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AT622 Section 1 
Electromagnetic Radiation 
 

The aim of this section is to introduce students to elementary concepts of radiometry and to describe 
some basic radiation laws relevant to the course. 
 

1.1  Electromagnetic Radiation 
 

Electromagnetic radiation from the sun is the principal source of energy that drives circulations in 
both the atmosphere and ocean. This radiation, in the form of a wave, is generated by oscillating (or, more 
generally, time varying) electric charges, which in turn generate an oscillating electric field. A 
characteristic of an oscillating electric field is that it produces an accompanying oscillating magnetic field 
that further produces an oscillating electric field. Therefore these fields, initiated by the oscillating charge, 
proceed outwards from the original charge, each creating the other. A visualization of such a propagating 
wave is given in Fig. 1.1. It was James C. Maxwell, who, more than a century ago, provided us with the 
theoretical synthesis of this phenomenon. Detailed account of this work can be found in most standard 
texts on electromagnetic radiation. 

 

B
E

E x  B 

Fig. 1.1 Schematic view of a time-harmonic electromagnetic wave propagating along the z-axis. The 
oscillating electric E and magnetic B fields are shown. Note that the oscillations are in the x-y 
plane and perpendicular to the direction of propagation. 

 
There are a number of basic properties that distinguish different electromagnetic (EM) waves. One is 

the rate of oscillation of the E and B fields (that is the frequency of the oscillation), the second is the 
amplitude of the wave (this defines the energy carried by the wave), and the third is the state of 
polarization of the wave. This third property is something we will not consider further in this course 
although it is fundamental to many topics relevant to remote sensing (and thus to AT652). 
 

Electromagnetic theory predicts that the EM wave travels at a speed that depends on the medium 
through which it travels. This speed, c, can be related to the speed of propagation of light in a vacuum 
(namely c0) by the formula: 
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where n is the refractive index of the medium (more on this later). For most gases, the refractive index is 
close to unity especially at the wavelengths of interest to topics considered in these notes. For example, 
air at room temperature has n = 1.00029 over the visible spectrum (refer to Fig. 1.2). 

 

Fig 1.2.  The electromagnetic-photon spectrum. 
 

The wavelength of the EM wave depends upon the frequency of the oscillations. We shall denote this 
frequency (number of oscillations per second) by v, and it is related to c by 
   
                                                                              (1.1) ,

λ
cv =

 
where λ is the wavelength of the wave. For example, red light with a wavelength of 0.7 micrometers (µm) 
corresponds to a frequency of 4.3 x 1014 oscillations per second, while violet light, at 0.4 µm, corresponds 
to 7.5 x 1014 oscillations per second. An alternate way of describing the frequency of radiation is in terms 
of wavenumber 
 

                                                                                                                            (1.2) ,
1~ =v
λ 

which is a count of the number of wave crests or troughs in a given unit of length. For example, red light 
has 14,286 wave crests in a centimeter whereas 25,000 crests can be counted in a centimeter of violet 
light. Wavenumber is the measure often used by spectroscopists and others involved in experimental 
measurements of the interaction of radiation with matter. 
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        Example 1.1: What is the frequency and wavenumber of 10 µm radiation? 
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(a) Electromagnetic Spectrum 
 

Even before Maxwell, the spectrum of electromagnetic radiation (that is the range of wavelengths or 
frequencies of the radiation) was known to extend beyond the visible (i.e., beyond those wavelengths 
detectable by the human eye). In fact, we now know that the visible portion of the spectrum, from 0.4 µm 
to 0.7 µm, is just a small part of a much broader spectrum of electromagnetic radiation. The character of 
the radiation and the way it interacts with matter is vastly different depending on the wavelength of the 
radiation.  The radiation that is relevant to this course is shown in Fig. 1.3. 

 

(Terrestrial 
 Radiation) 

(Solar 
 Radiation)

Fig. 1.3 Atmospheric absorptions.  (a) Blackbody curves for 6000 K and 250 K.  (b) Atmospheric 
absorption spectrum for a solar beam reaching ground level.  (c) The same for a beam 
reaching the temperate tropopause.  The axes are chosen so that areas in (a) are proportional 
to radiant energy.  Integrated over the earth’s surface and over all solid angles, the solar and 
terrestrial fluxes are equal to each other; consequently, the two blackbody curves are drawn 
with equal areas.  Conditions are typical of mid-latitudes and for a solar elevation of 40° or for 
a diffuse stream of terrestrial radiation. 

 1-3



 

In the solar/terrestrial spectrum shown in Fig. 1.3, the frequency domains of greatest interest are the 
ultraviolet, visible, and infrared wavelengths. The ultraviolet frequencies range from the extreme 
ultraviolet (EUV) at 10 nm to the near ultraviolet (NUV) at 400 nm as shown. 

 
Extreme Ultraviolet – EUV. The extreme ultraviolet, sometimes abbreviated XUV, is defined here 

as 10 nm to 100 nm. The division between the EUV and the FUV is frequently considered to be the 
ionization threshold for molecular oxygen at 102.8 nm. The EUV solar radiation is responsible for 
photoionization at ionospheric altitudes. The division between the EUV and the x-ray regions corresponds 
very roughly to the relative importance of interactions of the photons with valence shell and inner shell 
electrons, respectively. 

 
Far Ultraviolet – FUV. This region extends from about the beginning of strong oxygen absorption to 

about the limit of availability of rugged window materials, the lithium fluoride transmission limit. The 
range as used here extends from 100 to 200 nm. 

 
Middle Ultraviolet – MUV. The middle UV covers the region from 200 to 300 nm, which is 

approximately the region between the solar short wavelength limit at ground level and the onset of strong 
molecular oxygen absorption. Most solar radiation in this range is absorbed in the atmosphere by ozone. 

 
Near Ultraviolet – NUV. This region covers wavelengths from 300-400 nm, and represents roughly 

the limits between the solar ultraviolet that reaches the surface of the earth and the limit of human vision 
in the visible.   

 
 The biomedical community uses a different convention: 
  

UV-C 15-280 nm 
UV-B 280-315 nm 
UV-A 315-400 nm 

 
UV-C is absorbed entirely in the upper atmosphere and is of practical significance to the biomedical 
community only in the sense that it is frequently used to sterilize surfaces and kill bacteria.  UV-B is 
responsible for Vitamin-D production by the skin.  Both UV-A and UV-B activate melanin in the skin, 
which is responsible for the darker appearance after exposure to the sun. 
 
 The infrared spectrum is occasionally divided into the near and far infrared. 
 
 Near Infrared.  The portion of the spectrum beyond the visible (0.7 µm) where the amount of solar 
radiation is significant.  Generally defined in the 0.7 µm to 2.5 µm range. 
 
 Far Infrared.  The portion of the spectrum beyond near infrared where the Earth’s radiation 
dominates.  2.5 µm to 1000 µm range. 
 
 Microwaves, while not contributing to the energy incident upon Earth or emitted from it, play an 
important role in remote sensing as well as communications.  Figure 1.4 shows the allocation of the 
microwave spectrum to different users. 
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(b) The Mathematical Form of an EM Wave 
 

The oscillatory E and B fields can be presented in a classical way as a harmonic oscillator of the form 
 

)(cos0 ctxkEE −=             (1.3a) 
 

where the quantity E0 is the amplitude of the wave and, as we shall see later, the energy carried by the 
wave is related to the square of this amplitude and is the property of most interest and relevance to 
atmospheric sciences. The quantity k(= 2π ) is also referred to as wavenumber, but this should not prove 
to be a source of confusion as v~  and k are used in different contexts; k generally applies to wave 
propagation, whereas v~ , is used, as in the previous section, to discriminate regions of the electromagnetic 
spectrum. Equation (1.3a) can also be written in the form 

v~

 
E = E0  cos(kx - ω t)                (1.3b) 

 
where ω = kc = 2πc/λ is the angular frequency of the wave and, according to Eqn. (1.1), ω = 2πv. 
 

The argument of the cosine function in Eqn. (1.3a) also has a particular meaning. It is represented by 
the function φ 
 

     φ = k(x - ct)               (1.4) 
 
and is referred to as the phase of the wave. A tidier expression for a harmonic oscillator is 
 
                   E(x,t) = E0 eik(x-ct),               (1.5) 
 
where it may be taken for granted that the real part of this expression represents the wave.  
 

The general representation of the harmonic wave requires that the displacement E be specified at x = 
0 and t = 0. We specify this initial displacement (initial since it is defined at t = 0) in terms of a constant 
phase, φ0, at  x = 0 and t = 0. For this general case, 

 
           φ = φ0 + k(x-ct)              (1.6) 

 
and 
                 E(x,t) = E0 eiφ.               (1.7) 
 

Simple algebraic manipulations show that the square of the wave amplitude, given as 
 
               | E(x,t) |2 = | E0 |2 ,             (1.8) 
 
is the same for all x and t since E0 is a constant. The energy transferred by the wave, related to | E0 |

2, does 
not vary along its path of propagation and is independent of our definition of φ0. It is only the interaction 
of the wave with matter that alters the energy of the wave as it propagates. These interactions and the 
potential they offer for modulating the atmosphere is of interest to the atmospheric scientist. 
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Fig. 1.4  Allocation of the microwave frequency spectrum.  Details are available at: http://www.ntia.doc.gov/osmhome/allochrt.html. 

 1-6

http://www.ntia.doc.gov/osmhome/allochrt.html


 

1.2  Energy Carried by an EM Wave 
 

An electromagnetic wave, traveling through space at the speed of light, carries electromagnetic 
energy, which is detected by sensors that respond to this energy. In the next section, we will discuss in a 
more geometrical way how we describe the flow of energy carried by an EM wave. But for now we will 
endeavor to see what defines this energy. Energy flows in the direction in which the wave advances and 
this  direction of  propagation is defined by the vector cross product of the electric and magnetic fields, E

*
 

x B
*

. The energy per unit area per unit time flowing perpendicular into a surface in free space is given by 
the Poynting vector S

*
, where 

 
                     (1.9) BEcS

***
×= 0

2ε
 
c is the speed of light and ε0 is the vacuum permittivity (ε0 = 8.85 x 10-12 F⋅m-1). Energy per unit time is 
power, so the SI units of S

*
 are Wm-2. At the frequencies of interest to the topics of this class, the fields 

,, BE
**

and S
*

oscillate at rapid rates. It thus remains impractical to measure instantaneous values of 

S
*

directly.  Rather, we measure its average magnitude, < S >, over some time interval that is a 
characteristic of the detector. This time averaged quantity is referred to as the radiant-flux density.  
Strictly speaking, the flux density emerging from the surface is known as the exitance and the flux density 
incident on the surface is called the irradiance. To avoid unnecessary complications with nomenclature, 
we refer to the flux density onto or from a surface as either irradiance or flux and use the symbol F to 
represent this quantity. 
 

When the flow of light is nonparallel and when the detector collects the light confined to a range of 
directions, specified by a small element of solid angle dΩ, then the quantity sensed is the intensity, 
defined as < S > /dΩ and has units of Wm-2ster-1.  This quantity, referred to as a radiance, is used 
throughout and we will denote it by the symbol I (more about this below). 
 

We can consider a more direct relationship between the energy carried by an electromagnetic wave 
and the amplitudes of the electric and magnetic fields by considering the simple case of a plane wave of 
the form 

).cos(0 tkxEE ω−=
*

              (1.10) 
 
The magnetic field also has the form B

*
 = cos(kx - ωt) and therefore 0B

 
).(cos2

000
2

0
2 tkxBEcBEcS ωεε −⋅=×=

**
             (1.11) 

 
Hence 

     ,)(cos2
000

2 >−<⋅=>< tkxBEcS ωε           (1.12) 

 
and the time average is calculated for an interval of length T according to 
 

  [ ].)(2sin))((2sin
4

1
2
1

)(cos
1

)(cos 22 tkxTtkx
T

tdtkx
T

tkx
Tt

t
ωω

ω
ωω −−+−−=**−=− ³

+
   (1.13) 

 
 
When T >> t, ωT >> 1 and < cos2(kx - ωt) >→ 1/2.  Since E0 = cB0, 

 1-7



 

 

                  2
0

0

2
EcSF ε

=><=          (1.14) 

 
or 
 

                  (1.15) ,2
0 ><= EcF ε

 
where < E2 > = E0/2.  It also follows that I = < S > / dΩ. 
 
 

Example 1.2: Consider the following problem: a plane, sinusoidal, linearly polarized 
electromagnetic wave of wavelength λ = 5.0 x 10-7 µm travels in a vacuum along the x 
axis. The average flux of the wave per unit area is 0.1 Wm-2 and the plane of vibration of 
the electric field is parallel to the y axis. Write the equations describing the electric and 
magnetic fields of the wave. 

 
The solution is as follows: The wavenumber is k = 2π/λ = 4π x 106 m-1. Given the 
following, 

c
c

π
ε

4
107

0 =  

then the amplitude 

 π
ε

24
1.02

0
0 =

×
=

c
E  

and the form of the E wave is 
 

6 1( ) 24 cos 4 10 ( ) [ ]yE t x ct NCπ π −= × −  

 
and the magnetic field is governed by 
 

].[
)(

)( T
c

tE
tB y

z =  

 
 
 

1.3  Momentum and Radiation Pressure 
 
 An electromagnetic wave, aside from carrying energy, also carries momentum.  If an electromagnetic 
wave is absorbed or reflected by a material, it will impart momentum to the electrons in the material, 
which is subsequently transmitted to the lattice structure as a whole. 
 

E
*

B
*

Ef *

direction of propagation 

fm
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 The electric field exerts a force EqfE

**
= , which drives an electron with a velocity ev

*
.  (Note that the 

symbol f
*

 is used instead of F to distinguish it from the radiative flux F used throughout these notes).  

The magnetic field, in turn, exerts a force Bq efm

**
×= v .   Although fE changes its direction as E

*
 varies, 

having the direction opposite to E
*

 at all times (q < 0), fm is always in the direction of propagation since 

ev
*

 and B
*

 reverse directions simultaneously. 
 
 Thus the electron undergoes rapid oscillations in the direction of the E

*
 field, and a small increase in 

speed in the direction in which the light propagates.  Because the time average of the transverse 
oscillations is zero, the net force on the electron is given by 
 

    ><==>×<=> E
c
qiBqBqf eee vˆvv

**
<                (1.16) 

 

 Power is the rate at which work is done 
dt

dW
 and can be expressed (assuming constant forces) as 

 
   fP

***
⋅= v               (1.17) 

 
                 P )(v mEe ff

****
+⋅=              (1.18) 

 
    )v(v BEq ee

****
×+⋅=             (1.19) 

 
    =               (1.20) >< Eq ev

 
 Combining Eqn. (1.16) for the force, or the equivalent, for the rate of change of momentum with Eqn. 
(1.20),  one obtains 
 

  
c

S
c
Pf Area⋅><
==><             (1.21) 

 

 Finally, the radiation pressure, P, is given by 
Area

f
 

 

  
c
Sf ><

=
><

=
Area

P              (1.22) 

 
Equation (1.22) is appropriate if radiation is absorbed by the material.  If a photon is perfectly reflected, 
the change in momentum is twice that computed here, and P = 2<S>/c. 
 

 1-9



 

1.4  Problems 
 
Problem 1.1 
 

The wavelength of the radiation absorbed during a particular spectroscopic transition is observed to 
be 10 µm.  Express this in frequency (Hz) and in wavenumber (cm-1), and calculate the energy change 
during the transition in both joules per molecule and joules per mole.  If the energy change were twice as 
large, what would be the wavelength of the corresponding radiation? 
 
Problem 1.2 
 

Electromagnetic  radiation  from  the  sun  falls  on  top  of  the  Earth’s  atmosphere  at  the  rate  of   
1.37 × 10 3 Wm-2.  Assuming this is to be plane wave radiation, estimate the magnitude of the electric and 
magnetic field amplitudes of the wave.  The units of the electric field are m kg s-2Co-1 and the units of the 
magnetic field are kg s-1Co-1, which is also known as a telsa (T). 
 
