.,
the broad maxima and minima) eventually fades away as the distribution widens. For the widest
distributions chosen for this illustration (b = 0.5), the only remaining features are reddening at small size
parameters, and, the asymptotic approach to the limiting value 2.

(c) The Extinction Paradox

Another important feature of the Q. — x spectrum is the tendency for the extinction Q. either to
oscillate around the value of 2 as x — oo as illustrated in Fig. 14.8 or to converge to the value of 2 as in
the cases of Fig. 14.9. This behavior of particle extinction is referred to as the extinction paradox. Why a
paradox? Intuition suggests that if we consider extinction as just the radiation that is blocked by the
particle, like that illustrated in Fig. 4.7, then the extinction cross section is just the shadow projected by
the very large particle. This geometrical view of extinction predicts that the limiting value of Q,,; is 1 and
not 2. However, no matter how large the particle, it still has an edge, and in the vicinity of the edge rays
do not behave the way our simple geometrical arguments say they should. The energy removed from the
forward direction can be thought of as being made up of a part that represents the amount blocked by the
cross-sectional area of the particle and a part diffracted around the particle's edge. The diffracted amount
eventually fills in the shadow area when viewed far enough from the particle. The total amount removed
from the incident beam by diffraction is therefore also characterized by the particle cross-sectional area.
The net result is that an amount twice the cross-sectional area of the particle is scattered out of the
incident beam. We learn from this, and further discussion below, that particle extinction is not just a
process of blocking light, but is actually a result of more subtle interference effects (Fig. 14.10).
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Fig. 14.9 (a) Standard size distribution (14.8) for 2 values of a and three values of b. The size
distribution is normalized so that the integral over all sizes is N = 1. (b) The extinction
efficiency, Q.., as a function of the effective size parameter x = 2ma/A for the values of

effective variance b given. Mie theory was used with a refractive index n' = 1.33, k = 0 (after
Hansen and Travis 1974).

Fig. 14.10 An illustration of the extinction paradox. The photograph shows the diffraction pattern
produced by a round stop. In the middle is the Poisson spot. The image is created by
observing a light source obscured at some distance by a ball bearing of 10 mm diameter.
The telescope is located several meters behind this obstacle.
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14.4 A Simple Model of Particle Extinction
General references:

Van deHulst, 1957: Chapts. 3 and 11

Stephens, 1984: Appl. Opt., 23, 954-959.

Ackerman S. and G.L. Stephens, 1987 J. Atmos. Sci.,

G.L. Stephens, 1994: Remote Sensing.,

(a) Fundamental Extinction Formula

Consider a plane wave incident on a particle that we choose to write as

g - e—ikZ+lWl (14'9)

o
where we conveniently assume the wave has a unitary amplitude.

Suppose the scattered wave at O’ in Fig. 14.11 is a spherical wave of the form'

—ikr+iwt

€.oa = SO (14.10)

tkr

that introduces the function S(#), which we hereafter refer to as the amplitude function. This function
accounts for the fact that the intensity of the scattered radiation varies with scattering angle 6. Now
extinction is defined at # = 0 and C,,; can be derived in terms of S(&)—this relation is known as the
fundamental extinction formula. In deriving this relation, consider points near € = 0 such that”

2 2
X +Yy

2z

r=z+

provided x, y < < z. The resultant wave is

E +E& = S(ﬁ = O) e—ik(z+(x2+y2)/2z)+iwt " e—ikz+iwt
sca o l-kZ

- 50[1 + S(e = O) e—ik(x2+y2)/22i|

ikz

" In the derivation of Van deHulst (1957, p.29), the complex factor i appears in the denominator for
reasons that become evident in his derivation of cross sections. We will not outline these derivations here
and choose to omit this factor in our discussion.

2

2, 2\!/2 2, .2
r=(zz+x2+y2)”2=zl+x +2y ~71+% +2y
z 2z
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NEEREER

Fig. 14.11 An arbitrary particle that scatters a plane wave to the point O’

The intensity is obtained by squaring the modulus of this expression

H&w4E+&V%&VP+£m%ﬂ£iafWMM”H
Z 1

Now, the total intensity is

J.a,eaJ-I(xa y)dxdy =1, ”dxdy + %J.J.m[@e—ik(xztvz)/h} dxdy

~0-C

(14.11)

where O is the integral of the first term and corresponds to the geometric area projected by the particle on
a distant screen and C is the integral of the second term and can be interpreted as the amount of light
reduced by the presence of the particle (due to extinction). This integral reduces to

Re[S(6 = 0)]. (14.12)

ext

qm=%§mdﬂ9=mk thus, O =j;
x

(b) Anomalous Diffraction Theory

One may gain the false impression, both from Fig. 14.7 and from the arguments leading to Eqn.
(14.12) that extinction occurs through blocking an amount of incident light of magnitude C,,,. In fact,
extinction is a subtle interference phenomenon and not one of merely a blocking of light as the extinction
paradox reminds us. In discussing this paradox, we learn that the particle not only 'blocks' an amount of
light that is defined by the geometric cross section but also removes some of the energy of the original
wave via interference. A relatively simple, but nonetheless useful model of extinction is provided by the
anomalous diffraction theory of Van de Hulst (1957, Ch. 11), which seeks to model these interferences.

In the ADT of van de Hulst, we are interested in defining the characteristics of the wave on a
reference "screen" V far removed from the particle (Fig. 14.12). We argue that the characteristics of this
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wave at V are governed only by diffraction resulting from interference between the ray just outside the
particle to one that passes through the particle. A difference in phase between these rays creates this
interference. The basis that we claim these can interfere results from considering that V is infinitely far
from the particle and that the particle is both large (such that we can trace rays through it and 'soft' so that
refraction at the surface interface is negligible).

v

Fig. 14.12 Ray passing through sphere.

We begin by noting that the extinction paradox predicts

Cen=2G (14.13)

where G is the geometric cross section leading to a value of Q,,, = 2 when » — oo. From this and Eqn.
(14.12) it follows that

k2
S@=0)="—G (14.14)
2

Now consider a transparent particle with a ray traversing it along the direction drawn in Fig. 14.12. The

phase difference between the ray outside the particle to the ray that penetrates the particle at an angle @ as
shown in Fig. 14.12 is

Ap=2x(m-1)singp = psing
where p defines the phase shift of the central ray. At point Q the amplitude & is
-A¢ _ e—ipsinqa

€Q=e

for an amplitude of the incident wave &,. Thus the net attenuation is
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S0 = 0)=— ” e PI dxdy

where the integral is taken over the geometric shadow area of the particle. With substitution and change
of coordinates, the above integral can be evaluated (refer Van de Hulst, p175) to yield

S(@=0")=x"K(ip) (14.15)
where
e e -1
K(w)y=—+ + =
w w
and thus
O, = 4%e(K(ip)). (14.16)

Figure 14.13 shows examples of (O, calculated using this simple formula and compares it to the
Lorentz-Mie formula. Clearly the approximate formula has some shortcomings (no ripple structure) but
the overall characteristics of the 0., curves are well represented (especially as m — 1). The simple theory
also allows us to interpret the larger maxima and minima as interference features. The approach is very
simple and readily adapted to non-spherical particles. It may prove to be a desirable way of incorporating
scattering parameters into atmospheric circulation models for example.

T 1 [Tl

4 m=15 i

3 m=133 n
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Q
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—
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m=lte
3 /o e
/', \\
TZ_ ,’/I/ r} \\\ 4 ’—‘\‘\
Q /7 m=08 ) ,//m-093j‘
4
1+ / z=10 %x=20 -
4
0 § YRR ENNNN W RN T TN T NN Y N TR U HAN N B!
5 © 10 15 20
p=2z|m=1|

Fig. 14.13 Extinction curves computed from Mie's formulas for m = 1.5, 1.33, 0.93, and 0.8. The scales
of x have been chosen in such a manner that the scale of p = 2x | m — 1 | is common to these
four curves and to the extinction curve for m — 1 = #¢.
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Absorbing particles can also be simply handled in the ADT approach. If m = n - ik, then we can
define the quantity

tan f =
n-1

and note that fis very small for most solar wavelengths (see Fig. 14.14).