Problem 1.3 
 

Assume that a 100 W lamp of 80% efficiency radiates all its energy isotropically.  Compute the 
amplitude of both the electric and magnetic fields 2 m from the lamp. 

 
Problem 1.4  
 

The average power of a broadcasting station is 105 W. Assume that the power is radiated uniformly 
over any hemisphere concentric with the station. For a point 10 km from the source, find the magnitude of 
the Poynting vector and the amplitudes of the electric and magnetic fields. Assume that at that distance 
the wave is plane. 
 
Problem 1.5 
 

A radar transmitter emits its energy within a cone having a solid angle of 10-2 sterad. At a distance of 
103 m from the transmitter the electric field has an amplitude of 10 Vm-1. Find the amplitude of the 
magnetic field and the power of the transmitter. 
 
Problem 1.6 
 

Radio waves received by a radio set have an electric field of maximum amplitude equal to 10-1 Vm-1. 
Assuming that the wave can be considered as plane, calculate: (a) the amplitude of the magnetic field, (b) 
the average intensity of the wave, and (c) the average energy density.  
 

Assuming that the radio set is 1 km from the broadcasting station and that the station radiates energy 
isotropically, determine the power of the station. 
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AT622 Section 2 
Elementary Concepts of Radiometry 
 

The object of this section is to introduce the student to two radiometric concepts—intensity (radiance) 
and flux (irradiance). These concepts are largely geometrical in nature. Neither quantity varies as light 
propagates along. 
 

2.1  Frame of Reference 
 

Before considering how we might describe electromagnetic wave propagating in space in radiometric 
terms, it is necessary to consider ways of representing the geometry of the flow. We use a terrestrially 
based frame of reference such as a Cartesian coordinate system and select one of its axes to be anchored 
in some way according to some property of the terrestrial atmosphere. 
 

,ˆ,ˆ ji and are unit vectors that define three orthogonal axes. Examples of two sun-based frames of 

reference, where the x axis points to the sun (i.e., the azimuth angle is defined relative to the sun's 
azimuth), are shown in Fig. 2.1. A general reference point within a Cartesian frame of reference may be 
indicated by the position vector 

k̂

r* such that 
 

r*  = (x, y, z), 
 
where (x, y, z) defines the coordinates of the tip of this vector. 

 
Fig. 2.1  Sun-based terrestrial frames of reference for meteorologic optics and hydrologic optics. 
 

 2-1



We define a direction vector in terms of a unit vector (ξ
*

) whose base is at the origin point and whose 

tip is the point (a, b, c) on the unit sphere that surrounds the origin. In this case, 1
222 =++ cba . The 

unit direction vector may also be defined in terms of a general point (x, y, z) by 

 

.
)(

),,(

2/1222 zyx
zyx

r
r

++
==

**
ξ  

 
A more trigonometrical interpretation of the direction vector follows by considering Fig. 2.2a. For a point 

(a. b, c) on the unit sphere, it follows that 

 

.cos

sinsin

sincos

µθ

θφ

θφ

==⋅=

=⋅=

=⋅=

krc
jrb
ira

**

**

**

 

 

where θ is the zenith angle and φ is the azimuth angle. The latter, in this case, is measured positive 

counterclockwise from the x axis. Since ξ
*

= (a, b, c), then 

 

                                             (2.1) )cos,sinsin,sin(cos θθφθφξ =
*

 

are the three components of the direction vector.  We will also use µ = cos θ throughout these class notes. 

 

 

ȟ
*

ȟ
*ȟ%

*

Fig. 2.2 (a) Angle and direction definitions defined with respect to a unit sphere.  (b) Scattering 
geometry and the scattering angle on the unit sphere. 
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Example 2.1: Scattering angle 
 
Many problems of interest require the definition of the angle formed between two 
directions. For example, the scattering angle Θ is the angle between the direction 
of incident radiation and the direction of the scattered radiation. If the former 
direction is 

*
and the scattering direction is 

&
 then 

 
.ξξ "⋅=Θ

**
          cos
 
We can schematically represent Θ and the two directions in question on a unit 
sphere (Fig. 2.2b). It follows from the above equation and Eqn. (2.1) that Θ can 
be stated in terms of two pairs of angles ξ"(µ', φ') and ξ(µ, φ) 
 

                 cos µ=Θ .)cos()1()1( 2/122/12 φφµµµ "−"−−+"
 

Fig. 2.3 Illustration of a solid angle and its representation in polar coordinates.  Also shown is a pencil 
of radiation through an element of area dA in directions confined to an element of solid angle 
dΩ. 

Fig. 2.3 Illustration of a solid angle and its representation in polar coordinates.  Also shown is a pencil 
of radiation through an element of area dA in directions confined to an element of solid angle 
dΩ. 

  
2.2  Solid Angle and Hemispheric Integrals 2.2  Solid Angle and Hemispheric Integrals 
  

Many radiation problems, particularly those dealing with fluxes, require some type of integral over 
solid angle. A simple and convenient way to think about the solid angle is to imagine that a point source 
of light is located at the center of our unit sphere and that there exists a small hole of area A on its surface 
allowing light to flow through it. This light is contained in a small cone of directions, which is 
represented by the solid angle element Ω defined as 

Many radiation problems, particularly those dealing with fluxes, require some type of integral over 
solid angle. A simple and convenient way to think about the solid angle is to imagine that a point source 
of light is located at the center of our unit sphere and that there exists a small hole of area A on its surface 
allowing light to flow through it. This light is contained in a small cone of directions, which is 
represented by the solid angle element Ω defined as 
  

        2r
A

=Ω                 (2.2) 

 
With this definition, one can easily show that the solid angle with all directions around a sphere equals 
4π.  Referring to Fig. 2.3, one can write the differential area of the opening as  
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   .sin φθθ ddd =Ω                (2.3) 
 
 Integrating dΩ over the entire sphere 
 

   Ω              (2.4) ³³ ==
ππ

πθθφ
0

2

0
4sin dd

 
yields the result we intuited earlier in Eqn. (2.2). 
 

Suppose we now wish to integrate some function, like the intensity, over a complete hemisphere of 
directions. To fix ideas, consider the intensity I(θ,φ) flowing to some point on a horizontal surface from 
the hemisphere above it. The hemispheric integral of this intensity is then 
 

³³³³ ==
°

°

1

0

2

0

0

90

2

0
),(sin),( µφµφθθφθφ

ππ
dIddIdh  

 
An even more important quantity in radiation studies is the hemispheric flux F defined as 

³=
1

0
.),(2 µµφµπ dIF  

 
Note how this quantity differs from h above through the appearance of the factor µ in the integrand.  The 
hemispheric flux defined in this way is a measure of the energy flowing through a horizontal surface per 
unit area and per unit time (we will discuss this in a more formal way later). Recall from Section 1 that the 
intensity is a measure of the energy flowing though a surface normal to the flow per unit area, per unit 
time, and per unit solid angle. The cosine factor therefore accounts for the projection onto a horizontal 
surface of the area that is normal to the flow of photons. 
 
 

Example 2.2: Solid angle 
 
1) The solid angle of a spherical segment is 

.]cos[cos2sin)( 21

2

0

2

1

θθπφθθ
πθ

θ
−==Ω ³³ ddD  

2) The solid angle of a spherical cap defined by the angle θ is 

]cos1[2sin)(
0

2

0
θπθθφ

θπ
−==Ω ³³ ddD  

    For small θ, cos θ → 1− θ 2/2 + … and 
.)( 2πθ≈Ω D  

3) The solid angle of the sun is therefore 
2
�� πθ=Ω  

    whereas we shall see later, θ
�

 ≈ r
�

/ , and 
ESR

Ω
�

= steradian4
2

8

6

10684.0
105.1
107.0 −×≈¸̧

¹

·
¨̈
©

§

×

×
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2.3     Basic Radiometric Concepts 
 

Radiation is a way of transferring energy from one point to another and we now formalize a way of 
describing this flow. From Section 1 we learn how the energy of an EM wave is associated with the 
square of the amplitude of the E field. Now we consider the geometrical constructs of this flow of energy. 
These considerations are known as radiometry: Radiation + Geometry. Radiometry has almost become a 
discipline in itself—a large variety of terminologies and symbolisms exist. However, we need only 
consider one basic quantity from which others follow. Another point is that once we have established the 
nature of radiant energy, radiometry is by and large geometrical in nature. 

 
The first basic quantity is the "radiant flux".  The definition for "radiant flux" of monochromatic 

radiation is 
 
                  (2.5) -1m)W(µ))(()( dAcvnhvvP ×××=
 
where n(v) is the phase space density = number of photons per unit frequency per unit volume; hv is the 
energy of each photon; and n(v)× c is therefore the number of photons per unit frequency crossing a unit 
area per unit time.   Two quantities that follow from P are: 
 

Fv = P(v)/A for the area density of radiant flux [Wm-2 µm-1] 
 

which is strictly known as the flux density but we will call it flux (or irradiance and shortly dispense with 
the quantity P), and the monochromatic, or spectral intensity, or radiance 
 

I = P(v)/Ω⋅A      [W m-1sr-1 µm-1]  (radiance) 
 

 
Example 2.3: Photon flow rate of Example 1.2 
 
Here we estimate the rate of photon flow required to deliver a given amount of 
flux at a specific wavelength.  We begin with Eqn. (2.5) 
 

,)()( hvcvn
dA

vPFv ××==  

 
such that 

hv
Fcvn v=⋅)(  

 
For F = 0.l Wm-2, λ = 0.5 µm, c = 3 x 108 m/s, and h = 6.6 x 10-34 Js, one obtains 
 

17
834

6

105.2
103106.6

105.01.0)( ×=
×××

××
=⋅

−

−

csn  

 
photons of λ = 0.5 µm flow per sec through a unit area to produce 0.1 Watts of 
power per m2. 
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There are only two ways that we need to visualize the flow of radiant energy (Fig. 2.4)—the first is as a 
function of direction and the second is as a function of space: 
 

(1) For the first we imagine the radiant flux of energy P(s) passing through some area dA as in Fig. 
2.4a. 

 
(2)  For the second depiction, radiant flux of energy P(s) passes through a single point p through a 

small set of directions dΩ. 
 

 
Fig. 2.4 (a) and (b) two hypothetical modes of flow of radiant energy. 

 
 
(a) Spectral Intensity I 

 
Unfortunately, the flows shown in 2.4a and b are not practical since these flow types are not 

measurable: an instrument detector can neither sense radiation at an infinitesimal point, since detectors 
have some characteristic area, nor can a detector measure purely parallel flow as they also have a 
characteristic angle. Consider a simple radiometer as shown in Fig. 2.5a. The detector subtends a solid 
angle 
 

Ω = a/Ɛ 2 

 
where a is the area of the detector and Ɛ is the length of the collimating tube. What is measured is then the 
quantity 

 
                                                                        (2.6) ]msrWm[ 112 −−−

Ω⋅
= µ

da
PI

 
which we will refer to as either spectral radiance or spectral intensity. Radiance (intensity) is a 
fundamentally important quantity as it is directly measurable by instruments we call radiometers. The 
product of the area and solid angle aΩ is known as the 'throughput' T of the radiometer and the radiance is 
then P/T. 
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(b) Irradiance or Flux F 
 

An even more important radiometric quantity, at least from the perspective of meteorology and 
climatology, is the quantity referred to as irradiance (or flux density or just flux, again remember that we 
will shortly dispense with P for the rest of this class). This quantity describes the total flow of radiant 
energy that flows onto or from a surface. For a general definition of this quantity, consider a surface of 
area dA and flow from two directions 

*
 and 1ξ 2ξ

*
, which make angles θ1, and θ2 with respect to the normal 

n*  to dA. The radiances I1, and I2 define the radiation field along each direction. The flux onto dA is then 
 

12
22221111 mWm))(())(()( −−Ω⋅+Ω⋅== µξξξξ dnIdnI

dA
Pnf *******

 

 
and in the limit that the number of sources → ∞, then 
 

                                                                          (2.7) ³= IF θξ )(
*

Ωdn i cos()*
 
where F is defined with respect to the normal n*  (Note: it is only meaningful to talk of flux relative to 
the orientation of some surface...most of our interests are for horizontal surfaces and thus n*  
represents either the zenith or nadir). When the integration is carried out over the entire sphere of solid 
angles, this is the net flux that flows through the surface. It is more common to carry out this integral in 
two parts, one over a positive hemisphere (positive in the sense that 0>⋅n*

*
ξ , see Fig 2.5a) and one over 

the corresponding negative hemisphere (Fig. 2.5b). 

 

(a) 

 
 

ξ 

ξ( ξ(

dA

ξ(

ξ 

ξ( ξ( 

dA 

 
 
 
 (b)  
 
 
 
 
 
 

Fig. 2.5 (a) A simple radiometer and  (b) hemisphere fluxes. 
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Example 2.4: Exploring the relation between radiance and flux 
 
1) Consider the situation where radiation flows onto a surface defined by a 

discontinuity in refractive index. At the surface 
 

 

 
Snell's law predicts that 

 

 

 
and it follows that 

 

 

 
where now we make use of our small cap approximation Ω = πθ 2.  Since 

 
 

we obtain 
 

 

 
Thus we take I/m2 as the intensity when we are interested in propagation 
through an m varying media. The radiance from one m environment to 
another m environment thus needs to be adjusted by refractive index. 

 
2)  Hemispheric fluxes on a horizontal surface. The upward flux may be 

defined as 
 

 

 
and the downward flux is 

 

 

 
and the net flux is F = F+ + F−. Often the limits of the θ integral for F− are 
flipped, which in turn defines a positive F− leading to an alternate 
definition F = F+ − F−. We will use this latter convention throughout. 
[Note also that the + sign on the upward flux means that the normal of the 
surface in question points upward along the vertical.] 
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Example 2.4: Continued. 
 
3) Consider a special case of isotropic radiation (i.e., I = I0 is constant), then it 

follows that 
 

 

 
and also F− = πIo, so that Fnet = 0. As much radiation flows onto the surface 
that leaves the surface. 

  
4) Flux of an isotropic source on a vertical surface. Let us consider the surface 

in the y-z plane 
4) Flux of an isotropic source on a vertical surface. Let us consider the surface 

in the y-z plane 
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where we make use of Eqn. (2.1). Also take special note of the limits of the 
integration and the hemisphere these limits define. 
where we make use of Eqn. (2.1). Also take special note of the limits of the 
integration and the hemisphere these limits define. 

  
5) The intensity and flux from the sun. We will see later how the sun radiates 

approximately as a blackbody of temperature T
�

 = 5790 K. This radiation is 
emitted isotropically from the sun with a broadband intensity (i.e., at an 
intensity that has been integrated over all wavelengths) 

5) The intensity and flux from the sun. We will see later how the sun radiates 
approximately as a blackbody of temperature T

�
 = 5790 K. This radiation is 

emitted isotropically from the sun with a broadband intensity (i.e., at an 
intensity that has been integrated over all wavelengths) 

  

]srWm[102 1274 −−×== �� TI
π
σ

 

 
If we consider the geometry as shown, then the flux from the sun incident 
on a surface whose normal is along the direction from the point P on the 
earth's surface to the center of the sun is 
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Example 2.5: The black of night: Olbers' paradox 
 
An ancient astronomer, if asked why the night sky is black, probably would 
have answered that it was because the sun is absent. If we then ask why the 
stars don’t take the place of the sun, then the likely answer is because the stars 
are of limited number and individually dim. This last argument has lost its 
force over the centuries and astronomers tell us that the number of stars 
occupying the night sky is tremendous indeed. We are left with a paradox of 
sorts—why is not the night sky as brilliant as the daytime sky filled with the 
light from an almost infinite number of stars. Olbers pondered this paradox and 
approached it with the following assumptions: 
 

1. The universe is infinite in extent, 
2. The stars are infinite in number, and 
3. The stars are of uniform average brightness through all space. 

 
He then considered space as divided into concentric shells about the observer 
that are large enough to be populated by stars. The amount of light that reaches 
us from each star (think of this as the product of I

�
Ω
�
) varies inversely as the 

square of its distance from us. But as we look farther out in space the volume 
of the shell of space also expands (as the distance squared) in such a way that 
the increased number of stars in the farther shell cancels with the decreased 
brightness of these more distant stars. 
 
Thus the crux of the paradox is—if the universe is infinite in extent and thus 
consists of an infinite number of shells, the stars of the universe, however dim 
they may individually be, ought to deliver an infinite amount of light to Earth. 
Somewhere in Olbers' paradox there is some mitigating circumstance or logical 
error. It is commonly thought that the failure of the above arguments occurs 
with assumption (3). We know that the stars of distant galaxies are receding 
and this movement caused a red-shift in the spectrum. With the expansion of 
the universe each succeeding shell delivers less light as it is subject to a 
successively greater red shift. Thus we receive only a finite amount of energy 
from the universe and the night sky is black. 
 

 

2.4   Problems 
 
Problem 2.1 
 

Radiance of the moon and sun 
 

(a) Calculate the solid angle subtended by the sun, and the solid angle subtended by the moon as 
seen from the center of the Earth. 

 
(b) Calculate the radiance of the sun and the radiance of the moon as seen from the earth. Assume 

the following constants: 
 

 
SolarConstant = 1367 Watts m-2 
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SunDiameter = 1.39 X 106 km 
MoonDiameter = 3.48 X 103 km 

  Sun - EarthDistance = 1.49 X 108 km 
  Sun - MoonDistance = 1.49 X 108 km 

   Earth - MoonDistance = 3.8 X 105 km 
  Reflectivity of the Moon = 6.7% 

 
Assume that the reflectance from the moon is isotropic (i.e., the moon's surface is said to be a 
Lambertian reflector). 

 
Problem 2.2 
 

A small perfectly black spherical satellite is in orbit around the earth at a height of 200 km. What 
solid angle does the earth subtend when viewed from the satellite? Hint: Consider Fig. 2.6a and assume 
the Earth's radius to be 6370 km. 

 
 

Fig. 2.6  Deriving the irradiance distance-law for spheres and disks. 
 

Problem 2.3 
 

Irradiance Distance Law for Spheres. 
 

Consider a spherical surface S of radius a with uniform radiance distribution of magnitude I at each 
point. Suppose that S is viewed at a point x a distance r from the center y of S. The lines of sight lie in a 
vacuum and the background radiance of S is zero. See Fig. 2.6 (a). Derive the irradiance F(x, ξ) at point x 
in terms of the given variables. Here ξ is the normal at x in the direction from y to x. 
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Problem 2.4 
 

Irradiance Distance Law for Circular Disks 
 

Refer to Fig. 2.6 (b). That figure depicts a circular disk of radius a of uniform surface intensity I at 
each point. The disk is viewed at point x on the perpendicular through the center y of S at a distance r 
from the center. The set D of the lines of sight from x to S lies in a vacuum and the background radiance 

of S is zero. What is the irradiance F(x, ξ) at point x in terms of the given variables? Here ξ is the same as 
that in Eqn. (1.3). Compare your answer to that of problem 2.3 by determining the value of r (in units of 

radius α) such that the difference between the two irradiances is less than 1%. 
 
Problem 2.5 
 

If an incident azimuthally symmetric radiation field is described by I(θ) = Io tanθ, where θ is the 
zenith angle, briefly describe the visual appearance of such a field and derive an expression between F 
and Io.  
 
Problem 2.6  

 
Solve the following: 

 
(a) Using the cosine law and the definition of solid angle in the class notes, establish that the 

relationship between the hemispheric flux F on a horizontal surface and the intensity I flowing to 
that surface is 

 

³³=
2/

0

2

0
sincos),(

ππ
φθθθφθ ddIF  

 

where θ is the zenith angle and φ is the azimuthal angle. 
 

(b) Calculate this flux when the intensity field is uniform (isotropic) and flows through a set of 

directions defined by the angle θ centered on the normal to the horizontal plane. Derive this flux 

as a function of θ. 
 

(c) Using your results of (b) above, show that the hemisphere flux is πIo for an isotropic intensity 
field of magnitude Io. 
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AT622 Section 3 
Basic Laws 
 

There are three stages in the life of a photon that interest us: first it is created, then it propagates 
through space, and finally it can be destroyed. The creation and destruction of a photon occurs through its 
interaction with matter. Here we consider the basic laws that characterize the creation of radiation by a 
process referred to as emission. Processes that destroy the photon, via absorption, are topics of later 
chapters. 
 
3.1     Equilibrium Radiation and Kirchoff’s Law 
 

The generation of electromagnetic waves occurs as a general result of an accelerating electric charge. 
In general, any object is composed of a vast number of molecules that oscillate over a continuous range of 
frequencies and therefore emit radiation of all frequencies. However, this radiation is not emitted equally 
at all frequencies but is distributed in some way according to the emission spectrum, which, as we shall 
see, depends strongly on the temperature of the object. 

 
The nature of the emission spectrum and its relationship to the temperature of the body loomed as a 

major challenge to physicists in the late nineteenth century. In fact, the relationship could not be 
accounted for using the principles of classical physics and its description marked one of the major turning 
points in the history of science. In attempting to formulate the description of the emission spectrum there 
emerged the hypothetical concept of a blackbody, which is a body whose surface absorbs all radiation 
incident upon it. It also follows that any two blackbodies at the same temperature emit precisely the same 
radiation and that a blackbody emits more radiation than any other type of object at the same temperature. 

 
That it is more appropriate to view blackbody radiation as equilibrium radiation is evident by 

considering an isolated cavity with walls opaque to all radiation. The cavity walls constantly emit, absorb, 
and reflect radiation until a state of equilibrium is reached (i.e., until the temperature of the cavity walls 
no longer change in time). This equilibrium radiation fills the cavity uniformly and is just the same as the 
radiation emitted by a hypothetical blackbody at the same temperature of the cavity. To understand why 
this is so, imagine that a blackbody is placed in the cavity. This body absorbs the entire equilibrium 
radiation incident on its surface and, since the cavity is in a state of equilibrium, the radiation emitted by 
the object must be precisely that absorbed by it, which also happens to be the equilibrium radiation that 
fills the cavity. Therefore under the conditions of equilibrium, the ability of a body to radiate is closely 
related to its ability to absorb radiation. The mathematical formulation of this statement is known as 
Kirchoff's Law, which can be written as 
 

Eλ(T) = ελBλ(T)              (3.1) 
 
where Eλ is the emitted radiation and Bλ(T) is the radiation of the hypothetical blackbody. Eλ is sometimes 
referred to as the spectral emissive power and the total emissive power is 
 

0
( ) ( )E T E T dλ λ

∞
= ³  

 
The proportionality constant in Eqn. (3.1) is referred to as an emissivity, ε (sometimes also referred to as 
an absorption coefficient), which in this context varies between 0 and 1. If ελ = 0, then Eqn. (3.1) states 
that a body neither emits radiation at the given wavelength nor absorbs radiation at the same wavelength. 
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For ελ = 1 on the other hand, the emitted radiation is just blackbody radiation and the body absorbs all 
radiation incident upon it. As we shall see in following sections, the absorption coefficient contains 
information about the type of matter that emits radiation. The wavelength dependence of this coefficient 
varies dramatically according to the nature of the matter and the portion of the electromagnetic spectrum 
under consideration. 

 
Table 3.1 Typical gray body emissivities and reflectivities for various 'opaque' surfaces. These quantities 

are averaged over respective terrestrial and solar emission spectra (later sections).  Albedo 
(α) refers to the reflectivity of solar radiation.  Because the sun and earth are not in thermal 
equilibrium, blackbody relationships between emission, absorption and reflection do not 
apply. 

 
Type   Albedo (α) Emissivity (ε) 
   
Tropical forest  0.13      0.99 
Woodland  0.14     0.98 
Farmland/natural grassland  0.20     0.95 
Semi-desert/stony desert  0.24     0.92 
Dry sandy desert/salt pans  0.37     0.89 
Water (0°-60°)a  <0.08     0.96 
Water (60°-90°)a  <0.10     0.96 
Sea ice  0.25-0.60     0.90 
Snow-covered vegetation  0.20-0.80     0.88 
Snow-covered ice   0.80     0.92 

        ___________________ 
aThe albedo of a water surface increases as the solar zenith angle increases.  Ocean surface 
albedos are also increased by the occurrence of white caps on the waves. 

 
Gray bodies:  ελ is assumed constant and independent of λ. 

 
It is through the statement of Kirchoff's Law that the whole point of blackbody radiation is relevant. 

All blackbodies at some temperature behave identically and the radiation emitted by such bodies at a 
given λ depends only on the temperature of the body. Thus the emission of radiation at some chosen 
wavelength is solely determined by the characteristics of the emitting matter (through aλ) and temperature 
(through Bλ). 
 

Example 3.1: Show that two blackbodies at the same temperature must emit 
the same radiation.  
 
Proof of this lies in the second law of thermodynamics. In the case of two black 
surfaces A and B at the same temperature, suppose A radiates more energy than 
the other. Imagine placing these surfaces next to each other and allowing each 
to absorb the radiation from the other. Thus B must absorb more radiation than 
it emits, receiving more energy and becoming hotter. A, correspondingly 
becomes cooler. Thus the second law of thermodynamics is violated and our 
assumption that A radiates more than B is false.
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3.2 Planck's Blackbody Function and Related Laws 
 

The theoretical question of what form the wavelength distribution of the intensity of this cavity 
radiation takes and how this radiation in turn depends on the temperature of the walls of the cavity 
occupied the attention of many of the worlds leading physicists during the 1890's. It was Max Planck who 
provided us with the theoretical description of the blackbody radiation but in doing so he was forced to 
make an assumption that proved to be one of the most daring departures from the philosophies of physics 
at that time. He considered that each of the oscillators in the walls of the cavity could have only one of a 
discrete set of energies rather than the more conventional view that energy could assume any value above 
or equal to zero. The discrete energy level of the oscillator could then be represented in the form 
 

E = nhv 
 
where n is an integer, referred to as the quantum number, which defines the permitted number of discrete 
units of energy of the oscillator. The fundamental unit of energy turned out to be proportional to the 
frequency of the oscillator v where the proportionality constant h is known as Planck's constant. It is these 
discrete packets of quanta of energy that are emitted by the oscillators in the cavity walls after the 
oscillator undergoes a transition from one quantized energy state to another. On the basis of these 
arguments, Planck was able to demonstrate that the relationship, 
 

,
]1[

2)( /5

2

−
= TKhce

hcTB λλ λ
                                                 (3.2a) 

 
adequately describes blackbody radiation where K is Boltzman's constant and T is the absolute 
temperature of the cavity walls. It is also customary to introduce the constants  
 

   
K m   104413.1

Wm107419.32
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in which case 
 

,
]1[

)( /5
1

2 −
= TCe

CTB λλ πλ
                                    (3.2b) 

  
 
where it is assumed for convenience that c = co. 
 

The function defined by Eqn. (3.2) is known as Planck's function and is graphically portrayed in Fig. 
3.1 for six different temperatures. These examples demonstrate a gross relationship that perhaps could 
have been anticipated. For example, consider an ordinary electrical element on a stove. On the highest 
and thus hottest setting the element glows brightest with a reddish hue (Fig. 3.1). When the electricity is 
turned off and the element is allowed to cool, the color of the element fades until its luminosity vanishes. 
But it is still radiating; a fact evident when a hand is placed above the cooling element. This simple 
experiment, known as Wein's displacement law, establishes a connection between the wavelength of 
maximum emission (λmax) and the temperature of the radiator. This law is simply derived from 
 

0=
∂

∂

λ
λB
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from which it follows that 
 
 Tλmax = 2898 (µm °K).                  (3.3) 
 
Wein's displacement law is also graphically depicted on Fig. 3.1 as the diagonal line joining the maxima 
of the three Planck functions. 
 

 
Fig. 3.1 Planck's blackbody flux curve at the three temperatures shown. The units of this function are 

Wm-2 µm-1. The diagonal line intersecting the curves at their maxima depicts Wein's 
displacement law. 

 
Example 3.2: What is the wavelength of the maximum emissive power of 
the sun? What is the corresponding wavelength of Earth? The temperature of 
the sun is approximately 5760K and it follows from Eqn. (3.3) that 
 

µm5.0
5760
2898

max ==λ  

 
which roughly corresponds to the middle of the visible portion of the 
spectrum (Fig. 3.2a). Solar radiation is attenuated as it penetrates the 
atmosphere. Understanding this attenuation in some detail is one of the 
goals of this course. 

 
Temperatures of emitters in the Earth's atmosphere vary. Assuming a value 
of 290K, it follows that 
 

µm10
290
2898

max ==λ  
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Example 3.2 Continued. 

 
Figure 3.2a is an example of the emission spectrum at the top of the at-
mosphere measured at one location. This spectral emission does not follow 
the blackbody curve since it occurs through a kind of transfer from layer to 
layer in the atmosphere through a combination of absorption at low levels 
and emission at higher levels and at colder temperatures. The difference 
between the measured emission and that of a blackbody is crudely indicative 
of the absorption spectrum of the absorbing gases in the atmosphere. The 
transfer of radiation and a detailed understanding of the absorption spectrum 
are topics that we will return to later. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.2  (a) Solar irradiation measured at the top of the Earth's atmosphere compared to that of a 

5760K blackbody normalized to 1353 Wm-2 (the reason for this will be discussed later). Also 
shown in a schematic way is the irradiance at the surface under 'typical' clear sky conditions. 
(b) The spectrum of infrared radiation emitted to space from Earth as measured by an 
instrument on an orbiting satellite. This spectrum corresponds to clear sky conditions over 
the Saharan desert. 

(b) 

(a) 
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There follows from Eqn. (3.2) two important limits of the Planck function. The first of these limits is 

referred to as Wein's distribution and applies to λ → 0 
 
                     (3.4) TKhc

v ehcBB λ
λ λ
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2
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2 −==

 

whereas the longer wavelength limit, λ → ∞ is referred to as the Rayleigh-Jeans distribution, and is 
expressed by 

 

4
~

1
2λ cKTBB v ==

λ
                    (3.5) 

 
This long wave limit has a direct application to passive microwave remote sensing problems. At these 
wavelengths, the emission by the earth's atmosphere is directly proportional to temperature and intensity 
and temperature can be treated as mutually equivalent. We refer to the intensity expressed in units of 
temperature as the brightness temperature, which is the temperature that is required to match that 
measured intensity to the Planck blackbody function. For microwave radiation, this is simply obtained 
from Eqn. (3.5). At other wavelengths, the brightness temperature is obtained by inverting either Eqn. 
(3.2) or Eqn. (3.4). 
 

3.3  Total Blackbody Emissive Power 
 

An obvious characteristic of blackbody radiation is that the hotter the object, the greater the total 
amount of radiation is emitted from a given surface area. This is just a statement of Stefan-Boltzmann's 

law, which can be simply derived by integrating Bλ over the entire wavelength domain according to 
 

2
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where y = C2,/λT. The integral in this expression is π4/15 and the constant 
 

4281
4
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is the Stefan-Boltzmann constant. The total blackbody emission (intensity) thus follows 
 
 

                              (3.6a) 
4)( TTB

π
σ

=

 

where the reason for the appearance of the π factor arises from the properties of isotropic radiation. The 
hemispheric blackbody flux is thus 

 
πB(T) = σT4               (3.6b) 

 
As an example, the radiation emitted from a 6000 K blackbody, for instance, is 160,000 times that emitted 
from a 300 K blackbody. 
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It is often convenient to use the Planck function defined in terms of wavenumber rather than 
wavelength. The relationship between these two forms is obtained from the simple requirements that the 
integrated energies must be an expression of Stefan-Boltzman's law. Thus 

 
vdTBdTB v
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 and, with Eqn. (3.2a) together with the definition of , it follows that v~
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Many problems in atmospheric radiation require the Planck function integrated over some finitely 
wide spectral region, say between λ1, and λ2. Then 
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cannot be evaluated analytically. The fraction of blackbody radiation between 0 and λ1, namely 
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can be evaluated numerically or using precomputed look-up tables. The spectrally integrated blackbody 
radiation then becomes 
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and a program that calculates the factor in parentheses is supplied in Appendix 3A. 
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Example 3.3: What fraction of the total solar emission occurs at wavelengths 
longer than 0.7 µm? 
 