T T T T T ~T - ~T—

B (degrees)

10%

T T T,

Io‘T i i 1 2 I N A s 2
1 2 3 4 5
WAVELENGTH (um)

Fig. 14.14 The angle as a function of wavelength for water

The phase shift of the central ray is then
p*¥=2x(m-1)= p(l-itan f) (14.17)
where p=2x(n - 1) and from Eqn. (14.16)
0, =4Ne[K(ip + ptan B)] (14.18)

The energy absorbed inside the sphere is simply calculated by considering the dampening factor of the
wave in the particle. The waveform is

exp(-ip *sint) — exp[-2xksint] exp[-ipsint].

The decrease in intensity on passage through the particle is therefore

1- e—4xl( sin @

which is due to absorption. Thus
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Ou = — [[11-e " axay

and

Q vy 2K (4x1) (14.20)

where v = 4xk serves as a particle absorption similarity parameter—i.e., absorption by two particles one
of radius a; and composition xj, and the other of radius a, and composition x>, are identical (self similar)
when v; = v, . Figure 14.15 presents a plot of O, as a function of v from Eqn. (14.20) and contrasts this
with efficiencies derived from Lorentz-Mie theory, assuming ice spheres. The ADT results match those of
Lorentz-Mie when v is small (which is the range of validity of the ADT). Spectra of O, also indicate
reasonable agreement and serve to remind us that this absorption is sensitive to particle size.
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Fig. 14.15 The absorption efficiency as a function of v. Spectra of Qs and v as a function of wavelength
for 5 um and 10 um water spheres.

14.5 Extinction Coefficients and Optical Depths
The extinction coefficient (in this case, volume extinction coefficient) is defined as

O =7 [ M(P)Qrdr (14.21)

for spherical particles. Similar expressions apply to scattering and absorption. Based on dimensional
arguments, n(r) = L ¥’ — L?, anddr — L and 0— L. By definition, the optical depth is
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dr=0_,dz

ext

(a) Rayleigh Scatter (Liou, p76-79)

0 dz .,
Tray (P) = I , Ot (p)gdp

O, and N, are conservative scatterers and the scattering cross section per unit molecule is

87 (m?* -1)*
o,,=——7——f(0),
sea AN 1)

where f(9) accounts for depolarization effects induced by the nonsphericity of the molecule [f{d) = (6 +
30)/(6 - 79)], d = 0.035. The optical depth is thus

7(4) =0, [ N(z)dz'

where N(z) is the number concentration of molecules as a function of height. Since this is proportional to
pressure,

7(p,A) =7,(A)p/p,
A convenient parameterization of the Rayleigh optical depth is
Ty (2) = 0.0088A7+15*9* exp[-0.1188z - 0.00162 ]

where z is expressed in km. The variation different than A arises through the slight dependence of a
(polarizability) on A.

3

Normal optical thickness ¢

c 1 1 3 n
03 04 Q3 08 07 O8 Q9 W0 1u
wavelength A (micron)

Fig. 14.16 Rayleigh normal optical thickness between the top of the atmosphere and the altitudes given
on the figure. (From Marggraf and Griggs, 1969).
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(b) Cloud Optical Depth (at Solar Wavelengths)
Tcloud = Iaextdz
where
J’ 2
Oy = | 0(r)Q, 7w~ dr

At these wavelengths and for tropical cloud droplet sizes, x >> 1 so that

Qe — 2

(the extinction paradox). Thus
Totoa = 2] [ ) drdz
With the following definitions

w= gﬂp I n(r)mrdr (liquid water content)

r, = J.n(r)mf3 dr/ J- n(r)mr’dr (effectiveradius)

it follows that

‘L’~EK (14.22)
2r,
where W = J.w(z/)dz' = liquid water path. Thus extinction is inversely proportional to r, —this is

important as it says that clouds composed of high concentrations of small droplets are optically thicker
than clouds composed of fewer but larger droplets.

(c) Cloud Optical Depth (IR)

Let's suppose that only the absorption of IR radiation by cloud particle is important. Then the optical
thickness is

Az poo
Ty ~ [ | ) Oy drdz (14.232)

0 0
For IR wavelengths and cloud droplets ~ few microns, the size parameter is small and QO is
approximately a linear function of x and thus r (e.g., Fig. 14.17).

To some limit, we can approximate Qs by

Q. ~constant-r, r<r,

where 7, is the characteristic radius of the distribution n(r). On substitution
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Az
Tops ™~ Io constant {[n(r)ﬂr3dr}dz
the terms in brackets is proportional to the cloud liquid water, therefore

7, = constant-W (14.23b)

where W is cloud liquid water path.

A=9S5um

Q=C'X~ -
P

ABSORPTION EFFICIENCY FACTOR Q,

] ' QMIE)?
L}
o i
0 s X.0 I8

SIZE PARAMETER X

Fig. 14.17 The Mie absorption efficiency Qy as a function of size parameter x = (2m/A) and thus, of

particle size for A = 9.5 um, x,, corresponds to 2mr,/A where r,, is referred to in the text (from
Pinnick et al., 1979).
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Fig. 14.18 The broadband optical thickness for the 0.3—0.75 um (a) and 0.75—4.0 um (b) regions as a
function of liquid water path and for several cloud types.
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14.6 Scattering Phase Function

The scattering pattern is described in terms of the amplitude function S(6). We can gain a better grasp
of this function by considering the following experiment. In this experiment, a particle of arbitrary shape
is illuminated by a plane wave traveling from the negative z direction as shown in Fig. 14.11. A detector
is placed at O' some distance R from the particle and is moved around the particle at this distance. The
field incident on the particle is

Eipe = E 67, (14.24)

and the field measured at O’ is (refer to Eqn. (14.7))

e—ikR+iwt
E..=50 . 14.25
sca ( ) kR ( )

This field can be expressed in terms of the incident field at the particle by combining Eqns. (14.24) and
(14.25)

—ikr+ikz

Eu =5(0) E,,

o

and in terms of intensities it follows that

2
o= S (14.26)

It is more usual to describe the angular patterns of scattered light in terms of a quantity referred to as
the scattering phase function.” We can consider the relation of the phase function to the amplitude
function in the following way. Consider an instrument located at the position at O'. If the area of the
detector is dA, then the amount of radiation received by the detector is contained in the set of directions
confined to a small solid angle element dQ = dA/r”. Therefore the total energy per unit time at a given
wavelength that is received by a detector capable of measuring the scattered radiation over the entire
range of solid angles is

I
dw=1,,d4~R[_1,,d2=-2[ |SO) d2 (14.27)

k

where E is used to denote the entire sphere of directions over which the integration is taken. Now we
mentioned that the total amount of radiation scattered by a particle can be defined in terms of its
scattering cross-sectional area C;.,. By definition,

1,Co = R*[ 1,42, (14.28)

o sca

3 The use of the word phase to name this function has no relation to the phase of the wave but originates from the
astronomical literature where it refers to lunar phases.
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and

1
Cica =k—2f5|5(49)|2 aq. (14.29)

These relationships provide us with the definition of the scattering phase function P(6)

2
PO) _1S©)| (1430)
rw k Csca
which is a unitless quantity and when integrated over solid angle obeys the following condition
1
—j P(O)dQ =1. (14.31)
4 J=

This is an energy conservation condition, which simply states that in the absence of absorption the energy
scattered in all directions around the particle must be just that amount that has been decreased from the
original direction of propagation of the incident field.

Figure 14.19 presents plots of the phase function derived from Lorentz-Mie theory for spheres of
varying size.

10 T T 7T I T T T T T T T T
my =133 my =150
108 ~m =~ ROy Optics ~— == Ray Optics -
e Mig Theory —— Mie Theory

PHASE FUNCTION

o] 40 80 120 160 O 40 80 120 160
SCATTERING ANGLE @ SCATTERING ANGLE &

Fig. 14.19 Comparison ray optics and Lorentz-Mie theory for phase functions derived from three size
distributions (x,, = 2ar,/A) and two values of refractive index.
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(a) Parameters of the Scattering Phase Function

One parameter that usefully characterizes the asymmetry of particle scatter is the asymmetry
parameter. It is defined as

+1
g= %j 1P(cosl9) cos@d cos . (14.32)

Note that g = 1 is complete forward scatter and g = 0 is isotropic and symmetric scatter (e.g., Rayleigh
scatter).