Making use of the above mentioned program 
 program test 
 W2=4 
 W1=0.7 
 T=5800  
 frac=PLANCK(W1,W2,T) 

write(*,*) 'fraction=' , frac 
 end 
 

Distribution of the solar constant in various wavelength bands. 
Band Wavelength 

Interval (nm) 
Irradiance 
(W m-2) 

Fraction of Es 
(percent)a 

Ultraviolet and beyond < 350 62 4.5 
Near ultraviolet 350-400 57 4.2 
Visible 400-700 522 38.2 
Near infrared 700-1000 309 22.6 
Infrared and beyond > 1000 417 30.5 
   Total  1367 100.0 

aPercentages computed from data in Thekaekara (1976). 
  
  
  
  
  
3.4   Problems 3.4   Problems 
  
Problem 3.1Problem 3.1 
 
 Assuming that the normal body temperature is 37 °C, what would the emittance (i.e., how much 
radiation is emitted) by the body if: 
 

(a) The body was a perfect blackbody? 
(b) The body was gray with 90% absorption? 

 
What is the wavelength of maximum emission? 
 
Problem 3.2 
 
 Consider a room with a fireplace, which has an opening of 1 m2.  The opening is composed of 10% 
flame, 30% logs and 60% walls.  The flames have an emittance of 0.5, while the walls and logs are black.  
Assume the respective temperatures of the flames to be 2000 K, of the logs, 1000 K, and of the walls, 500 
K, and that only radiation energy escapes into the room.  What is the total radiant power escaping the 
fireplace from each source and the wavelength of maximum emission from each?  Explain the effect of 
placing a glass plate over the opening if the glass has the property of 
 

transmittance = 1, absorptance = 0; 0 ≤ λ ≤ 3µ 
 

transmittance = 0, absorptance = 1; λ > 3µ 
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Problem 3.3 
 
 There are two approximate forms of Planck’s Law.  The first is known as Wien’s Law. 
 
  .)/(5

1
2 TcecB λ

λ λ −−=
 
 This expression is valid for very small values of λT.  What would be the numerical value of T for 
which less than a 1% error would be incurred at 1 µm using the above approximation? 
 
 A second simiplification is the Rayleigh-Jeans approximation often applied to microwave 
wavelengths. 
 
  TcB 4

2
−= λλ

 
Derive the above expression from Planck’s Law and define the 1% error threshold in terms of T and λ = 
500 µm. 
 
Problem 3.4 
 
 Convert the wavelength form of Planck’s Law to the wavenumber form given below: 

2

3
1
/ 2

1 1where: ;
1v c v T

c v v dv
e

dλ
λ λ

= =
−�

�
� �� = −  

 
Problem 3.5 
 
 Show that the maximum intensity of the Planck’s function is proportional to the fifth power of the 
temperature.  Comment. 
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APPENDIX 3A 

 
FUNCTION PLANCK(Wl,W2,T) 
C  
C   Use an approximate integral scheme to evaluate the integral  
C  of Planck's Law. W1 and W2 define the upper and lower wavelength extent of  
C  the band in micron and T is temperature in K.  
C  Output is in units of W sq m per ster (radiance units)  
C  Ref:  
C  

WVN1=1./(Wl*I.E-4)  
WVN2=1./(W2*1.E-4)  
X1=1.43868*WVN1/T  
X2=1.43868*WVN2/T  

C  
C  CALCULATE THE MEAN PLANCK FUNCTION 
C 
C   
    PLANCK=ABS(PL(X1)-PL(X2))*SIGMAP*T**4 
    write(*,*) X1,X2,WVN1,WVN2,T 
    PLANCK=ABS(PL(X1)-PL(X2)) 
C 
    RETURN 
    END 
 ----------------------------------------------------------------------- 
C 
FUNCTION PL(X) 
C 
    INTEGER MM 
    PI=3.1415926 
    PL=0.0 
    IF (X.GT.2.5) THEN 
    DO 101 MM=1,50 
    M=FLOAT(MM) 
    TERM=EXP(-M*X)*(((M*X+3.)*M*X+6.)*M*X+6.)*15.0/(PI*M)**4 
    PL=PL+TERM 
    IF (ABS(TERM/PL).LT.1.0E-5) RETURN 
101  CONTINUE 
    ELSE 
    PL=1.0-15.0/PI**4*x**3* 
   $(1./3.-X/8.+X**2/60.-X**4/5040.+X**6/272160.-X**8/13305600.) 
    ENDIF 
    RETURN 
    END 
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AT622 Section 4 

Elementary Radiative Transfer 

 
The aim of this section is to acquaint students with simple, basic concepts of radiative transfer as it 

applies to both a sourceless atmosphere and an atmosphere that contains general or arbitrary sources of 

radiation. The equation derived will be applied to study radiative transfer in an absorbing atmosphere in 

the context of infrared transfer in a clear atmosphere. Thus we begin to learn how these transfer processes 

shape the thermal structure of the atmosphere. 

 

4.1 Extinction 
 

The propagation of radiation through attenuating material undergoes changes as a result of radiative 

processes that take place in the medium. Extinction is one of the elementary processes affecting this 

transfer and it is defined as follows. The change in intensity dIv on propagating along a path of length ds 
(Fig. 4.1) is empirically related to the incident intensity of the radiation via Lambert's law of extinction 
 

 dIv = -σextIvds                 (4.1) 

 

where σext is the proportionality constant known as the extinction coefficient. This extinction may occur 

as a result of scattering by particles or molecules in the atmosphere, by absorption by particles and 

molecules in the atmosphere or by a combination of both (although the molecules that scatter radiation 

are, on the whole, different from the molecules that absorb radiation—The reason for this will become 

apparent later). Thus we can write 

σext = σsca + σabs 
 

where examination of Eqn. (4.1) reveals that the quantity 

 

dτ = σextds 
 

is unitless. This is a fundamental quantity known as the optical path and when the path is vertical, it is the 

optical depth. We will see later that there are different ways of measuring σext and thus different 

complementary measures of path length ds. 
 
 ds 

Iv + dIv

Iv 

 
 
 
 
 
 

 
Fig. 4.1   The law of extinction. 

 

 Equation (4.1) may be readily cast into a radiative transfer equation 

 

,
, vvext

v I
ds
dI

σ−=               (4.2) 
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which has a solution of the form 
 

),exp()()( vvv sIsI τ−#=##                  (4.3) 
 

where  is the optical thickness. This solution, referred to as Beer's law, serves as the 

basis for many remote sensing applications and is a good approximation to the measurements of sunlight 
in the clear and relatively clean atmosphere. For example, consider the measurement of direct sunlight. If 
the sun is inclined at an angle 

³
##

#
=

s

s vextv dss)(,στ

�θ  from the vertical (the solar zenith angle), then Eqn. (4.3) becomes 
 

),cos/exp()0()( **
�θτττ vvvvv II −==                    (4.4) 

 
where  is the optical depth. The logarithmic form of Eqn. (4.4) is *

vτ
 

.cos/)0(ln)(ln **
�θτττ vvvvv II −==                 (4.5) 

 
 Figure 4.2 is an example of this type of relationship derived from radiometer (pyrheliometer) 
measurements obtained at the Manua Loa Observatory. The data are from a spectral radiometer pointed 
towards the sun and measurements are recorded as the sun moves across the sky throughout the course of 
a day. If the logarithms of these measured intensities are plotted as a function of secθ

�
 then the optical 

depth  is the slope of the line and the incident intensity I*
vτ v(τλ = 0) is given by the intercept determined 

by extrapolating secθ
�

 to zero. From this diagram we see how the clear sky measurements of solar fluxes 
at the wavelengths of the filters used is very closely represented by Lamberts law.  

Fig. 4.2 An example of a Lambertian plot: the logarithm of solar intensity is plotted as a function of 
optical air mass for clear, stable atmospheric conditions.  
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  Example 4.1 Extinction—it’s black and white. 
 
The experimenter who observes that extinction has taken place by measuring 
radiation at two levels in the atmosphere cannot determine if the radiation is 
decreased because it is absorbed or decreased because it is scattered. A 
simple illustration of this elementary point is well described by Bohren 
(1987) and is highlighted in Fig. 4.3. One cannot distinguish between the 
images of two water-filled glass petri dishes projected on a screen yet their 
darkness arises from different mechanisms. Light incident on the inky water 
is attenuated mainly by absorption, whereas light incident on the milky water 
is mostly scattered. It is only by looking at the dishes that this difference 
between them becomes apparent. An important scattering parameter that 

helps quantify these differences is the single scattering albedo . This 

parameter is the ratio of the amount of scattering that attenuates the light to 
the total extinction (absorption plus scattering). For the milky water we 

might infer that  since light is primarily scattered in all directions from 

the dish. On the other hand,  for inky water little light is scattered and 

most of the extinction occurs through absorption. We will see later how the 

parameter  is fundamental to problems of multiple scattering and thus for 

understanding how radiation is transferred from layer to layer in clouds. 
 
 

 
Fig. 4.3. The images of two water-filled glass beakers projected on a screen 

are identical yet their darkness (extinction) arises from different 
mechanisms. Light incident on the inky water is attenuated mainly 
by absorption, whereas light incident on the milky water is 
attenuated mostly by scattering. It is only by looking at the beakers 
that this difference becomes apparent.  



 

4.2  Adding Sources of Radiation 
 

Example 4.1 illustrates how multiple scattering confuses the interactions between radiation and the 
atmosphere. For example, photons originally scattered away from the viewing direction can reappear, and 
scattering can also cause photons to arrive having been incident from some other direction. Multiple 
scattering acts as a kind of source of radiation (this is sometimes referred to as virtual emission). 

 
Whether it is real emission (governed by Kirchoff's law, Section 1) or virtual emission that 

contributes to a beam as it traverses a path of length ds, the increased intensity may be expressed as 
 

dIv=σext,vJvds,                        (4.6) 
 
which defines the source function Jv. When this emission takes place in the lower atmosphere where 
thermodynamic equilibrium occurs, Jv = �v. 
 

The net change in radiation along a path element, ds, due to the combination of emission and 
extinction is 

 
dIλ = dIλ(emission) + dIλ(extinction).            (4.7) 

 
and with the combination of Eqns. (4.1) and (4.6) we obtain 
 

 , [ ]v
ext v v v

dI I J
ds

σ= − − ,  (4.8a) 

 
4.3 A Radiative Transfer Equation for Absorption/Emission 
 

In many problems of infrared radiative transfer that interest the atmospheric scientist it is reasonable 
to neglect scattering so we can substitute σabs for σext. Then substituting Eqns. (4.1) and (4.6) in Eqn. (4.7), 
we obtain the following transfer equation 
 

 , [ ]v
abs v v v

dI I
ds

σ= − −� ,  (4.8b) 

 
which is the mathematical relationship describing how radiation is transferred from one layer to another 
layer as a result of absorption and emission. The amount of radiation leaving the end of the path is a 
function of the distribution of absorber along the path (we will see that this is implied in σabs,v) and the 
distribution of temperature (through the presence �v). 

 
In general, the interactions between radiation and the gases of the atmosphere are weak enough that 

the photon mean free path exceeds the mean free path of molecules. Hence, the radiative transfer in the 
atmosphere tends to be nonlocal requiring integration of processes along the path. To derive this integral 
form of the radiative transfer equation, we first make use of the definition, dτv(s) = -σabs,v(s)ds, for an 
element of the optical thickness (the reason for the negative sign in this definition of optical thickness 
becomes evident below) and then multiply each side of Eqn. (4.8b) by the factor exp(-τv(s)). Combining 
terms, we obtain 
 
 

 4-4
 



 

 
( )

( )
.

v
v

s
sv

v
v

dI e e
d

τ
τ

τ

−
−= −�  (4.9) 

 

Consider a general path extending from some point s = s' to an end point s = s". Then simple integration 

of Eqn. (4.9) from τ(s') to τ(s") yields 
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which, on rearrangement, gives 

 

  (4.10) ³
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where the frequency dependence of all factors (we could have equally used wavelength rather than 

frequency here) in Eqn. (4.10) is taken to be understood. The first term on the right-hand side of this 

equation represents the radiation, originally incident at s', that is transmitted to s". We will refer to this as 

the surface term. The integral term represents the emitted radiation that accumulates along the path and 

transmitted to s". 

 

τ* 

τ 
t 

I (z = ∞, µ) 
τ = 0  z = ∞ 

Fig. 4.4  The geometric setting for the integral transfer equation in a plane parallel vertically 
stratified atmosphere. 

 

When Eqn. (4.10) is applied to the atmosphere (Fig. 4.4), it is customary, but not necessarily 

realistic, to assume that the atmosphere is plane parallel and horizontally homogeneous. For such a 

stratified atmosphere, the integral equation can be expressed in terms of optical depth τ(z) (rather than 

optical thickness τ(s)). It is conventional to define the optical depth such that τ = 0 at the top of the 

atmosphere and τ = τ* at the surface.
1
  For slant paths, the expression relating optical depth to optical path 

is 

 

τ(s) = τ(z)/cos θ. 

                                                           
1
 The convention that τ increases downward from the top of the atmosphere has roots in the traditional astrophysics 

literature on radiative transfer where τ is taken to increase along the direction of sunlight entering the atmosphere.  

Optical depth increases in the oppposite sense to z and hence the negative sign in its definition. 
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*

** ( ) / ( ) /( , ) ( , ) ( ) t dtI I e t e
ττ τ µ τ µ

τ
τ µ τ µ

µ
− − − −+ = − + ³ �  (4.11a) 

 
for 0 < µ < 1, which defines radiation that upwells from the atmosphere, and 
 

 /| | ( ) /| |

0
( , ) (0, ) ( )

| |
t dtI I e t e

ττ µ τ µτ µ µ
µ

− − −− = − + ³ �  (4.11b) 

 
for 0 > µ > -1 for downwelling radiation. 
 

Figure 4.5 is an example of a measured intensity spectrum obtained from an interferometer instrument 
flown on Nimbus 4. Superimposed on the measurements are the blackbody curves for selected 
temperatures. Also highlighted are spectral positions of the absorption bands of the predominant 
absorbing gases. This diagram more clearly shows how emissions from different levels in the atmosphere 
(and therefore at different temperatures) combine to produce the observed spectra. For instance, emission 
in the central portions of the 9.6 µm ozone band occurs at temperatures below about 250 K, and emission 
in the 15 µm CO2 band varies throughout the atmosphere according to the spectral position relative to the 
band center. For both O3 and CO2, the increase in emitted radiation in the strongest part of the center of 
the absorption band occurs higher up in the atmosphere than in the neighboring spectral regions and is an 
indication of the increase in temperature with increasing altitude in the stratosphere. Also noteworthy is 
the water vapor emission that is confined to the lower atmosphere (emission by the vibration and rotation 
bands is broadly characterized by the 275 K blackbody curve for this example). An important spectral 
region is the atmospheric window between about 800 cm-1 and 1200 cm-1 in which the atmosphere is 
almost transparent (except for the ozone band) and the emission originates from levels close to the 
surface. 
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Fig. 4.5   Earth’s emission spectrum seen at the top of the atmosphere. 
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                Example 4.2: Radiative transfer in an isothermal atmosphere 
 
Consider a simple demonstration of Eqn. (4.11): Isothermal atmosphere  

• an isothermal atmosphere, �(t) = �. Thus 
 

  */( *, ) (1 ).I e τ µτ µ −= −�
 

This leads to limb brightening for downwelling radiation at τ = τ* 
and isotropic fields for the upwelling intensity at τ = 0 since 

 
 * */(0, ) (1 ) .I e eτ µ τ µµ − −= + − =� �  ��

( )*/ */( *, ) (1 ) ( * ) 1 1
*o oI e eτ µ τ µµ

τ µ
τ

− § ·= − + − − −¨ ¸
© ¹

� � �

*/ */ */(0, ) * *(1 ) ( * )(1 )oI e e eτ µ τ µ τ µµ − −= + − − − −� � � �

 
• For the nonisothermal problem, the solutions for the intensities and 

fluxes become much more complex. For illustrative purposes, 
assume the Planck function to be linear in optical depth. Let �o and 

�* be the Planck functions at the top (τ = 0) and bottom of the 
atmosphere, respectively. It is easily shown that 

 

 

     (Limb Brightening) 
 

  
(Limb Darkening) 

 
when �(τ) = �o + (�* - �o)τ/τ*.  Generally the angular variation of 
upwelled radiation is less marked than that of downwelled radiation. 

 
 
 
 NADIR/Zenith 

ISOTHERMAL NONISOTHERMAL

 Upwelling Upwelling  
 
 
 
 
 
 
 
 
 Downwelling Downwelling
 
 
 
 1 
 

                          Examples of the angular variation of upwelling and downwelling emitted radiation. 

1 0 
Viewing angle |µ|
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   Example 4.3: The exponential integral, flux equation and diffusivity 
 
We adopt the transfer equations above to obtain fluxes. We choose to 
demonstrate this using Eqn. (4.11a), which is integrated as follows: 
 

  

³ ³

³ ³
−−

−− +=+

1

0

* /)(

1

0

1

0

/)*(

)(2

)*,(2),(2

τ

τ

µτ

µττ

µπ

µµµτπµµµτπ

dtetd

deIdI

t�

 
which becomes 
 

  ³ ³ ³ −−−−+ +=
1

0

* 1

0

/)(/)*( )(2)(
τ

τ

µτµττ µπµµπτ dtdetdeIF t
s �

 
where the surface radiation is taken to be isotropic. Introducing the 
exponential integral function 
 

 ³ ³
∞

−−− ==
1

1

0

/2)( µµ µde
t
dtexE xn

n
xt

n  

 
then the flux equation becomes 
 

 
*

3 2( ) 2 ( * ) 2 ( ) ( )sF I E t E t dt
τ

τ
τ π τ τ π τ+ = − + −³ �  

 
 

τ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

General behavior of the exponential integral. Shows also that 2E3(x) ≈ 
exp(-βx) where β =1.66 and is known as the diffusivity factor. We return to 
this factor and its interpretation later, but note that it represents a 
transmission function for flux. 
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4.5  Problems 
 

The attached diagram presents the emission spectrum measured by an interferometer on a satellite 
viewing Earth.  

 
(1) Identify major absorption features in the spectrum.  
(2) What conditions (clear sky or cloudy, dry or moist atmosphere) do you think are applicable to 

measured spectrum?  
(3) Draw a schematic of the difference in the emission spectrum before and after a CO2 doubling has 

occurred. Consider only clear sky conditions and the following two scenarios:  
 

a. CO2 doubling with fixed absolute humidity  
b. CO2 doubling with fixed relative humidity  
 

Briefly discuss the different spectra highlighting key features as they relate to a CO2 increase 
(you may wish to draw these spectra as applied to global mean conditions). 
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Earth’s emission spectrum seen at the top of the atmosphere. 
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AT622 Section 5 
The Sun 
 

The main aim here is to acquaint the student with basic radiative properties of the sun and the factors 
that govern the disposition of solar radiation received at Earth. 
 
5.1 The Solar Atmosphere 
 

The sun is an entirely gaseous star composed of hydrogen (75%) and helium (25%). It is 
approximately 4.6 billion years old and located approximately 1.5 x 108 km from the Earth. It accounts 
for virtually all energy received by Earth and is responsible for circulation of the Earth's atmosphere and 
oceans. The solar atmosphere is portrayed in Fig. 5.1. The bulk of the electromagnetic radiation emitted 
from the sun and received at Earth arises from the vicinity of the photosphere. 

 
Temperature, K [x 103] 

Fig. 5.1 A schematic cross section of the solar atmosphere. 
 
The sun’s emission is much like that of Earth in that it is a result of superimposing emissions from 

several regions within its own atmosphere. The emission from the sun is entirely analogous to the Earth's 
emission spectrum already shown previously where radiation arises from different levels according to the 
wavelength of the emission. Absorption/emission is stronger at shorter and longer wavelengths (Fig. 5.2a 
and c) of the solar spectrum where absorption within the atmosphere is largest (Fig. 5.2b) observe greater 
variability in emission due to solar activity. The emission at these extreme wavelengths originates in the 
rarefied corona at temperatures exceeding 106 K. 
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The intensity of solar radiation from the UV to far infrared approximately follows the 5785 K 
blackbody curve (Fig. 5.2a,b). The emissions at wavelengths shorter than 0.1 µm and longer than 1 cm 
are coronal, and highly variable. These emissions are related to measures of the solar activity, such as the 
sunspot number (Fig. 5.3a and b and see further discussion later). The spectrally integrated or total 
irradiance (i.e., the area under the curve) is a quantity that is most important for various atmospheric 
science applications. This irradiance measured at the top of the Earth's atmosphere under certain fixed 
conditions is paradoxically termed the solar constant. 
 

 
Fig. 5.2 Spectrum of solar emission and photospheric absorption.  (a) Solar spectrum compared to 

that of a 5784 K blackbody.  The method of plotting gives areas (fλλd log10λ/100) 
proportional to energy flow (fλdλ).  (b) Mass absorption coefficient for the photosphere at a 
temperature of 5785 K.  After Allen (1958).  (c) The solar irradiance. 
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Fig. 5.3 Solar activity as defined by the sunspot number (a) undergoes a distinct cycle, which affects 
the radiant output (b). 

 
5.2 The Solar Constant 
 

According to our understanding of blackbody emission, a 5785 K hot body like the sun emits 

substantially more than a 288 K blackbody (in fact (5785/288)
4

 ≈ 163,000 times more). How can the 

Earth be in a state of radiative equilibrium: an observed equilibrium established by a balance between 

incoming solar and emitted longwave radiation? The answer simply lies in the dilution of the sun's 

radiation as it radiates out from the sun and reaches Earth. 
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We calculate the effect of this dilution as follows. The spectrally integrated radiation emitted by the 
sun and received at the top of the Earth's atmosphere is 
 

2
4

0 , Wm1370 −
∞

≈Ω≈= ³ �
�

�� π
σ

λλ
TdFQ            (5.1) 

 
which, when calculated assuming the mean sun-Earth distance, is termed the solar constant and hereafter 
is denoted as Q

�
 - Note that by definition, the solar constant does not vary with the position of the 

Earth relative to the sun. The spectral flux, defined by substituting Bλ for in Eqn. (5. 1) will be 
referred to as the 'spectral solar constant' F

�

πσ /4
�T

,λ. Q
�

 was traditionally difficult to measure but recent 
instrumentation flown on satellites offer clear evidence of its variability and the magnitude of this 
variability. 
 

Example 5.1: Overlapping solar and terrestrial radiation  
 
Using both the Planck routine program, developed in Section 3, determine 
the fraction of the total solar radiation that falls at wavelengths below 4 
µm and the fraction of radiation emitted by a 288 K blackbody at 
wavelengths longer than 4 µm. 
 

program test       program sun 
W2=200        W1=0.2 
W1=4         W2=4 
T=288          T= 5785 
frac=PLANCK(W1,W2,T)    frac= PLANCK(W1,W2,T) 
write(*,*)'fraction=' , frac     write(*,*)'fraction=' , frac 
end          end 
 

Output, fraction =0.998     Output, fraction =0.992 
 
This exercise illustrates an important practical point in atmospheric 
physics in that only 0.8% of the total extra-terrestrial solar flux resides in 
wavelengths longer than 4 µm (it is actually even less than this as the 
energy blow of 0.2 µm is excluded in function solar). On the other hand, 
only about 0.2% of the total IR radiation from a 288 K blackbody resides 
in wavelengths shorter than 4 µm. Thus from a total energetics point of 
view, solar and terrestrial radiation can be treated independently due to 
the combination of both the dependence of blackbody radiation with 
temperature and the dilution of the sun's radiation as it flows to Earth. 

 
 
5.3 The Solar Insolation 
 

We will refer to the solar flux incident on a horizontal plane as solar insolation. At the top of the 
atmosphere, this insolation depends on the latitude, season and time of day as is expressed in the 
relationship 
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which is the insolation at any given instant of time. Rs-E is the sun-Earth distance at the time of 
observation, s ER −  is the mean sun Earth distance and θ

�
 is the solar zenith angle (i.e., the angle between 

the local normal to Earth's surface and a line at the Earth’s surface to the sun). According to this 
expression we acknowledge that the insolation received at the top of the atmosphere depends on  
 

• Variations of sun-Earth distance, which in turn depends on variations in the eccentricity of the 
orbit of the planet around the sun.  

 
• The sun's elevation (through θ

�, which is influenced by astronomical factors as we will soon see). 
The dependence of insolation on these orbital properties was recognized by Milankovitz in his 
proposition that variations in these properties is the cause for ice ages on Earth. 

 
5.4 Orbital Influence on the Insolation 

 
Figure 5.4 illustrates the general characteristics of the Earth's orbit about the sun. The sun is situated 

at the focus of an ellipse and the changing Earth-sun distance as the Earth orbits around the sun, 
determined by the eccentricity of the orbit, creates asymmetries in solar insolation. The four reference 
points on this orbit, labeled 1 - 4, are the cardinal points that are used to delineate Earth's seasons. 

 
(a) Eccentricity 
 

The eccentricity defines the flatness of the orbital ellipse. For Mercury and Pluto, e ~ 0.2 and these 
planets are substantially closer to the sun at perihelion than at aphelion. For earth, e ~ 0.017 and Mars e ~ 
0.093. In the simplest climatological sense, the summers of the southern hemisphere are hotter and 
winters are colder based on proximity to the sun (e.g., the Martian northern polar cap persists through 
summer but the southern hemisphere cap disappears). 
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Fig. 5.4  Dates of equinox and solstice. At the equinoxes, the Earth's axis is pointed at right angles to 

the sun, and day and night are of equal length all over the globe. At the summer solstice, the 
North Pole is tipped in the direction of the sun and the northern hemisphere has the longest 
day of the year. At the winter solstice, the North Pole is tipped away from the sun, and the 
northern hemisphere has the shortest day of the year. 

 
 

Example 5.2: The Effect of eccentricity on solar radiation received on 
Earth 

 
At perihelion, / 0.9

Es E sR R− = 83  and the flux received at the top of the 
atmosphere is 
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and at aphelion, / 1.0

Es E sR R− = 17  leading to 
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Thus the amplitude of the variation of the solar insolation at the top of the 
atmosphere is 93 Wm-2. 
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(b) Solar Zenith Angle (also see Sellers, Physical Climatology, p. 13-28) 
 

The other principal factor that defines the solar insolation received by a horizontal surface at the top 
of the atmosphere is the solar zenith angle θ

�
.  

 
cos θ

�
 = sin φ sin δ + cos φ cos δ cos h                 (5.3) 

 
where φ is the latitude, δ is the declination and h is the hour angle. 

 
The declination, δ, is defined as the angle formed between the equator and plane of orbit.  This 

parameter has a substantial impact on how the solar radiation is distributed over the globe and thus on 
how and why seasons occur on Earth (Figs. 5.5a, b, c). 

 

»¼
º

«¬
ª

+××%°−≈ )9(
25.360

360cos7223 JDδ  

 
where JD is Julian Day. 
 
 The hour angle, h, is defined by ±15° each hour before or after solar noon.  Account must be 
taken for all observers not at an integral meridian. 
 

Denver is located at 105°W, or exactly 7 hours before GMT.  Local noon occurs at 
12:00.  Salt Lake City is 7° further west but in the same time zone.  At 12:00, the 
hour angle is therefore +7°, while at 1:00 p.m. the hour angle is -8°. 

 
(c) Solar Azimuth Angle 
 
 The solar azimuth angle is given by 
 

�θ
δ

ζ
sin

sincossin h
=  

 
where ζ is referenced to the south.  ζ > 0 is eastward and ζ < 0 is westward. 

 
The mean total daily insolation is also a quantity of some interest in climatological studies  
 
F = Q

�
 × fractional day length × cos �θ  

 
Fractional day length is determined as 2H, and 
 

 ³ ³=
lengthday

/coscos dtdt�� θθ  

 
Values are tabulated in Table 5.1 and shown graphically in Figs. 5.5b and c. As we shall see, the product 
of the fractional day length by cos θ

�
 = 1/4 on the global average. 
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Figure 5.6a shows the distribution of daily insolation as a function of latitude and month. Of note are 
 

• locations of maximum and minimum values and the relation of these to astronomical factors 
• latitudes of smallest and largest seasonal variations 
• asymmetrical hemispheric distribution, and 
• typical values of the insolation at low, middle, and high latitudes. 

 

 

Fig. 5.5  (a) How seasonal variations depend on the angle between the equator and the plane of the 
orbit. If a planet had exactly 90° inclination, it would be impossible to draw an analogy with 
terrestrial north and south poles. The labels in the top panel would then be arbitrary. (b) 
Incident solar radiation at a solstice. A beam of sunlight is spread over a larger area of 
ground at high latitudes, where the sun is close to the horizon, than at low latitudes where the 
sun is almost overhead. The day is longer than the night in the summer hemisphere whereas 
the night is longer than the day in the winter hemisphere. Both effects are important in 
determining the incident solar radiation. (c) The effect of axial tilt on the distribution of 
sunlight. When the tilt is decreased from its present value of 23½°, the polar regions receive 
less sunlight than they do today. When the tilt is increased, polar regions receive more 
sunlight. The possible limits of these effects (never actually achieved) would be a tilt of 0°, 
when the poles would receive no sunlight: and 54°, when all points on the earth would 
receive the same amount of sunlight annually. 
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Table 5.1 The seasonal and latitudinal distributions of the length of the daytime given in parts of 24 
hours and those of the weighted mean values of cos �θ (see Table 6 of Manabe and Moller, 
1961: On the radiative equilibrium and heat balance of the atmosphere, Mon. Wea. Rev., 8a, 
503-532.) 

 
°Lat Fractional length of daytime Cos θ

�
 

 Apr. July Oct. Jan. Apr. July Oct. Jan. 
5 .508 .517 .500 .496 .625 .587 .614 .591 
15 .521 .537 .492 .471 .618 .601 .579 .549 
25 .533 .562 .483 .450 .599 .593 .524 .474 
35 .546 .596 .471 .421 .558 .567 .458 .393 
45 .562 .637 .454 .362 .501 .521 .379 .317 
55 .596 .708 .437 .321 .423 .453 .282 .203 
65 .629 .837 .404 .208 .345 .369 .176 .106 
75 .750 1.000 .329 --- .241 .311 .071 --- 
85 1.000 1.000 --- --- .168 .318 --- --- 

 

 
Fig. 5.6 The daily variation of the solar radiation at the top of the atmosphere as a function of 

latitude.  The units are Wm-2. 
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Example 5.3: Some properties of the solar zenith angle 
 
Some examples: 
 

• Poles: cos θ, sin  φ, and cos θ
�

 = sin δ, 90 - θ
�

 = δ =  constant, where 
90 - θ

�
 is the elevation angle. Thus the sun circles the pole and is never 

higher than 23.5° and transition from day to night occurs at equinoxes 
(δ = 0). 

 
• Solar noon: cos h = 1, θ  = φ - δ.   Note since –23.5° < δ  < 23.5° 

�

  only for φ < |23.5°| can the sun be directly overhead. 
  