P®)

° 1° ' @lto"

Consider as an example, the simplistic phase function shown below.

Forward scatter:

L (%[ P(cos ) sin 616
f=EJ‘O IO (cosB)sin

Backscatter:

b= ["[" P(cosd)sin aiaid
=EJ‘O L (cosB)sin

Normalization:
f+b=1

For the simple phase function illustrated, it follows that
g=(/+ (Db

and
b=(1-2)72

f=(1+g)/2
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Fig. 14.20 The asymmetry factor as a function of wavelength for the three cloud models.

(b) Simple Parameterization of the Scattering Phase Function

We find it convenient to present the phase function by

N
P(cosf) = Z;([P,{ (cosB)

=0

100

where P/is the ™ order Legendre polynomial and , are the associated expansion coefficients. (Refer to
exercise 14 (summer lecture course), for further discussion of phase function expansions.) A general rule
of thumb is, the larger the particle the more terms are required to represent the phase function (Fig.

14.21).
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Fig. 14.21 Coefficients of the Legendre polynomial expansion for a hypothetical cloud model derived for

both Lorentz-Mie and Henyey-Greenstein phase functions.
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A specific form of phase functions useful in cloud calculations is the Henyey-Greenstein phase
function. The H-C function decays monotonically with & unlike real functions that possess glories,
rainbows, and other optical phenomena (Fig. 14.22). It can be expressed in terms of g as

l—g2
(1+g? +2gcosh)

P, (cos@) =

3/2

which has a very convenient expansion

Pyg(cosf) = (20 +1)g' P, (cos )
14

Combinations of H-G functions have been proposed to model the scattering in the back-hemisphere more
realistically. An example is the double H-G function

Poug =bPyc () +(1-b)Py(g,)
g = effective asym. parameter

=bg, +(1-D)g,

which is also graphically illustrated in Fig. 14.22¢
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Fig. 14.22 Comparison of three different phase functions plotted as functions of (a) 8 and (b) cos 6. Two
are Henyey-Greenstein functions with g = 0.75 and 0.85 and with values at 6 = 0 of 28 and
86, respectively. The third is a Lorentz-Mie case for a polydisperse water cloud of effective
radius 10 um, with a value of 9.7 x 10° at @ = 0. (c) Example of a double H-G function with
the values of b, g; and g as indicated.

14.7 Scattering by Spheres: A Brief Qutline of Lorentz-Mie Theory

The theory for scattering by dielectric spheres was developed independently by Lorentz in 1890 and
Gustav Mie in 1908 (refer to the discussion of these developments in the bibliographical discussions at
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the end of this chapter). The derivation of the solution is a straightforward application of classical
electromagnetic theory so only the resulting formulae are given here.

(a) General Formulae

Mie's solutions for scattering by a dielectric sphere are infinite series whose rates of convergence
depend on the value of the size parameter x. The two scattering amplitude functions have the form

S,(0) = HZO:‘ nz(z : 1) la,7,(cosO) +b,T,(cosb)], (14.33a)
S,(0) = 2 nz(’; : 1) [a,7,(cos®) + b7, (cosO)], (14.33b)

where

,(cosl) = LPnl (cosB)

S;‘H (14.34)
7 (cosf@) =— P! (cos8),
, (cos®) 16 , (cos6)

and where P! is the associated Legendre polynomial (e.g., Abromowitz and Stegun 1971). The

n
coefficients a, and b, are referred to as Mie scattering coefficients and are functions of refractive index
m and size parameter x. The mathematical forms of these coefficients are given as ratios of Ricatti-Bessel
functions. The extinction and scattering efficiencies are also series

ext

%Z 2n+1)Re(a, +b,) (14.352)
n=1

SCH

iz 2n+1)(a, | +|b, *). (14.35b)
X p=l
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AT622 Section 15
Radiative Transfer Revisited: Two-Stream Models

The goal of this section is to introduce some elementary concepts of radiative transfer that accounts
for scattering, absorption and emission and introduce simple ways of solving multiple scattering
problems. We introduce simple models to solve the relevant radiative transfer equation and demonstrate
how they offer a glimpse at the intricate way in which the radiance field depends on the properties of the
scattering and absorbing medium.

15.1 Scattering as a Source of Radiation

Photons flowing along a given direction are removed by single scattering as Beer's law predicts.
However, these photons can actually reappear again along that same direction when scattered a multiple
number of times. In fact, many of the scattering media of interest to studies of the atmosphere are multiple
scattering media, that is media containing a sufficient number of scatterers that photons traversing it are
likely to be scattered more than once. Multiple scattering of sunlight, for instance, gives rise to many
observable phenomena that cannot be explained from single scattering arguments alone. For example,
single scattering predicts a sky that is of uniform brightness and color contrary to what we observe. The
whiteness and brightness of clouds is also a result of multiple scattering. Reflection of visible and
microwave radiation from various surfaces is largely influenced by multiple scattering. Multiple
scattering is thus relevant to many topics and we need to develop a mathematical description of how these
photons reappear along the reference direction in order to account for it.

Consider a beam of monochromatic radiation flowing along a direction defined by the vector &' illu-

minating a small volume located at 7 and of length ds containing scattering particles (Fig. 15.1). The
volume is taken to be small enough that only single scattered photons emerge from it. The incremental

‘,f,"‘“?’ 1 (E)1+d1(®)

Fig. 15.1  Geometry for scattering of diffuse light. E'is the unit vector that defines the direction of the

flow and 7 is the vector that specifies the position of the volume element relative to an origin
point.
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increase in intensity along the direction specified by & due to the scattering of this incident beam is, by
virtue of the definition of the phase function' given in Section 13,

518 = 0, a5 "EEE) 7 Eran @), (15.1)
JT

where Oy, is the volume scattering coefficient given earlier and the wavelength dependence on all
quantities is understood. The total contribution to /( 7,E) by scattering of the complete diffuse field
surrounding the volume is given by the integral of Eqn. (15.1), namely

7.8 = 0i5], POED 1. 2 @), (152)
which leads to the following definition
16.5=0,], "CE G £raad)
such that
dI(7,&) =0, dsJ(F,E). (15.4)

The quantity J( 7 ,E ) is the source of radiation due to scattering of diffuse light (sometimes this source is
referred to as virtual emission) and @, is the single scatter albedo defined as

Q

o =

ca
o

OL

ext

and varies between zero for pure absorption and unity for pure scattering (the latter condition is known as
conservative scattering) such that the quantity 1 - @, is the fraction of the incident radiation that is

absorbed by the small volume element under consideration.

The monochromatic radiative transfer equation defines the net change in intensity of a beam as it
traverses the path element ds through a small volume. The change in intensity as the beam traverses a
volume of atmosphere that both absorbs and scatters {and emits} radiation is

dI = dl(extinction) + dl(scattering) + {dl(emission)}, (15.5)

or

—dlgj,f) =-0, [I(7,&)- J(F,5)]+ {dl(emision)} , (15.6a)
s

' The phase function is a bidirectional scattering function that is entirely analogous to the bidirectional functions.
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after collecting the extinction term and Eqn. (15.4) for scattering. It is relevant to note the similarity of
this equation to Eqn. (4.8a,b) except that the scattering source in Eqn. (15.6a) is replaced by the Planck
function in (4.8b).

The radiative transfer equation relevant to a horizontally stratified atmosphere is

PRUCERI .

A(2.0.0)+ [ P(2,0,9.09)1(r.09)dQ + 0, B(T). (15.6b)
dz : 4oz J 47

where if it were not for the presence of the integral term, this equation would be a mere differential
equation and the theory of multiple scattering would have been worked out and forgotten long ago.
Example 15.1: Virtual Sources?

The problem of solar radiation multiply scattered by cloud or aerosol is more
conveniently posed in terms of a source of collimated light that enters the
cloud and by scattering creates a virtual source of diffuse radiation. This

leads to an additional source term in the equation of transfer, which may be
derived as follows. Consider Eqn. (15.6b), and suppose that the global

intensity /(z, 6, ¢) may be expressed as two components:
1(z,0,¢) = 1.(2,0,9) + 1,(2,0,¢)
one for the diffuse field /+ and the second

1y(2,0,9) = 1,(2)0(6 - 6.)0(p - p)

for a collimated beam of intensity /_ along the solar direction 8 =6 _, ¢ = ¢
Substitution leads to

o

vl ——o (L+1) + 2 [ P(L, +1,)dQ
dz ’ 471

or
U ol 425 [ PLAQ 4 1.P(0.9.0..9.)
dz 45
and
[
= T where 1 (2) = 1 (z,)e 77
Z

2 We can also follow the procedure of Section 4.3 to obtain an integral equation of transfer that is analogous to Eqn.
(4.10). However, there is a fundamental difference between this and the equivalent integral equation that follows in
this way. In Eqn. (4.10) the source function appearing in the integrand is known as a priori (assuming that the
temperature distribution along the path is known) and the solution requires a straightforward integration of known
functions. For scattering, the source function appearing in the integrand unfortunately contains the desired intensity
and cannot be evaluated a priori unless some approximation is made. The presence of the intensity in the definition
of J is what complicates the problem of multiple scattering and why a host of different approaches exist to
overcome it.
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15.2 Multiple Scattering: A Natural Method of Solution

A natural solution to problems of multiply scattered light in the atmosphere is one that decomposes
the light field into components that can be identified with the number of times a photon has been
scattered. This is termed the method of orders of of scattering and Fig. 15.2 provides the general
geometric setting for discussing this approach. Suppose light of intensity /, enters the medium along the

direction & at the point 7, . The amount of radiation leaving the distant point 7, along Eis

I'(7,8) = 1,7, 6)T (.7, &) (15.7)

where (7,7 7,E)is the transmission function defined by the path r—r along & as shown in Fig. 15.2.

We refer to I’ as the reduced or unscattered intensity. When some light 7°(#,&) at an intermediate point

7' undergoes a scattering event, a first order or primary scattered intensity is generated at that point by an
amount defined by Eqn. (15.3). This amount of intensity per unit length of path is

Fig. 15.2  Geometry for orders of scattering and geometry of a plane parallel atmosphere for
computing the primary scattered intensity induced by a collimated source of solar radiation
of intensity I,

17, =J' (7.,

where, according to Eqn. (15.3), J' may be considered as the source associated with the primary scattering
of I’. It therefore follows that the radiation from primary scattering of light from all directions is

L(F.&)=

o] 25 :, é&)10(*’ £)a0(@). (15.8)

The amount of this primary scattered radiation that is accumulated along the path from 7, — 7 is

Igg)jlﬁfﬁ(?@w. (15.9)
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It is a simple and somewhat intuitive matter to show that construction of the intensities associated with
higher order scattering then follows from the repeated application of Eqns. (15.8) and (15.9) such that

P(?'§§)

i) =o,,[ =220 (F,5)dQE), (15.10a)

I"F8 = [ 1 HT G F ) (15.10b)

for each integer order n = 0, 1,... of scattering. The total intensity is therefore the sum of all orders of
scattering, namely

[=1+1'+ P+ 41"+ = 1", (15.11a)

which is conveniently written as
I=0I"+T (15.11b)
where /* in this case is the total diffuse intensity /* =2 ,_; I,.
An obvious question to ask is how many orders of scattering are required to approximate the diffuse

field to some given accuracy? The general answer to this question depends on how many particles there
are in the volume and on how efficiently the particles scatter the radiation. A rough idea of the effect of

the single scatter albedo on scattering is given by the following arguments. Suppose 7° is an upper bound
on I°. Then from Eqn. (15.8)

= T 1 -1 = 2 =r T
17,86 =<1',, 4—jP(r E,EVdQE) =T, (15.12)
T
by virtue of the phase function renormalization condition Eqn. (15.9) then becomes
11 (’7’5) - J‘ I,: (F!’E)e—aar‘?—f,‘df!

where the exponential factor is the transmission function for the path of length d =|7 —7'|. From the

condition on 1. it follows that

I'FE) <I'w,(1-e")<T®
Repeating this procedure for the next order of scattering leads to
I’'(7,6)=<I1'®
and

I'"(F,E)<I'@" (15.13)
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for every scattering order n. With the following notation
— k —
[V(F,E) for 3 I'"(7.8),
n=0
it follows that the difference A = I(7,&) - I®(7,&) is

A=> IFE<I"Y &,

J=k+1 J=k+1

or

TN =T (15.14)

Example 15.2: How many times does a photon get scattered?

Consider the example with @, = 0.5 and suppose that we require I to differ

from the actual intensity by an amount no larger than 1% of 7°. It follows
that A/1° < 0.01 and that

Jj+l
0.0I= 05

or j = 7 for the nearest integer value. Thus only 7 orders of scattering are
required to model the diffuse intensity with a 1% accuracy when @, = 0.5.
This simple exercise offers a clear illustration of the significance of @, to

multiple scattering. We infer that the number of scatterings required to
represent the total intensity decreases as the absorption by the particle
increases (or as @, — 0). For example, many orders of scattering contribute

to the total radiation field in clouds at solar wavelengths where @, > 0.9 but
relatively few scatterings contribute at the infrared wavelengths where @, <
0.5

15.3 The Two-Stream Approximation

On examination of the equation of transfer, which includes scattering in either its interodifferential or
its integral form, one is confronted with the complicating presence of the integral term that involves an
integration over the direction variable. In fact if it weren't for this term, the equation of transfer would be
but a mere differential equation and the theory of multiple scattering would have been worked out and
forgotten long ago. Thus the essence of the simplification that is introduced by the class of simple models
discussed here is to approximate, in some way, the angular shape of the radiance field so as to introduce
some approximation to this integral term. To this end there is a property of the radiance field that is
utilized to great benefit by these approximate methods although it is not often explicitly realized. This
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property is illustrated in Figs. 15.3a and b in which the zenith radiance distribution is shown on descent
into the sea (Fig. 15.3a) and deep in a thick cloud (Fig. 15.3b). It is apparent that this radiance structure
approaches some sort of asymptotic form with increasing depth into the "medium". Eventually some
steady distribution is reached and all radiances decrease at the same exponential rate with increasing
depth ultimately shrinking down in size but preserving its shape. It is also apparent that this asymptotic
distribution can be described as some simple function of zenith angle (this is the basis of the diffusion
approximations, which we will not discuss here).

ST T ° v 7 tomwvieer]
1 = 0.503 pm

20| 3s 30 s
% sk }35 ".-
[ 3 5|
B £ H
3 3 :
§'|5J— gn 2 g.
3 £ y
£ 10 £ 19 '

<..

= n I s i L PR
) 30 60 90 120 150 180 30 60 9 120 150 180~
ZENITH ANGLE (DEGREES) ZENITH ANGLE (DEGREES)

— — 3 4] S . \ 7 )

I

collecting surfoce

L R S S S N

o 40 80 20 160 200 240 ~ 280
IRRADIANCE DISTRIBUTION (H) CLE AR, SUNNY SKY

Fig. 15.3  (a) The flux distribution on a clear sunny day at three indicated depths in Lake Pend Orielle,
Idaho (adapted from Preisendorfer, 1976). These fluxes are defined for a collecting surface
inclined at an angle 6 as shown in the inset. (b) Measured intensity as a function of zenith
angle obtained from a scanning radiometer on an aircraft as it flew through the center of a
deep stratiform cloud. The lower curve is the difference between measurement and a simple
cosine of zenith angle variation (King et al., 1990).
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While we can approach the development of the two-stream equations in a number of different ways,
the end result is always the same, namely that we arrive at equations of the form

e AT

(a) The Two-Stream Equations—The Conceptual Approach

The arguments formulated here are similar to those used in the pioneering work on radiative transfer
by Schuster in 1905. Consider a parallel, horizontally uniform slab of cloud and consider the fluxes
flowing in two opposing directions.” We will use the + superscript to refer to quantities associated with
flow in the upward direction and a — superscript on quantities relevant to downward flow. The two-
stream equations define the energy balance of this thin slab of thickness Az in exactly the same way as
Eqn. (15.6b) describes an energy balance of a small volume of cloud. In order to express the radiative
energy budget of a layer Az thick, it is necessary to define the following optical properties:

* The proportion of the incident flux lost by absorption as the radiation flows through the layer of
unit thickness is k.,D* where D* is a measure of the 'diffuseness' of the radiation field. This
parameter more or less represents the mean extension of the path, relative to the vertical, that a
diffuse radiation field travels as it penetrates the layer. It is a function of the angular properties of
the intensity field among other parameters and represents one of the simplifications mentioned
above. If we suppose that the angular distribution of radiation that produces the flux is the same
in both directions (the magnitudes might be different), then

D'=D.
Although this assumption is questionable, it tends to be universally used in two-stream models.