• Sunrise and sunset: h = H (half day length), cos θ
�

  = 0 and it follows 
that cos H = - tan φ tan δ, H = 6 hours when tan φ (equator) or tan δ = 
0 (equinoxes). 

 
Convenient formulae for the declination δ and the ratio  are 

  

  
and 

  

 
where    
 

  

 
where the day number dayn ranges from 0 on January 1 to 364 on December 
31. 

 
n an bn 
0 0.006918  
1 -0.399912 0.070257 
2 -0.006758 0.000907 
3 -0.002697 0.001480 

 
n cn dn 
0 1.000110  
1 0.034221 0.001280 
2 0.000719 0.000077 
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Example 5.4: Example use of a sun-path diagram: 
 
The solar zenith angle can also be calculated graphically using sun path 

diagrams such as shown below for the latitude of 41°N. This diagram is a 
convenient graphical way of representing Eqn. (5.3).  
 

Example Sept. 21, at 9 a.m., azimuth = 122°; θ
�

 ~ 57° (elevation angle 33°) 
 

 West
41° Latitude  

 

 

 

 

 

 

 

 

 

 

 

 

 
122° 

 

 

An example of a sun path diagram for a latitude near that of Ft. Collins. 

 

 

 
5.4 Variability of Solar Flux Outside the Atmosphere 
 

There are two main causes for the variability of Q
�
, and these manifest themselves in very different 

ways over an enormous range of time scales. The first has to do with changes in the radiation output of 
the sun itself and the second has to do with changes in astronomical factors that influence how this output 
is received at Earth. 
 
(a) The Flickering Sun 

 
(Reference: Foukal: The Variable Sun, Scientific American, Feb, 1990). The emission from the sun 

varies in time. Large changes in coronal activity are well established giving rise to changes in coronal UV 
emission and microwave/radiowave emissions. This variable output was indicated previously in Fig. 5.2b. 
However, the greater part of the solar emission comes from the photosphere where the magnitude of the 
variability is much less. The shorter term variabilities of solar output (order of 0.2%) over time scales of 
weeks is thought to be caused by passage of 

 
• sunspots (dark spots on 'surface' of the sun) across disc 

 
• faculae (bright spots) associated with the sun's magnetic activity that accompanies sunspots. 
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Long-term variability can also be identified with the solar cycle. The output decreased by about 0.1% 
between the peak in 1981 and its minima in mid 1986 (Fig. 5.7a). The sun grew more luminous as the 
sunspots grew larger—area covered by bright faculae outweighs the increase in area by dark sunspots. 

SMM

Nimbus 

(b) 

(a) 

Fig. 5.7  (a) Flickering of the sun was recorded by radiometers on two satellites, Nimbus 7 (blue) and 
Solar Maximum Mission (red). Short-term decreases in solar output produced the sharp 
spikes in the SMM data, and most of those seen in the Nimbus 7 data, which also included 
some instrument noise. On the average (yellow line) the sun shone brightest at the time of 
maximum sunspot activity. Apparently the greater number of bright faculae at maximum 
activity outweighed the effect of dark spots. (b) Solar cycle manifests itself in the changing 
number of spots on the sun's visible surface (left). The dearth of spots between about 1645 
and 1715, known as the Maunder minimum, appears to coincide with an era of unusually 
cold weather. 

 5-12



 

(b)  Astronomy 
 
The three main astronomical factors that govern the radiation received on a flat surface, namely δ, 

orbital eccentricity and axial precession all vary in a regular manner as shown in Fig. 5.8a and b. 
Vernekar (1972: Long period global variations of incoming solar radiation, Meteorological Monographs, 
12, No. 24) shows how the solar irradiance varies in time and as a function of latitude. An example is 
given in Fig. 5.9a. The upper panel shows the changes in the radiation for the NH winter and the lower for 
the SH winter. The main point is that the distribution of irradiance is altered significantly but the global 
and annual average is not (units quoted are in Ly day-1, compare these numbers with those presented in 
Fig. 5.6 to gain some idea of the percentage change in Q

�
. The characteristics of the variabilities in the 

astronomical factors appear in climate records (Fig. 5.9b). Another reference of relevance is that of 
Berger (1987: Long-Term variations of Daily insolation and quaternary climatic changes, J Atmos. Sci., 
35, 2362-2367). 

(b) 

(a) 

Fig. 5.8  (a) Precession of the earth. Owing to the gravitational pull of the sun and moon on the 
equatorial bulge of the earth, its axis of rotation moves slowly around a circular path and 
completes one revolution every 26,000 years. Independently of this cycle of axial precession, 
the tilt of the earth's axis (measured from the vertical) varies about 1.5° on either side of its 
average angle of 23.5°. (b) Changes in eccentricity, tilt, and precession. Planetary 
movements give rise to variations in the gravitational field, which in turn cause changes in 
the geometry of the Earth's orbit. These changes can be calculated for past and future times. 
(Data from A Berger.) 
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Fig. 5.9  (a) Variation in ΔQ

�
 (ly day-1 as a function of latitude and time measured from 1950 AD). (b) 

Time series of isotopic measurements (these reflect global ice volume) from two Indian 
Ocean cores (upper panel) and the spectrum of this variation showing the imprint of different 
climatic cycles in the isotopic record—these seem to support predictions of the Milankovitch 
theory. (Data from J.D. Hays et al. 1976.) 
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5.6  Problems 
 

Problem 5.1  
 

Given the following characteristics for Mars and Jupiter: 
 

Sun Diameter = 1,390,600 km 
Mars Diameter = 6860 km 
Jupiter Diameter = 143,600 km 
Sun—Mars Distance = 228 X 106 km 
Sun—Jupiter Distance = 778 X 106 km 
Mars Albedo = 16% 
Jupiter Albedo = 73% 
Solar Output = 6.2 kw cm-2 

 
Calculate for each planet 

 
(a) Solar Constant 
(b) Equivalent Blackbody Temperature 
(c) Wavelength of Maximum Emission 
(d) Solid Angle Subtended by the Sun 

 
Problem 5.2 
 

Calculate the radiative equilibrium planetary temperatures for earth assuming albedos of 0.2, 0.3, 0.4, 
and 0.5. 
 
Problem 5.3  
 

Calculate the net longwave power per unit area gain/loss of a grass surface at 2°C when under a clear 
sky with an effective temperature of -30°C, and when under a tree with an effective temperature of 5°C. 
 
Problem 5.4  
 

Find the wavelength at which the incoming solar irradiance at the top of the earth's atmosphere is 
equal to the outgoing terrestrial irradiance. Assume the sun and earth to be emitting as blackbodies at 
6000°K and 255°K, respectively. 
 
Problem 5.5 
 

Show that for an isothermal, surface-atmosphere system the upward infrared irradiance is invariant 
with height. 
 
Problem 5.6 
 

(a) Derive a relationship between solar irradiance and the distance (d) between the sun and the 
observation. (Assume R.sun << d).  

(b) Does the radiance obey the same relationship? 
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Problem 5.7 
 

If the average output of the sun is 6.2 kw cm-2, the radius of the sun is 0. 71 X 106 km, the distance of 
the sun from the earth is 150 X 106 km, and the radius of the earth is 6.37 X 103 km, what is the total 
amount of energy intercepted by the earth? 

 
Problem 5.8  
 

Calculate the solar zenith angle and azimuth angle for the following dates, locations, times: 
 

Date Latitude Longitude Time 
1 Jan. 0° 20° W 1200 GMT 
22 Mar. 30° N 180° W 1800 GMT 
1 July 45° S 90° W 0900 Local sun time 
1 Nov. 60° S 35° E 1000 Local sun time 
1 Dec. 75° N 45° W 0600 Local sun time 

 
Note: Reference your azimuth angle from the south such that east of south is negative and west of south is 
positive. 
 
Problem 5.9  
 

(a) Derive a simple expression for the elevation angle of the sun at local noon as a function of 
date and latitude.  

(b) Derive an expression for time of sunrise as a function of date and latitude. 
 

Problem 5.10  
 

Calculate the azimuth angle of sunrise at 40° N on June 21. Sketch the sun-earth geometry and 
interpret your results. 

 
Problem 5.11  
 

(a) The eccentricity of the earth's orbit is 0.01673. What would be the percentage variation in the 
irradiance at the top of the atmosphere due to this eccentricity from time of apogee to time of 
perigee?  

(b) On which dates would you observe these min max values? 
 

Problem 5.12  
 

An aircraft is being used to measure the surface albedo for a certain region. The downward irradiance 
is measured with a pyranometer to be 750 Wm-2 and the upward irradiance is measured to be 250 Wm-2. 
The angle of attack (angle between the horizontal and the plane of the wing) is known to be 4°. If the 
plane is flying due west at latitude 0° on Julian day 80, at 1500 local solar time, and assuming that the 
total radiation striking the upward looking sensor is 40% direct and 60% pure diffuse, calculate the albedo 
of the underlying target. 
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Problem 5.13  
 

In Table 5.1 the latitudinal distribution of both the fractional day length and mean cosine of the solar 
zenith angle are listed for the Northern Hemisphere. Calculate the matching values of these quantities for 
the June 21 solstice for the Southern Hemisphere using the equivalent 9 (Southern) latitudes. Use these 
values to provide the latitudinal distribution of the daily solar insolation for this date and compare your 
results with those of Figure 5.6a of your notes. 
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AT622 Section 6 
The Earth 

 
This section provides students with an understanding of the radiative budget of the Earth and seeks to 

put this budget in the context of the total energy budget of the planet thus placing the topic of atmospheric 
radiation in a broader context. 

 
KEY REFERENCES 
 
Barkstrom, B., 1984: The earth radiation budget experiment (ERBE), Bull. Amer. Met. Soc., 11, 

1170-1185. 
 
Kiehl, J. T. and K. E. Trenberth, 1997: Earth’s annual global mean energy budget, Bull. Amer. Met. Soc., 

78, 197-208. 
 
Ramanathan, 1987: Role of earth radiation budget studies on climate and general circulation research, 

JGR, 92, 4075 - 4095. 
 
Ramanathan, Barkstrom and Harrison, 1989: Climate and the earth's radiation budget, Physics Today, 

22-37. 
 
Stephens, Campbell and Vonder Haar, 1981: Earth radiation budgets, JGR, 86, 9739 - 9760. 
 
6.1 The Earth's Radiation Budget 
 

A fundamental property of the Earth's climate system is the radiative budget defined as 
 

 ∞−−= FQFnet )1(
4

α�               (6.1) 

 
referred to as the Earth's Radiation Budget (ERB). In this definition, Fnet is the net radiation imbalance at 
the top of the atmosphere, Q

�
 is the solar constant (remember where the factor of 4 comes from?), α is 

the albedo of the planet and F∞ is the outgoing emitted longwave radiation. We believe that on the annual 
and global mean the planet as a whole is in radiative equilibrium (an assertion supported by satellite 
measurements—at least to the accuracy of the measurements), thus Fnet = 0 and 
 

 ∞=− FQ )1(
4

α�               (6.2) 

 
where the overbar emphasizes the global-annual average of the specified quantities. 
 
(a) The Planetary Temperature 

 
It is sometimes convenient to consider F∞ in terms of an equivalent blackbody emission (of 

course it is not purely blackbody as we have already seen). If we write 4
pF Tσ∞ = , then this balance 

can be written as 
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It follows from this balance that 
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where Q

�
 depends on the sun-earth distance. Figure 6.1 graphically presents Eqn. (6.4) and Table 6.1 

provides values of various quantities that help define the radiative equilibrium for various planets. Note 
for example that Tp for Venus is similar to that of Earth even though Q

�
 is almost twice as large. 
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Fig. 6.1  The Stephan-Boltzmann law equates the emitted heat radiation to 5.67 × 10-5 × 
(temperature)4. Effective temperatures of the sun and planets are shown in Table 6.1. 

 
 
The value of Tp for Earth is 253 K, which is much too cold to be representative of the globally averaged 
surface temperature of 288 K (actually, Tp = 253 K is approximately the mean temperature of the 500 mb 
surface). The reason for the difference between the surface and planetary temperatures is that the Earth's 
atmosphere itself emits radiation. For temperatures typical of Earth, this emission occurs mainly in the 

infrared region of the electromagnetic spectrum with a peak wavelength around 10 µm (Section 3). The 
difference between Tp and the observed surface temperature, Ts, is therefore a measure of strength of the 
greenhouse effect. 
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Table 6.1 Effective temperatures of the sun and planets. 
 

Planet 
Distance 
from sun 
(104 km) 

Flux of solar 
radiation 
(104 erg cm-3 sec-1) 

Albedo Tp  
) 

Mercury 58 9.2 0.058 442 
Venus 108 2.6 0.71 244 
Earth 150 1.4 0.33 253 
Mars 228 0.60 0.17 216 
Jupiter 778 0.049 0.73 87 
Saturn 1430 0.015 0.76 63 
Uranus 2870 0.0037 0.93 33 
Neptune 4500 0.0015 0.84 32 
Pluto 5900 0.00089 0.14 43 

 
(b) The Evolutionary Theory of Planetary Atmospheres 

 
In essence, the Earth's atmosphere is fairly transparent to solar radiation but opaque (except for the 

window region) to infrared radiation. Thus the surface is warmed by sunlight and maintained by radiation 
from the atmosphere. This produces an increase in surface temperature over the planetary temperature and 
is a phenomenon understood to be the greenhouse effect. This effect is obviously very different from 
planet to planet as a comparison between Tp and Ts, for the planets listed in Table 6.1. Of some interest to 
our overall understanding of the present state of the Earth's climate is how the Earth's atmosphere evolved 
with water vapor and CO2 being released into the atmosphere. This sort of understanding is also important 
to the assessment of how our present climate might change with changing concentrations of these gases. 

 
One hypothesis for the evolution of the climates of the three inner planets of the solar system is 

graphically portrayed in Fig. 6.2. The proposed evolution of the surface temperature of Venus, Earth, and 
Mars is shown as a function of the amount of water vapor in the atmosphere. This figure suggests that as 
water accumulates in the atmosphere, owing to the greenhouse effect, the surface temperature rises. It is 
thought that as more water vapor is added in the atmosphere of Venus, the temperature increases creating 
a runaway feedback (the so called runaway greenhouse effect). The atmosphere of Venus presently 
contains little water vapor.  This is explained under the runaway hypothesis by requiring most of the 
water vapor to have reached the upper atmosphere where it photodissociated and ultimately escaped. The 
present strength of the greenhouse on Venus is maintained by the clouds and large abundance of CO2. 
Both Earth and Mars are said to experience a truncated greenhouse effect such that increases in vapor 
are met with water phase changes. 

 
In summary: 

• MERCURY: all outgassed gases are stripped. No atmosphere. 
• VENUS: sufficiently massive that important gases do not escape. Close enough to the sun that 

water phase transitions are not reached and an unbuffered runaway system is set up. 
• EARTH: Particular Tp allows encounter of the H2O phase transitions near the triple point. Thus 

Earth's climate is buffered by these phase changes, i.e., continued outgassing condenses into 
oceans and clouds or sublimes; partial pressure of gas cannot increase and feedback on the 
greenhouse effect is much weaker than it is (hypothesized) for Venus. 

• MARS: Low Tp forces encounter with ice/vapor transition. Mars’ climate is buffered as any 
H2O outgassing sublimes to ice preventing further increases of gas partial pressure. 

 
The present state of the atmospheres of Venus and Earth, in this view, is therefore largely a result of 

the proximity of the planet to the sun. 
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Fig. 6.2  The runaway greenhouse effect. The solid lines show how surface temperatures increase, due 

to the greenhouse effect, as water vapor accumulates in the atmospheres of the inner planets. 
On Mars and on Earth the increase is halted when the water vapor pressure is equal to the 
saturated vapor pressure (shown as the dark curve) and freezing or condensation occurs. 
Temperatures are higher on Venus because Venus is closer to the sun and saturation is never 
achieved. The temperature runs away. Note that the temperatures on the left-hand axis are 
not the same for Earth and Venus as the effective temperatures in Table 6.1. They differ 
because a different albedo has been used. (After S. I. Rasool and C. DeBergh, 1970) Source: 
(G. & W.). 