* The proportional loss of flux by scattering is s,,b" per unit thickness. Here we note that the
process of absorption is treated differently from scattering in that a measure of the path length is
needed for estimating absorption but this measure is not needed for scattering. We will further
suppose that this scattering is the same whether the radiation flows upward or downward, and
thus

b =b.

Another parameter of relevance is the fraction of radiation f'that is scattered in the forward direction. This
fraction is defined such that

frb=1 (15.16)

For a change in flux AF defined as positive upwards, then the change in flux on transfer through the
layer Az is

AF* =F(Dk,, +s, b)F*Az=s,_bF*Az(+0*Az) (15.17)

sca

? The relationship between radiative flux and intensity is explored in the Appendix. The derivation of the two-stream equations
given here follows the more conceptual arguments of Schuster. The same equations can be derived directly from Eqn. (15.6b)
given some assumption about the intensity field. This alternative derivation is left for later.
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where the last term in parentheses represents internal sources of F* in the layer Az’. The first two terms
on the right hand side and enclosed by parentheses describe the losses of radiation through the processes
of absorption and scatter, respectively, while the middle terms represent the increase of flux by
backscatter of the opposing stream. Introducing the definition of optical thickness as

AT = _(kabs + Ssca)AZ

where the minus sign defines Tt as increasing downwards from cloud base opposite to the change in z. On
taking the limit Az — 0, we obtain the two-flow radiative transfer equation

¢?= [D(1-@,) +@,bIF* +@,bF* (+0%) (15.18)
T

where @, = Syco/(Ssca T Kans ). All two-stream methods described in the literature essentially reduce down

to this equation. The only difference between the various methods lies in how D, b, and S* are specified.
One example is to consider the simple phase function introduced in Section 13.7a, then it follows that

b= -g)2
where g is the phase function asymmetry. The radiative transfer equation then becomes

P _[D(l—cbn)+ 2 (1—g>}F: + L1 g)F (+0°). (15.19)
dr 2 2

The general solution to Eqn. (15.19) for given sources can be complicated. Here we neglect this term
and consider only solar radiation incident on cloud top assuming this incident flux is purely diffuse (as
opposed to the more realistic case of a purely collimated incident flux). While the details of the solutions
described below change with the addition of the source term for solar radiation, notably by introducing a
solar zenith angle dependence to the solutions, the gross relationships between the optical properties of
clouds (t* @,, and g) and the diffuse reflectance and transmittance does not change.

“*Two main sources of flux are usually considered in these models. One is the source of radiation due to thermal emission, which
according to Kirchoffs law takes the form

Qi = kabS”B (D
for emitting cloud particles of temperature 7. The second is the source of diffuse radiation that results from the single scattering
of a collimated flux 7 of sunlight. This source has the form

br.w
Qi = F’Se_r/‘u@ssca( . J
e

where f, and b are the forward and backward scattering fractions of the incident flux £ and these fractions are functions of the
cosine of the solar zenith angle p
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Example 15.3: Solution for sourceless atmosphere, pure scattering

Consider the example of a single layer of 'cloud' with S = 0. For pure
scattering, @, =1, ks =0

F*=m,F¥m_(14+7)
where m.. and m. are constants determined by boundary conditions and

T=(1-g)r

is the optical depth of the entire slab, T*, scaled by the factor (1 - g). The
relevance of this scaled parameter becomes apparent by considering an
isolated scattering and absorbing layer illuminated from above by flux F
overlying a dark surface. Under these conditions, the albedo of the cloud
layer is

r-EO__7 (15.20a)
Et) 2 +7T
and the transmittance
T=M=I—R= ZN (15.20b)
F, 2+7T

This result implies that two non-absorbing cloud layers with different optical
thicknesses t* and g reflect the same amount of radiation when the respective
values of 7 are the same. This is referred to as a similarity condition and
implies that it is not possible to infer T from a single reflection or a single
transmission measurement without information about g. One of the problems
associated with the remote sensing of ice crystal clouds is that g is neither
well known nor well understood in how it varies with different crystal habits.
This parameter is well known for water droplet clouds and is quasi-constant
with a typical value in the range 0.8-0.85.
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Example 15.4: Solution for sourceless atmosphere, nonconservative
scattering

For this case, @,< I, kys > 0: The solution to Eqn. (15.19) for a sourceless,
uniform medium has the form

F*()=m,y.e" +m_y.e™ (15.21a)
where
k={(1-a&,)D[(1-@&,)D +2&,b]}"* (15.21b)
and
y.=1=(1-&,)D/k (15.21c)

where as above the coefficients m+ are determined from appropriate
boundary conditions. Consider the same conditions applied to Eqns.
(15.21a,b)

F (t*)=0

F)=F,

for an isolated layer of optical thickness t*. With some manipulation of Eqn.
(15.21a), the albedo and transmittance of the layer can be written as

R =y y[e"™ - " YATY) (15.22a)
T=(y:-7)/ A7) (15.22b)

where
AT ) =y —yple™™ (15.22¢)

As " — o, R — R, = y_/y. and this is referred to as the albedo of a
semi-infinite cloud. This represents the upper limit to the albedo of a cloud
and since 7= 0 and 4 = 1 — R, this is also the upper limit to the absorption 4.
within the cloud. These upper limits are determined entirely by the optical
properties @,, k, g, and D of the cloud. From the substitution of Eqn.

(15.22b) in Eqn. (15.22c¢) together with the definition of R., it follows that

211/2
r _LL+1/s’] V2 (15.23)

T +1/52]7 +42

_oN\l2
l1-o,
S = —
1-w,g

is another similarity parameter (Fig. 15.4b). Equation (15.23) states that the
reflection by two different optically thick clouds are equivalent when the
similarity parameter s is equivalent.

where
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Fig. 154  (a) The spectral reflectance from modeled clouds as a function of their particle size. (b) The
similarity parameter as a function of wavelength for different assumed values of the cloud
droplet effective radious r..
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Example 15.5: Pollution Susceptible Clouds

The effect of ship stack effluents on cloud optical depth and cloud albedo is a topic of intensive
interest. The simple two-stream model introduced previously now serves to emphasize how the
scaled optical depth is the direct controlling parameter on the albedo of clouds. We can deduce that
optical depth of clouds is

T =27N,7’h

for a cloud of depth 4 composed of N, particles of a size 7 that exceeds the wavelength of
radiation. Increased water content (occurring largely as an increase in 7 ), for instance, can increase
the optical depth of clouds. An increase in number concentration N, can also increase t* and the
sensitivity of optical thickness t* to ,, for constant liquid-water content, is given by

5

AT

P

T

AN,
N,

L
3

For cloud droplets under solar illumination, g is quasi-constant and =~ 0.85. Using this value in Eqn.
(15.20a), one obtains the following simple approximate expression

T
13+7

=

for the albedo of a cloud. We can readily derive the sensitivity of R to droplet number N, from this
relation and express it in terms of V, and R. The result for fixed liquid water content w is

(dRJ _R(1-R)

dN, 3N,

Thus, for a given N,, the most susceptible clouds are those with R = 1/2, but the maximum of R is
rather flat - for R = 1/4 or 3/4, dR/dN, is still three-fourths of its maximum value. For fixed R,
(dR/dN,),, is inversely related to N,, which in the real present atmosphere, can vary by more than
two orders of magnitude. The susceptibility dRIdN, (graphed in Fig. 15.5) reveals a considerable
sensitivity for clean conditions—e.g., in oceanic and remote areas (where N, is low). There
(dR/dN,),, is seen to approach 1% (per cm™); that value would mean a reflectance change of 0.01 for
a concentration change of just 1 cm™.

Fig. 15.5 Susceptibility for different conditions of N, and R.
b) The Two-Stream Equations—Analytic Approach: Eddington's Approximation as an Example
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Suppose we consider azimuthally averaged quantities 7 ,

F=2ﬂj;7ﬂdy
then
I - @& ¢+_ =,
udE=1 - 2" f_l p(us 1)1 (u)d u
* If we assume that
I=I+ILu

which resembles the form used in our diffusion approximation, then
. . I 1
F*= 2;zj01ﬂdﬂ - 2;{3+511}
i -1 1 1,
F = 2nj0 Tudu = 2;1[—511 +ﬂ
and
+1 2
Fo=F -F =2z Tudu- [Elljmr

3
[ =—(F"-F
: 4Jr( )

F'+F =2xl,
[ EeE
27

* The second approximation we introduce is the following

P(u,u)=1+3guu

for the phase function expansion. If we consider our radiative transfer equation and integrate over
each respective hemisphere, then we obtain the following two equations (ignoring sources for the
moment):

1 dl 1 @, 1r+l ' / ]
21w (ydu=2x[ I(@wdu-="] [ plup)1(W)du'du
dT 0 —— 0Od-1— -~ 7

(S — B C

2

A

-1 d[ -1 a~) -1+l 2 ’ '
27w (wydp=2a [ 1@y du==x | plu )1 (u)dp'd
0 dT 0 — 2 0 -l - 7
— B’ c'

A
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Consider the first equation:
1 dl d 1 d
Term A=2x| u—du=2mr— I +Luldu=—rF"
foﬂdr 2 drjoﬂ[ o Hhpldu=—

Term A' =iF'
dt

Term B = 2;;]01 (I +Lpydu=(I, + %II)ZJZ
. 1
Term B'=27 (I, + Lu)d u = G =12

Term £=a)0
2r 2

1 +1 r ’ ’ ’
[oduf [, + 1) +3gul u'+ 1)

w, (! , 1 " 3 ” 137+l
S LR AR TN 1

,

=] dul21, +2gul,)

Tem ——=a,[ " dudl, +gul,)

- 1 -1
=wo[10 +Eg]l](wo[5g11 _Io])

After collecting terms, we obtain

dF*
dt

1 . 1
= 2:1(10 + Ellj - 270, [[0 + Egll}

=F++F'+%(F+—F')—@O[F++F'+%g(F+—F')}

7 1) 1 @
=—F"—-—2(4+3g)F" +—F -—=(4-3g)F"
p L GH3F +7 L (439
or
dF* |7 1 o
=q———2(4+3g) F"+{——-—2(4-3g)+ F~
LN P
Similarly
di=2:r —10+ll1 =27, lgll—la
dt 2 2

= [—F* -F~ +%(F* —F‘)} —c?)o[—F* ~F" +%g(F+ —F')}

7 @ 1 @
=——F +—2(443g)F ——F* +—2(4-3g)F"
2 4( g) 2 4( g)
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or

where we can readily identify

=L %o 443g)
4 4 (15.24)
w

= _Yoy_3

r 4( g)

(c) Delta-Two Stream Models

We have already remarked on the scaling associated with phase functions of the form
plu, ) =210 — ) + (1= /)1 +3g )

which reduces to the formal two-stream solutions when

/_g_f
g _—l—f
'=(1-a,/)t
- -0,
’ l_fCDO

are used directly in the solutions. It is usual to employ the second moment of the expansion, namely

f=u5=¢

for the scaling factor.

15.4 General Solutions

The two-stream model and its general solution are briefly introduced here. We will consider two
kinds of source functions to represent those described in footnote 2. In developing these solutions, it is
useful to introduce two-stream equations (Eqn. (15.15)) as follows

LrF =0 (15.25a)
where F'is a flux vector

of upwelling (F") and downwelling (F) flux at level z. The dependence of each factor in Eqn. (15.25a)
on z'is taken to be understood. The source function vector,
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-t
L =i,—am( rj (15.25b)

where we note the streaming term is defined relative to z rather than t as in Eqn. (15.15), which means
that the coefficients ¢ and r differ from those of Eqn. (15.24) only by a factor of o, Although these
define the flux equations, the form of this equation is generic in the sense that they also equally apply to
radiance and the 'n stream' problem (e.g., Flatau and Stephens, 1988).

The different forms of the equation coefficients in Eqn. (15.15), namely ¢ and r, define different
version of a two-stream model. The 2 x 2 matrix of coefficients defines the attenuation matrix

)
A=0,, (15.26)

-r t

and the 'solution' to the sourceless equation (i.e., O = 0) can be expressed in terms of the matrix
exponential

M(z,y)=e ¢ (15.27)

where M is a mapping function. By virtue of the block structure of A, this mapping matrix has a similar
form

(15.28)

M(z.y) = [m++ (z,y) m,_(z, y)J

m_,(z,y) m_(2,y)

For the 2 x 2 matrix A of the two-stream equations, Eqn. (15.27) follows as

K(z-y) -Kk(z-y)

e e
m, (z,y)= Lt ~
= (2,)) 5 /. 5 /
-K(z=y)  K(z-)

r|e e

m, (z,y)=—| ———-
. (2,7) K[ 5 5 }
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2 2
eK(z—J) e—K(z—})
m__(z,y)= [+ /. (15.29)
2 2
where
f.=(+t/K)
f=>0-t/K)

(a) The Interaction Principle

Consider the two types of radiative transfer problem as posed in Fig. 15.6. The goal of the first is to
deduce the fluxes at the upper boundary of an isolated layer at zr in terms of the fluxes at the lower
boundary z. Stated, this way the radiative transfer problem is an initial value problem. Its solution is as
follows. First consider the sourceless equations for which the solution (assuming constant coefficients) is

(P](z){m”(z’y) m*‘(z’y)J(F](y) (15.30)
F m_(z,y) m__(z, ) \ F

Unfortunately, most problems of radiative transfer are posed as follows. Given fluxes incident on the
boundaries, what are the emergent fluxes (Fig. 15.6). These are two point boundary value problems,
which can be solved through rearrangement of Eqn. (15.30). The relationship between fluxes out in terms
of fluxes in (and internal sources) is referred to as the interaction principle. In rearranging Eqn. (15.30) in
the form of the interaction principle, we obtain the relation between the mapping functions above and the
more classical properties of reflection and transmission.

tavhal Uolua  Prilolem (‘gow\&osg) Yolu-
@m\olem Y
T readhon Q(‘mu‘o'&

G’\\Naf\ ’(z@%ﬂd
Four l2ly) =7 F (24

S

Sl Given

]

Fly= { F(9)

Fig. 15.6  Two types of transfer problems, the initial value problem at left and the more traditional two-
point boundary value problem defining the interaction principle.
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Simple reorganization of Eqn. (15.30) in its interaction form gives the desired emergent fluxes F (z7)
and F7(z) in terms of input fluxes

(F* (zT)J [ Um, — =m_Im,, j(F*(z) }
= . (15.31)
F(2) m_ /m,, m_-m_m,_/m_ )\ F~ (z;)

where the notation indicating the mapping factors are defined for the layer (z;z) is dropped for
convenience. This identifies the layer diffuse reflection and transmission functions as

R(zy,z) = =2 (15.32a)
m++ (ZTaz)

T(z,,2) ISR (15.32b)
m++(ZT,Z)

which are those of Eqn. (15.22).

(b) Adding Sources - General Solution

We proceed with Eqn. (15.25b) in Eqn. (15.25a) and multiplying both sides by the exponential of the
matrix

et % e AF ()= O(2) (15.33)
A

where we assume that the attenuation matrix (i.e., the optical properties » and ¢) is independent of z'.
Integration of Eqn. (15.33) from (z — z7) yields

F(z)=e " F(z,)+S(z;,2) (15.34)
by virtue of the property of the matrix exponential
[ ]! = e
and where the vector

T

S(z,,2) = - j : e G0 d2! (15.35)

These resemble the more traditional integral form of the radiative transfer equation (Sections 4 and 10).
However, it contains the desired emergent fluxes (i.e., the solution) on both sides of the equation as seen
more clearly in the expanded form

(F*(z)} [mH(zr,z) m+_(zf,z)J[F+<zr)] £S+(zf,z>]
- + . (5.36)
F(2) m—+(ZT’Z) m--(ZT’Z) Fi(ZT) Si(ZT’Z)
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A special solution arises for problems in which the medium is illuminated with zero incident fluxes
(known as vacuum boundary conditions). Then we obtain

(r(zr)] =[ =S(zr,2)/m, (z7.2) J (1537
F(2) -m_,(z;,2)S"(z;,2)/m, (z;,2) + S (z;,2)

which are the particular solutions to Eqn. (15.25a) for general solutions.