 

6.2 Gray Body Transfer: The Role of Radiation on the Temperature 
Structure of the Atmosphere 

 
It is instructive to study the role of infrared radiation in a simple climate model, in which the rather 

drastic assumption is made that the optical depth is independent of frequency.  This is known as the 
“gray” approximation.  To this end, we will consider the concept of gray body radiative transfer and 
further introduce the notion of radiative equilibrium—a notion that we will return to later. 

 
In dealing with gray body transfer, let us begin with a monochromatic RTE 

 

 ( , ) ( , ) ( )dI
I B

d

τ µ
µ τ µ

τ
= − T            (6.5a) 

 

 ( , ) ( , ) ( )dI
I B

d

τ µ
µ τ µ

τ
−

− = − − T           (6.5b) 
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Example 6.1: An estimate of the gray-body optical depth 
 
The spectral optical depth is a complex function of wavelength and sev-
eral ways of spectrally averaging τ exist. The approach used here is one 
appropriate to the radiative equilibrium arguments introduced to arrive at 
Eqn. (6.11) and follows from the following flux-mean mass absorption 
coefficient (Mihalas, 1978) 
 

1
, .f fk F k F dλ λ−

∞ ∞= ³  
 

The contribution to τ by water vapor, carbon dioxide and other minor 
greenhouse gases present in the Earth's atmosphere obtained using kf in 
Eqn. (6.6), is shown below. The spectral absorption data used to derive kf 
are those tabulated by Rothman (1981). The total gray body optical depth 
derived from these data is τ = 3.9 corresponding to w = 28 kg m-2, which 
is close to the global mean values of w. The value τ = 3.9 is larger than 
the value of the optical depth derived from later considerations. This 
highlights the ambiguity of the quantitative meaning of τ and to 
understand the value it is necessary to understand how it is derived. The 
advantage of the flux-weighted value is that it allows us to estimate τ 
from spectral integration and thus the contributions by individual gases. 
These contributions clearly emphasize the dominance of water vapor to 
the total gray body optical depth for the global mean conditions 
considered. 

 
 
A pie diagram showing the percentage of the gray body optical depth due to water vapor 
and other greenhouse gases in the Earth's atmosphere based on typical mean global 
concentrations of these gases. 

 
 
 
where I is the intensity, µ = cos θ where θ is the angle of the beam from the zenith. The optical depth is 
defined as 
 

                  (6.6) az
k dzτ ρ

∞
= ³

  
where k is the mass absorption coefficient, ρa is the density of the absorbing gas, and z is the lowest end 
point of the path. It is simple to cast these equations into equations for (see box below) upward (F+) and 
downward (F-) hemispheric fluxes, 
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π
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�
            (6.7a) 

 

 ,dF F B
d

π
τ

−
−− = −

�
            (6.7b) 

 
where 
 

 3 .
2

τ τ=�  

 
We now introduce the gray body assumption, which means if we take  to be independent of 

wavelength (we know that it is not), then we can treat the fluxes in Eqns. (6.7a and b) as broadband 
quantities and replace πB with σT

τ�

4.  The factor of 3/2 is a form of diffusivity factor and its interpretation 
follows from the considerations discussed below. 

 
Let us introduce the notion of radiative equilibrium, which for our purpose means that at the top of the 
atmosphere 
 

 ∞
+ =−== FQF )1(

4
)0~( ατ �            (6.8a) 

 
where Q

�
 is the global-annual mean incoming solar radiation at the top of the atmosphere and α is the 

planetary albedo (note: these are all broadband quantities). Radiative equilibrium also implies that 
throughout the atmosphere (why??) 
 

 ( ) ( )netF F F coτ τ+ −= − =� � nst

τ�

          (6.8b) 
 
(we are also assuming that no solar radiation is absorbed in the atmosphere). Given this condition, it 
follows from Eqn. (6.7a) that 
 

( ) ( ) 2 ( )F F Bτ τ π+ −+ =� �  
 
and further from (6.8b) that 
 

( ) ( ) .netF F Fτ τ τ+ −+ = +� � � C  
 
On combining these equations we obtain 
 

( ) ( 1) .
2

netFB τ τ
π

= +� �  
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Example 6.2: A further derivation of the flux equations 

 

It is a relatively simple matter to convert Eqns. (6.5a and b) into flux 

equations if we define a direction µ  such that the flux 

 
1

0
2 ( ) (  ) .F I d Iπ µ µ µ π µ

++ = =³

µ µ=

µ

( ) 2netdF F F B
d

π
τ

+ −= + −
�

( )
net

d F F F
dτ

+ −+
=

�

 

Thus it is straightforward to write down the RTE at .  By multiplying 

each side of this equation by a factor of π we arrive at Eqns. (6.7a and b) 

with  = 2/3. 

 

The solution to these equations follows by first differencing these equations 

to yield 

 

           (6.9a) 

 

(remember Fnet = (F+ - F-
)) and summing the equations to obtain 

 

            (6.9b) 

 

which provides two equations for the two unknowns Fnet and (F+ + F−
). We 

will now explore these solutions given an additional assumption about 

radiative equilibrium. 

 

 

 

At the top of the atmosphere, we have = 0 and Fτ� -
 = 0, so that Fnet = F∞ and C = Fnet.  Further, under the 

gray body assumption 

  

 4
( ) ( 1)

2

FTσ τ τ∞= +� �           (6.10a) 

 

At the bottom of the atmosphere, where = τ� sτ� , we have F+ = 
4

sTσ and it follows that 

 
4

( )s sT F Fσ τ−
∞− =�  

 
4

( ) ( 1)s s sT F Fσ τ τ−
∞+ =� � +  

 

and that 

 

 4
[2 ]

2
s s

FTσ ∞= + �τ          (6.10b) 
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 ( )
2g s

FF F τ− − ∞= =� sτ�          (6.10c) 

 
at the surface. 
 

 
Example 6.3: Skin temperatures and temperature discontinuities 
 
The solutions represented by Eqns. (6.10a) and (6.10b) provide rather 
interesting insights into the temperature profiles that are predicted by these 
equations. One of the results of this model is an estimate of the 'skin' 
temperature, which we think of as a measure of the stratospheric temperature. 
We obtain this using Eqn. (6.10a) with  = 0 τ�

4 ( 0)
2

FTσ τ ∞= =�

sτ� τ� sτ�

4 4 ( ) .
2s s

FT Tσ σ τ ∞− =�

 

 

 
and with F∞ ≈ 235 Wm-2, it follows that this temperature is Tskin = [117.5/5.68 
× 10-8]0.25 = 213 K. 
 

The solutions in Eqns. (6.10a) and (6.10b) predict a discontinuity 
between the surface temperature Ts and the air temperature just above the 
ground T( ). Differencing these equations and with = , 

 

 
 

 
The results of the model are presented in Fig. 6.3a, showing the profiles of upward and downward 

fluxes and the profile of the temperature that is contained in the profile of flux πB. Highlighted are the 
skin temperatures and the discontinuity at the surface. At first sight, the model does not seem to bear any 
resemblance to the real temperature profile. This is because the coordinate τ is not an easy coordinate to 
interpret. Let us suppose that τ is largely defined by water vapor and that 

 
/

2 0(H O) vz He ωρ ρ −=  
 
where Hωv ≈ 2 km. To simplify matters, we assume that τ varies with z in the same way ρ(H20) varies 
with z 
 

 / 2z
seτ τ −=             (6.11) 

 
and 
 

4 /3( ) 1 *
2 2

zFT z eσ τ −∞ 2ª º= +« »¬ ¼
 

 
The profile of temperature with height equivalent to Fig. 6.3a is presented in Fig. 6.3b. For comparison, 
the profile defined by a 6 K km-1 lapse rate is presented. We note that the radiative equilibrium profile is 
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unstable throughout most of the atmosphere, at least to where the 6 K km
-1

 profile cuts the radiative 

equilibrium profile. This radiative equilibrium profile is unstable w.r.t. vertical motion and is destroyed 

by convection, which we may think of in this simple model as producing the constant lapse rate profile. 

Where the latter intersects the radiative equilibrium profile at about 10 km is where this simple model 

predicts the position of the tropopause. 
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Fig. 6.3 (a) The flux profiles and blackbody function predicted by the simple gray body model as a 

function of optical depth. (b) The radiative equilibrium temperature profile as a function of 
altitude predicted by the flux model and assuming the profile of optical depth in Eqn. (6.11). 

 
 

6.3 The Greenhouse Effect and Water Vapor Feedback 
 

Theories of the evolution of the atmosphere of Venus are a subject of some debate. Conjectures other 

than the runaway greenhouse-hydrodynamic loss hypothesis have been forwarded to explain the present 

climate of Venus. A contrary view is that the atmosphere of Venus never contained water vapor at the 

levels required for the runaway hypothesis and that most of the planet's water remains fixed in its interior 

(Kaula 1990). Whether this runaway greenhouse model proposed for Venus actually occurred or not is not 

the issue here. The runaway hypothesis serves to illustrate a feedback between water vapor, the 

greenhouse effect, and the surface temperature of the planet—a feedback that is also thought to occur on 

Earth although on a much more limited scale (Manabe and Wetherald 1967). In fact, it is the water vapor 

feedback in present day climate models that contributes the major portion of the global warming predicted 

for increasing concentrations of atmospheric CO2. 

 

Figure 6.4a provides a schematic depiction of how this water vapor feedback is thought to take place 

under the influence of increasing concentrations of carbon dioxide. As the sea surface temperature warms 
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from the rising levels of CO2, increased evaporation of water from the oceans leads to an enhanced water 
vapor content of the atmosphere (Fig. 6.4a), which further warms the oceans. The total warming 
calculated by a typical climate model is also given in Fig 6.4a as is the amount of warming calculated for 
a doubling of CO2 without any water vapor feedback. While these results apply to a specific climate 
model (Manabe and Wetherald 1967), most models give similar responses and half of the projected 
observations, like those shown in Fig. 6.4b, suggest that a kind of thermodynamic equilibrium exists 
between the sea surface temperature and water vapor content in a manner closely resembling the 
Clausius-Clapeyron relation.1 

 

 
Fig. 6.4 (a) An illustration of the water vapor feedback as it is thought to occur on Earth when 

triggered by a small warming induced by increasing atmospheric CO2.  The water vapor 
feedback is thought to account for more than half of the final warming simulated by present 
day climate models (adapted from Ramananthan, Manabe and Wetherald, 1967).  (b) A 
necessary condition for the existence of water vapor feedback on Earth.  Water vapor exists 
in equilibrium with the oceans in a way that is related to the sea surface temperature largely 
through the Clausius-Clapeyron relationship.  The curve shown is established from 
thousands of observations of water vapor over the world’s oceans (Stephens, 1990). 

 
                                                           
1 Other views have been expressed that the positive feedback does not operate to the extent predicted in current 
climate models.  For further discussion see S. H. Schneider, 1990: The global warming debate heats up: an analysis 
and perspective, Bull. Amer. Meteor. Soc., 71, 1292-1304. 
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Unlike Venus, however, the water vapor feedback loop on Earth is interfered with by condensation of 
vapor into clouds, which in turn imparts a substantial influence of their own on the greenhouse effect.  
The actual way this interference by clouds takes place and the specific connection between water vapor, 
cloudiness, and the greenhouse effect on Earth are still not well understood, poorly observed, and largely 
unexplored. 
 
(a) A simple Estimate of the Water Vapor Feedback 

 
We can devise a simple way of estimating the strength of this feedback. Consider our energy budget 

and suppose we can seek to determine the magnitude of the perturbation of temperature ΔTs due to a small 
change ΔQ

�
 in solar flux. It follows then that: 

 

∞Δ=−
Δ
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4
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and then 
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But this sensitivity does not take water vapor and its feedback into account. One way to think of the 

feedback is to consider Fig. 6.5 and  
 
F∞ = A+ BTs    

        (6.14) 
 
where A ≈ 203.3 W m-2 and B ≈ 2.09 W m-2 ° C-1. It follows then that: 
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Fig. 6.5  The longwave flux emitted to space at different locations on Earth as a function of the surface 

temperature measured at that location (Stephens et al., 1993). 
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Thus the presence of an atmosphere (chiefly water vapor), which is modeled via the Budyko relationship 
(IR emission varies with Ts by a factor less than a T4), increases the sensitivity of 'climate' to solar forcing 
by approximately a factor of two. 
 
(b) Studying the Greenhouse Effect and Water Vapor Feedback from Space 

 
It is not possible, in principle, to observe the direct effects of feedbacks occurring in the climate 

system since we observe the collections of responses. We can, however, observe key components of these 
feedbacks. First, let us introduce a measure of the greenhouse effect. Perhaps the simplest way is to use 
the difference between the mean radiating temperature of the planet and the surface temperature 
(Kondratyev and Moskalenko, 1984; Stephens and Tjemkes, 1992). However, the relationship between 
this temperature difference and the concentration of emitting species cannot be simply and conveniently 
defined. We will make use of our relationship in Eqn. (6.10b) and define a greenhouse parameter as 
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or more generally 
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where from Eqns. (6.8) and (6.10a), a = 1 and b = 3/4. This definition identifies the gray body optical 
depth as the key parameter in defining the strength of the greenhouse. 
 

Let us simply assume that in the case of water vapor, the gray body optical depth is 
 

                 (6.18) .s f a fk dz k wτ ρ= ≈³
 
This assumption, together with Eqn. (6.17) then leads to the following (e.g., Stephens and Greenwald, 
1991b) 

 
  G = a + cw .              (6.19) 

 
The advantage of this relationship is that all factors in Eqn. (6.19) are independently observed over the 
global oceans, primarily from satellites. For example, the SST can be obtained from independent analyses 
of blended ship, buoy, and satellite data (e.g., Reynolds, 1984).  The OLR available from ERBE data and 
w follow from microwave measurements.  The annual, January and July monthly mean values of G 
derived in this way are plotted against corresponding mean values of w in Fig. 6.6. The solid line through 
the scatter of annual mean points depicts the average of these points and the slope parameter c = 0.00634 
(kg m-2)-l, which is estimated via a least squares fit of the data (shown as the solid line in Fig 6.6), is a 
measure of how the greenhouse effect changes for given changes in w and is potentially important in the 
analyses of water vapor feedback. 
 

The relationship in Eqn. (6.19) may be explored using data over the Earth's oceans where suitable 
global measures of the SST, F∞ and w are available from existing satellite observations. Since the 
relationship between w and SST is well defined, it is also possible to consider G as a function of SST. An 
example of this kind of relationship derived from satellite data is taken from Webb et al. (1994) and 
shown in Fig. 6.6a for July 1988 and Fig. 6.6b for January 1989. When plotted in this way with the 
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relationships for each hemisphere indicated by the different symbols, a dramatic seasonal branching of the 
relation between G and SST emerges. Webb et al. (1993) identify this as largely due to a seasonal effect 
associated with changes in the vertical profile of atmospheric temperature in the middle latitudes. 

 
Fig. 6.6  The correlation of G with w based on annual mean (upper panel), 1989 January mean 

(middle panel), and 1988 July mean data (lower panel). The unit of c is (kgm-2)-l. 
 

 
Fig. 6.7  The greenhouse effect as a function of SST with the relationships derived from hemispheric 

data separated for clarity. 
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Example 6.4: Another estimate of the gray body optical depth 
 
We can use Eqn. (6.17), together with the data listed on Table 6.1 to arrive at 
an estimate of τs for Earth and Venus. For Venus 

4 3750
1

244 4
sτ= +§ ·

¨ ¸
© ¹

 

or τs = 117. For Earth, 
4 3288

1
253 4

sτ= +§ ·
¨ ¸
© ¹

 

or τs = 0.9. The parameter τs is therefore a direct measure of the strength of 
the greenhouse effect. 
 