15-20



Spring 2003

AT622 Section 16
Radiative Properties of Clouds

Here we provide an overview of the properties of clouds that define how much radiation is absorbed
in the atmosphere and how much radiation escapes through the boundaries of the atmosphere. The
properties of relevance include:

(1) The three dimensional distribution of the cloud. This influence is usually thought of in terms of
separate vertical and horizontal effects. Vertical variability is dealt with in models by introducing
cloud overlap assumptions (e.g., Geleyn and Hollingworth, 1979). Horizontal variability is dealt
with using assumptions involving cloud amount (Stephens, 1988). Either is empirical and a
critical assessment of the uncertainties associated, with assumptions of each, is lacking. Research
is now beginning to demonstrate how the 3D nature of clouds is perhaps the most significant
factor determining the radiative transfer. Hereafter the macroscopic cloud properties that
determine this influence are referred to as extrinsic optical properties (EOP). We will consider
only the most basic aspects of the effects of these properties on radiation.

(2) The internal optical properties of the cloud. These properties are intrinsically defined by cloud
microphysics (such as size and shape of particles). In the case of ice clouds, our understanding of
the relationship between optical properties to ice particle microphysics is qualitative. Global
climate models and most cloud resolving models do not predict the relevant microphysical
properties even of water clouds. Most parameterizations are then carried out in terms of the
predictable water or ice mass and a specified microphysical parameter (such as effective particle
size). The optical properties of clouds defined by the intrinsic microphysics of clouds will
hereafter be referred to as intrinsic optical properties (I0P). The single scatter albedo is an
example of an IOP. As shown below, cloud optical depth is defined both by macroscopic
properties (e.g., cloud depth) and microphysical properties (such as particle size) and thus is a
combination of both.

16.1 Intrinsic IR Optical Properties—Cloud Emissivity

The effect of IOPs on IR radiative properties of clouds is generally thought to be negligible as it is
commonly assumed that scattering by cloud particles at infrared wavelengths is negligibly small (despite
the fact that @, =0.5). Some support of this assumption is given in Fig. 16.1, which suggests that the
longwave reflectivity of the thickest of clouds is only a few percent. However, even a relatively small
amount of scattering has effects both on the emissivity of high clouds (Stephens, 1980) and subsequently
IR heating rates of these clouds (discussed below).

Ignoring at first the effects of scattering, we might deduce from Fig. 16.1 that the gray-body assump-
tion is reasonable (i.e., the properties of reflection and absorption are spectrally flat). If we work on the
assumption that absorption is dominant, then

T= Tabs

and
T, =~kW

where £ is an 'absorption' coefficient. We introduce the following for the cloud emissivity
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e =1-exp(-BkW) (16.1)

where £ is the diffusivity (= 1.66). [Note how W for clouds is entirely analogous to u for gases.]

Fig. 16.1
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(a) Spectral transmittance of a cloud of various thickness. Altostratus cloud with a liquid

water content of 0.28 gm™ (Yamamoto et al., 1970). (b) Spectral reflectance of a cloud.

Same characteristics as (a) (Yamamoto et al., 1970). (c) Spectral emissivity of a cloud.

Same characteristics as (a) (Yamamoto et al., 1970).
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In this context, & is an inherent optical property and it is derived, or estimated, in the following way.
Consider the emissivity form of flux equations

F'(z)=F"(z,)A-e"+e'oT’

(16.2)
F'(2)=F'(z)(1-¢")+&'oT"
applicable to a single cloud layer from which
t _ !
el(z) = Fz)-F ()
F! (z,) - 0Tc4
l ¢ (16.3)
E.],(Z)=F (Zt)_F (Z)

F ! (Zt) - 07—;4
follows as an inversion. Observations of F''' | T, (as best estimated) and W are used to derive &' and
hence k™' from Eqn. (16.3). Table 16.1 summarizes various estimates of & published in the literature.
Figures 16.2a,b show examples of longwave intensities and fluxes obtained from aircraft measurements in
clouds and shows how Eqn. (16.3) fits these data. Figure 16.2c shows this relationship fitted against
model simulations of broadband longwave fluxes.

Table. 16.1 Summary of the cloud mass absorption coefficients [mainly (k"*)] in m’g” for low-level water
cloud and upper level cirrus cloud

Pk Source Type of measurement
Boundary layer cloud
0.13-0.16 Stephens (1978) Theoretical
0.13 Platt (1976) Vertical narrowband
(10-12 um) radiance
0.11-0.15 Schmetz, et al. (1981) Vertical narrowband
(11 um) radiance
0.13 Bonnel, et al. (1980) Vertical narrowband
(8-14 um) radiance
0.08 Stephens, et al. (1978) Broadband hemispheric
irradiance
Cirrus cloud
0.08 Paltridge and Platt (1981)  Vertical narrowband
(10-12 wm) radiance
0.056 Ibid Broadband hemispheric
irradiance
0.076-0.096 Griffith, et al. (1980) Broadband hemispheric
irradiance

Given a simple expression for cloud emissivity and the profile of cloud liquid (or ice) water content,
it is a simple matter to derive the longwave flux profiles through a cloud layer using Eqn. (16.2).
Examples of this kind of calculation are presented in Fig. 16.3a for F™* at 10 um and in Figs. 16.3b,c for
F,e.. The downward fluxes increase rapidly from cloud top (depending on the growth of €) and the upward
flux, which at cloud base exceeds the black body flux, decreases into the cloud. Both F* and F' approach
the equivalent black body fluxes at the respective cloud boundaries where &' =~ 1.
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Fig. 16.2  Experimental values of 10-12 um emissivity determined from nadir radiance measurements

as a function of liquid water path. The solid and open points are the measured values. (b)
Mean cloud emissivity versus total water path W to cloud top. (c) Empirical presentation of
downward (a) and upward (b) emissivity as a function of liquid water path. The solid line is
the least-squares best fit through the given points using the analytic form described in the
text.

The net flux profiles presented in Figs. 16.3b,c show how the changing F* at cloud top influences F,.;
there and how the changing F' at cloud base governs the profile of the F,., in the lower portions of the
cloud. The contribution of both depends on the optical thickness (Fig. 16.3b) and the temperature
difference between cloud and ground (Fig. 16.3¢). These dependencies vary with wavelength. The results
shown in Fig. 16.3 apply to a cloud overlying a surface with no atmosphere above or below it. Figures
16.4a,b presents longwave flux profiles actually observed in clouds and features similar to those
illustrated in Fig. 16.3 and are easily recognized.

16.2 Intrinsic Solar Optical Properties
The influence of cloud IOP on solar radiative transfer is complex and germane to a number of current

cloud-radiation issues thought to be important to topics of climate and global change (e.g., the so-called
Twomey effect).
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Fig. 16.3  (a) The 10 um flux profiles for an Sc cloud layer of optical thickness ty = 5. (b) The 10 um
net flux profiles as a function of optical thickness, T, = 30° (c) The 10 um net flux profiles
for an Sc cloud layer possessing three different cloud temperatures, T, = 30 C and 7y = 5.

The relation between IOPs and solar transfer may be explored in the context of our simple two stream
model solutions in the limit as 7% — 0 and 7#% — . For optically thick, we deduce from Eqn. (15.22) that
the albedo (and hence absorption) depends as follows

R, =R(®,,b(g),D,u,) (16.4a)

A, =1-R, (16.4b)
where R.. and 4. are respectively the albedo and absorption of this ‘semi-infinite’ cloud. According to
these simple relationships both the albedo and absorption approach fixed asymptotic limits as z*
increases. It is relatively straightforward to show that these limits may largely be considered to depend on
@, using Eqns. (15.22) and (15.21) as a guide. Stephens and Tsay showed that
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A, ~constant x (1-a@,)"* (16.5)
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Fig. 164 The total longwave and shortwave flux profiles measured in three Sc cloud layers
F", F"Yand Fp are the shortwave and longwave fluxes, and black body flux, respectively.

Each point is a 4 min average value. (b) Comparison of the observed upward F', downward
F, and the net F,. longwave fluxes measured by the C-130 on profile C with the theoretical
fluxes from the radiation scheme of Schmetz and Raschke (1981), shown as the dashed lines.
The fluxes from the scheme of Roach and Slingo (1979) are within about 2 Wm™ of these

values, except above the cloud top where they are shown by the dotted lines. Slingo et al,
1982: QJRMS, 108, 833-838.

For optically thin clouds with ¥ — 0, it can also be shown (e.g., from Eqn. (15.22) and Stephens and
Tsay, 1990)
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R =—a,b, (16.6.a)
H,
T -
T, =1-"(-a,f,) (16.6b)
and
T -
A =—0-a,) (16.6¢)

0

Thus both the albedo and absorption of thin clouds vary linearly with optical thickness and, as expected,
respectively depend on the backscatter and absorption properties of the individual cloud particles.

These relations provide us with a way of deducing the effects of particle size on the albedo and
absorption of solar radiation. Two factors that are important are:

* The first is a reciprocal dependence of optical depth on particle size

3w
T =
2pW{lt€Vr€

(16.7a)

where W is the liquid water path (LWP), r, is the effective radius (the ratio of volume to area of
the distribution) and 0, is the density of water. The same sort of reciprocal relationship follows
for ice clouds (e.g., Fu and Liou, 1993). An alternative relation is

7=27hN)>0*" (16.7b)

where /4 is the cloud thickness, N, is the number density of particles and ¢ is the liquid water
content (W = £/). Both relationships predict that for fixed liquid water content or path, the optical
depth increases through increases in &V, or equivalently through decreases in 7,. Such an increase
in optical depth implies increased albedo of clouds through Eqn. (16.6a) but not necessarily an
increase in the albedo of thick clouds since the reflection of these clouds is largely insensitive to
any changes in optical depth if deep enough.

* The second factor involves the relationship between 1 — @, and r,, which Ackerman and
Stephens (1987) simplify to

1 - @, = constant x x;” (16.8)

where K is the bulk absorption by water and p < 1.

From the relationships in Eqns. (16.7a) and (16.8), and the expressions for albedo in Eqns. (16.6a),
(16.4b), and (16.5), it follows that the albedo of clouds increases as particle size decreases (Fig. 16.5a)
through a combination of both decreasing in absorption (predicted from Eqn. (16.8)) and associated
increases of optical depth, Eqn. (16.7a). The relationship between absorption and particle size as
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highlighted in Fig. 16.5b is complex. The dependence on particle size is such that the absorption of thin
clouds (i.e., small LWP) actually increases with decreasing particle size, while the reverse applies for
thick clouds (or large LWP). This thick cloud dependence has been mistakenly interpreted to imply that
indiscriminant increases of particle size enhances absorption in clouds explains discrepancies with
observations. Marine boundary layer clouds typified by intermediate values of LWP (and optical depth)
are characterized by a weak dependence on r..
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Fig. 16.5 Contributions to the (a) albedo and (b) absorptance by the three spectral absorption regimes
introduced by Ackerman and Stephens (1987) as a function of r, for specified values of LWP.
The symbols refer to calculations using scattering properties from Lorenz-Mie theory (ignore
differences between symbols and curves).

In summary, we deduce that the albedo of clouds is sensitive to both particle size and LWP (or IWP)
and varies in a systematic way with changes in these parameters. By contrast, the solar absorption
depends on these parameters in a complex way.
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A series of aircraft experiments that seek to confirm the relation between r, and cloud albedo are
those of the Southern Ocean Cloud Experiments (SOCEX) described by Boers et al. (1995). They find
significant seasonal variations in 7, characteristic of marine layered cloud between summer and winter
(Fig. 16.6a) with composite mean values of 7, = 19 um in winter and », = 13 um in summer. Since these
measurements were carried out in baseline air (free of continental effects), these results are consistent
with the seasonal variations of DMS and the subsequent influence of DMS on CCNs and thus cloud
microphysics. These large measured seasonal changes in 7, translate to significant percentage changes in
cloud albedo (refer to Fig. 16.5a). In Fig. 16.6b the profile of effect radius is shown when the measured
drizzle component is added to the measured profiles of Fig. 16.6a. This drizzle contributes significantly to
the particle size at cloud base but its direct effect on the albedo of clouds has not yet been determined.
The indirect effects of drizzle on albedo, through its effect on cloud evolution, are thought to be

significant (Stephens, 1994).
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Fig. 16.6 (a) Vertical profiles of r. from aircraft measurements of ¢

effective radius for selected values of ?? The solid curves represent the relationship
described by Eqn. (??) for the values of p indicated and the open circles apply to the MADT
theory. The insert depicts the breakdown of the weak, moderate, and strong absorption
regimes.

16.3 Extrinsic Cloud Optical Properties

The most dominant control on the infrared radiative transfer through clouds is the contrast between
radiation emitted from the atmosphere to the cloud from above and below and the radiation emitted from
the cloud. This influence is visible in the results shown in Figs. 16.2 and 16.3. Unlike for the clear sky,
the net LW radiative energy budget is largely dominated by those spectral regions that are most
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transparent to gas absorption—that is in the atmospheric window. The net LW budget of a cloud is one of
a balance between emission from top (cooling) and absorption from the large flux below the cloud
(warming). This balance changes sign as the altitude of the cloud layer changes—net warming by high
cirrus in a tropical environment is expected, net cooling for lower cloud. This variation is evident in Fig.
16.8, which shows the net longwave radiation budget of a 1 km blackbody cloud located at different
levels in a standard atmosphere. This budget is defined as

AF = F,; (base) — F,,, (top)

and this budget is more to be positive. Examples of the spectral disposition of AH for cirrus clouds of
different thicknesses located in the tropical atmosphere and in the subarctic winter atmosphere are shown

in Fig. 16.7.
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Fig. 16.8 Net radiative loss from a thin “black” cloud inserted at various heights in the mean
atmospheres of three latitude zones. (After Paltridge, 1974d)

16.4 Heating Rate Profiles in Clouds

The radiative heating in clouds follows as

£__ 1 anet
dt pC, dz

and depends on the optical depth, cloud temperature, wavelength and all parameters that affect the fluxes
(we get some sense of the effect of particle size from the above discussion). Examples of the longwave
heating are given in Figs. 16.9a,b. Figure 16.9c presents the first measured profiles of solar heating and
IR cooling. Generally, these profiles are characterized by radiative cooling at cloud top and warming at
cloud base, although the latter is strongly dependent on the temperature differential of the radiation
incident from below and the cloud temperature.

The spectral infrared heating of a cloud located in a tropical and subarctic winter atmosphere,
respectively, is given in Fig. 16.10. High tropical clouds predominantly heat because the difference
between emission at cloud base and absorption of radiation from below leads to a gain in radiative energy
and thus a heating of high tropical clouds. This heating occurs principally in the more transparent regions
of the spectrum where these differences are largest. The details of this heating and how it penetrates into
the cloud also depend on the optical depth of the cloud, which under the Rayleigh assumptions, depends
on the ice water path. For the lower cloud in the subarctic atmosphere, the lack of a distinct contrast
between the emission from cloud base and the upwelling radiation from below leads to a much reduced
heating at cloud base. These lower clouds predominantly cool at cloud top at most wavelengths.
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Fig. 16.9 (a) Cooling profiles for various spectral regions through an isotropic cloud at approximately
4 km altitude for a standard atmosphere with surface temepature equal to 22 °C. Cloud
thickenss = 1.6 km, extinction coefficient (10 um) = 27 km™, @, (10 um) = 0.57. (b) The IR
cooling rate profile in a SC I cloud layer 500 m thick positioned at 1.5 km in the tropical
atmosphere model. The contributions by the three main spectral regions are displayed. (c)
The shortwave and longwave heating and cooling rate profiles measured in the cloud layer

sampled on 13 May 1976. The extent of the rms experimatnal error is shown by the
horizontal lines. The solid curve is the theoretically calculated profile.

The important point to be drawn from this diagram is that the IR radiative properties of clouds,
specifically the extent and magnitude of IR heating, is strongly dependent on the properties of the envi-
ronment around the cloud (such as the temperature contrast and the amount of water vapor above and
below the cloud). What is not emphasized in these diagrams but is of equal importance is the effect of
optical depth (or IWP) on the radiative heating of the cloud.
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