Physical properties of the three inner planets of the solar system 

 

Planet Distance from 
sun (106 km) 

Solar constant 
(W m2) Albedo Te 

(K) 
Ts 
(K) 

*
Fτ  

Venus 108 2620 0.71 244 750 117 
Earth 150 1367 0.31 253 288 0.9 
Mars 228 593 0.17 216 220 ~ 0 

 
 

 
6.4 Post Satellite View of the ERB 

 
Figure 6.8 shows the globally and monthly averaged components of the ERB derived from measure-

ments made on satellites (these are from a composite of various pre-ERBE satellite measurements). 
Figure 6.9 shows the net flux separated by winter and summer hemispheres.  These diagrams highlight 
the annual cycle in Fnet, α, and F∞.  Some notable points: 
 

• Upper panel: planetary albedo - note the maximum during NH winter months. This is associated 
with illumination of snow covered land surfaces. 

• Middle panel: maximum emission NH summer related to heating of land masses. 
• Lower panel: net flux maximum in SH summer (perihelion) and minimum during NH summer 

(aphelion). Sun-Earth distance effects on solar insolation produce an annual cycle ~26 W m-2 
compared to 22 W m-2 observed. (Note offset in observations about ~9 W m-2.) 

 
Zonally averaged profiles of the three components are shown in Fig. 6.10a, b and c. Emitted flux 

distributions show a bimodal distribution with a minimum about the equator (due to deep, cold 
convection) and maximum in subtropics (clear sky). Albedo increases poleward due to increasing 
reflectivity of clouds and other reflecting surfaces as the solar elevation decreases. Note areas shaded 
show both the surplus of net flux and deficit of net flux in the Polar Regions, implying a transport of 
energy out of the equatorial regions toward the poles (see §6.6). This is the fundamental drive of the 
atmosphere and oceanic circulations. 
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Fig. 6.8  Annual variation of the global albedo, emitted longwave flux and net flux.  Also shown in the 

dashed line is the monthly deviation from the annual mean insolation using a solar constant 
of 1376 W m-2 (after Stephens, et al., 1981). 

 

 
Fig. 6.9 Latitudinal distribution of the annual, winter (December, January, and February), and 

summer (June, July, and August) net fluxes (after Stephens, et al., 1981, with modifications). 
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Figs. 6.10a and b show regional distributions of net flux and albedo. These show significant longi-
tudinal variations (e.g., along the equator). The east-west variations in the individual components is as 
large as the north-south variations. The hot spot of the globe is the maritime continent. 
 

 
 

Fig. 6.10 Mean annual infrared flux (W m-2), planetary albedo (%), and net flux (W m-2) (after 
Stephens, et al., 1981). 
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6.5 The Energy Budget of Earth 
 

So far we have considered only the part of the budget that applies to the top of the atmosphere. The 
ERB is also the planetary energy budget since the only exchanges of energy between earth and space take 
place via radiation. We now examine this energy balance in more detail. 
 
(a) Annual-Global Mean Energy Balance 
 

The annual and globally averaged radiative balance of the atmosphere, unlike for the ERB, is not zero 
but distinctly negative: LW balance = G - ( E + M ) - ( F + K ) = -174 W m-2 and SW balance = A - D - B 
= 68 W m-2. That is the atmosphere constantly loses energy via radiation by an amount –174 + 68 = -106 
W m-2 and the earth's surface gains energy by the same amount to balance this loss. Heating of the lower 
boundary of a fluid while cooling its interior is the classical mechanism for inducing convective 
instability and turbulence. Turbulent heat transfer (S = 16 W m-2) and condensation of water (the excess 
of condensation over evaporation—in the form of precipitation falling to the ground, H = 90 W m-2) make 
up the radiative deficit. The combination of these non-radiative processes is loosely called convective 
heat transport and the balanced state of the atmosphere is termed at radiative-convective equilibrium. 

 
The surface budget is made up of a balance between net solar radiation at the ground (B = 169 W m-2) 

plus the net longwave budget at the ground (E + M – G = 63 W m-2) and the heat transferred to the 
atmosphere via sensible heating (S) and latent heating (H). While the global average shows the transfer of 
energy (H + L) from the surface to the atmosphere, there are times and places where the transfer is in the 
other direction. 

 
Representations of this budget have varied in detail over the years since the original version of Dines 

(1917), which is reproduced in Fig. 6.11a. For instance, the planetary albedo, estimated by Dines to be 
50%, has been considerably revised to the value of D/A = 30%, largely because of modern satellite ERB 
measurements. One issue of concern to Dines at the time of his study was the precise value of the 
Stefan-Boltzmann constant. 

 
(b) Schematic View of IR Radiative Transfer in the Atmosphere 

 
An important observation noted above is that the atmosphere loses IR radiation by the amount of -174 

W m-2.  This gives rise to an overall atmospheric cooling (to be discussed later). This is a result of 
longwave radiative transfer in the atmosphere. Longwave radiation is absorbed, emitted and to a much 
lesser extent scattered from layer to layer in the atmosphere thus creating a transfer problem of some 
complexity. The chief absorbers of this radiation are: 

 
• Trace gases - CO2, H2O and O3 (these absorptions are quantized processes, which produce 

discrete absorption "lines". The absorptions occur through quantization of rotation and vibration 
of the molecular bands and is discussed in more detail in the next chapter). 

• Cloud droplets and crystals. 
• Aerosol (such as dust, soot, etc.). 
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Fig. 6.11 (a) The modern view of the energy budget (Stephens and Tsay, 1991).  (b) Original view of 

the energy budget of the planet as envisaged by Dines (1917). 
 
Figure 6.12a provides a schematic of the longwave flux measured at the ground. This flux is a result 

of radiative transport processes in the terrestrial atmosphere. Of particular importance to the energy 
budget of the Earth-atmosphere system is the so called "atmospheric window", which is fairly transparent 
to radiation processes in the clear atmosphere but this is "filled in" by cloud. Figure 6.12b provides an 
example (the reverse of Fig. 6.12a) of radiation emitted by Earth and other planets. The radiation is 
expressed as an equivalent temperature, which is the spectral equivalent of Tp. It is this kind of 
measurement that enables us to deduce the composition of planetary atmospheres via remote sensing. 
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Fig. 6.12 (a) The emission from a clear sky (solid curve) and a cloudy sky (dashed curve) measured by 

a hypothetical radiometer on the ground.  (b) A low-resolution depiction of the absorption by 
the main greenhouse gases of the Earth’s atmosphere (upper part of (b)) spectra of IR 
emission, plotted as brightness temperatures, for four planets and Titan (Hanel, 1983). 

 
6.6 The Meridional Transport of Heat by the Planet 
 
(a) Observations 
 

The profound role of the general circulation on temperature is illustrated by reference to Fig. 6.13. 
Without horizontal transport of heat, the temperature of each latitude would be governed by radiative 
equilibrium alone. In this case, summers in mid-latitudes would be warmer than without transport, and 
winters much colder. Heat is transported by the atmosphere and oceans out of the equatorial regions and 
subtropics to the Polar Regions where it is mixed mechanically to produce more moderate temperatures at 
higher latitudes 
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(Additional reference, Oort and Vonder Haar, 1976: On the observed annual cycle in the ocean-
atmosphere heat balance over the Northern Hemisphere, J. Phys. Ocean., 6, 781-800.) 

 

 
Fig. 6.13  Comparison of theoretically derived radiative equilibrium and observed vertically averaged 

temperature profiles for the summer and winter. 
 

We can calculate this total transport required from simple principles of energy conservation. Consider 
the 'system' as in Fig. 6.14 that loses (or gains) energy through its upper boundary and transports energy 
across its lateral boundaries. The rate at which energy changes inside this system is 
 

     net
E F div div
t

∂
= − −

∂ A oT T                  (6.20) 

where  
 

• Fnet     = net radiation input into the top of the atmosphere (e.g., Fig. 6.15)  
• divTA = divergence of energy from the atmosphere due to atmospheric transports  
• divTo = divergence of energy from the ocean due to oceanic transports.  
 

∂E/∂t is the energy gained by the "system" which is then stored in the atmosphere and ocean, i.e., 

 A o L
E S S S S
t

∂
= + + +

∂ I                  (6.21) 

 
where SA, So, SL, and SI are energy storage terms associated with the atmosphere, ocean, land, and ice, 
respectively. 
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Fig. 6.14  Schematic diagram of the different terms in the earth's energy balance (Oort and Vonder 

Haar, 1976). 
 

Figures 6.15a and b provide zonally averaged estimates of heat storage by the atmosphere and oceans, 
respectively (i.e., of SA and So) as a function of time year. The atmosphere storage plays only a minor role 
in the energy budget. This storage occurs by incoming solar energy, which is used to increase internal 
energy (temperature), and the specific humidity (i.e., latent energy). The maximum storage occurs around 
May and maximum depletion is around September. By contrast, the storage of energy by the oceans 
plays a far more formidable role in the time varying energy budget of the climate system. This reaches a 
maximum in excess of 100 W m-2 at about 40°N. Most of the storage occurs east of North America in the 
Gulf and east of Japan. The land and ice storage terms are smaller although estimates of SI are poorly 
based. 

 
On the annually averaged basis, we consider each latitude zone to be in steady state, i.e., 

 

0
E
t

∂
=

∂
            (6.22) 

 
where < > is an annual average. 
 
 Thus, 
 

    net a oF divT divT= +            (6.23) 
 
or 
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Fig. 6.15  (a) Rate of heat storage in the atmosphere (SA) based on radiosonde data as a function of 

latitude and month of the year. Units are in W m-2.  (b) Rate of heat storage in the oceans (So) 
based on hydrographic stations, MBT and XBT data as a function of latitude and month of 
the year. Units are in W m-2. To obtain typical oceanic values divide by the percentage of the 
horizontal area covered by oceans (factor = 0.61 for the Northern Hemisphere as a whole). 

 

 
1

( )net
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φ
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∂
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∂

           (6.24) 

 
where a is the mean radius of the earth and φ is latitude and T is the combined oceanic and atmospheric 
transport. We can numerically integrate Eqn. (6.24) to obtain the transport required to balance the net 
radiation deficits (e.g., Carrissimo et al., 1985: Estimating the meridional energy transports in the 
atmosphere and oceans, J. Phys. Ocean, 15, 82-91). For example, integration of Eqn. (6.24) over the polar 
cap (Fig. 6.16a) yields 
 

 2

/ 2
( ) ( ) ( ) 2 ( )cos (W)a o netT T T a F d

φ

π
φ φ φ π φ φ φ$ $ $= + = ³       (6.25) 

 
The total transport is estimated this way using satellite data for Fnet. The meridional energy transports by 
the atmosphere may be obtained from analysis of conventional meteorological data (e.g., Oort and 
Vonder Haar).  The ocean transports (Fig. 6.16b) can be derived as a residual. 
 

An alternate way of estimating the heat transport by the Earth's oceans is to consider the average form 
of the terrestrial branch of the energy balance, i.e., 
 
 net surfF div− = oT           (6.26) 
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where, on an annual average basis, the storage terms are zero. The estimate of the oceanic energy 
transport derived according to this balance is also depicted in Fig. 6.16b (after Sellers). The significant 
discrepancy between the two estimates has been a topic of debate for some time. 

Fnet

(b) 

(a) 

 
Fig. 6.16  (a) Principle of integration over the polar cap. (b) Variation of net energy transport with 

latitude over the northern hemisphere: RF = total required energy transport inferred from 
satellite measurements; AT = measured energy transport by the atmosphere; OT = oceanic 
energy transport derived from RF and AT; OTs = oceanic energy transport according to 
Sellers (1965). Uncertainty in the OT values is denoted by the shading. Minus values indicate 
net transport to the south (after Vonder Haar and Oort, 1973). 

 
 
The heat flux distribution around the oceans, based on a similar analysis of the surface budget, is 

depicted in Fig. 6.17a. The fascinating aspect of the analysis portrayed in this diagram is the consistent 
northward transport depicted for the entire Atlantic Ocean. However, we should view this analysis as 
being somewhat speculative given the comparisons of Fig. 6.17a and b. The only real convincing estimate 
of heat transport of the oceans is from direct estimates from measurements conducted in the ocean. Figure 
6.17b shows the results of these kinds of estimates in limited portions of the ocean. The two estimates of 
Fig. 6.17a and b are broadly similar but differ in important detail. 
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Fig. 6.17  (a) The circulations of heat (10

13
 W) around the world ocean, as deduced by Strommel (1979) 

and Baumgartner and Reichel (1975) from the global patterns of energy. (b) The circulation 

of heat 10
14

 W in the world ocean deduced from oceanographic measurements at a few 

trans-ocean sections (Bryden 1982). 

 

(b)  Model Comparisons with Observation 

 
(ref Glecker et al., 1995: Cloud radiative effects on implied energy transports as simulated by 

AGCMs, Geophys. Res. Letters, 7, 791-794.) 
 

Recent model comparisons have revealed how radiation processes in clouds in different AGCMs lead 
to an unacceptable large spread in the implied meridional transport. Figure 6.18a shows TO+A inferred 
from TOA net radiation as observed from ERBE and derived from ERB simulations from models. Figure 
6.18b is the atmospheric component of this total transport as deduced from observations (Oort), analyses 
(Trenberth/Savijarvi) and derived from models. Figure 6.18c shows the zonal average net surface energy 
flux as simulated from models and as derived from observations (complete with error estimates on the 
latter). Various observational estimates of To are given in Fig. 6.18d and these are contrasted with model 
deduced transports on Fig. 6.18e also derived from model surface fluxes. The spread in these results and 
the difference from 'observations' was attributed by Glecker et al. to model differences in treatment of the 
radiative effects of clouds (Fig. 6.18f). The quantity shown in Fig. 6.18f is the quantity CSW introduced in 
the next section. When the combined transport of Fig. 6.18a and the atmospheric transports of each model 
(Fig. 6.18b) are used, the residual ocean transport of Fig. 6.18g is obtained. Together Fig. 6.18f and g 
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suggest that the implied energy transport in the oceans is not correct largely as a result of poorly 
represented cloud-radiation processes. 
 

 
Fig. 6.18  (a) Annual mean northward meridional energy transport of oceans plus atmosphere. (b) 

Annual mean northward meridional energy transport of the atmosphere. (c) Net ocean 
surface heat flux, (d) Observed annual mean northward meridional energy transport of the 
ocean. (e) Annual mean northward meridional energy transport of the ocean derived from 
model surface fluxes. (f) Zonal, annual average net TOA cloud flux differences as defined in 
the next section. (g) Annual mean northward meridional energy transport of the ocean 
derived from model atmospheric transport and observed TOA ERB. 
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6.7 Problems 
 

Problem 6.1  
 

Suppose that a cloud layer whose temperature is 7°C moves over a snow surface whose temperature 
is 0°C. What is the maximum rate of melting of the snow that could be supported by net LW radiation 
convergence at the surface if the absorptance of the cloud is 1.0 and of the snow is 0.95? 

 
Problem 6.2 
 
 If one assumes that the planetary albedo of the earth is 30%; that the atmosphere transmits all SW 
radiation; and that the atmosphere acts as a single isothermal layer that absorbs all longwave radiation 
falling on it, find the radiative equilibrium temperatures of the atmosphere and the earth's surface. 
 
Problem 6.3 
 

A so-called greenhouse is depicted below. Assume a solar zenith angle θ, that the top of the house 
transmits all SW radiation and has an infrared emittance εTOP. The ground absorbs all LW radiation and 
has an albedo ρgrnd.  Assuming radiative equilibrium, derive an expression relating the temperature of the 
ground to the emittance of the roof and the solar zenith angle. Derive a second expression for the 
equilibrium temperature of the roof as a function of the ground temperature if εTOP = 1 and ρgrnd = 0.2. 
 
Problem 6.4 
 

If the average surface temperature of the earth is 288° and the average albedo of the earth and 
atmosphere for solar radiation is 30%, find the "effective absorptance" of the atmosphere for longwave 
radiation. 
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AT622 Section 7 
Earth’s Radiation Budget 
 

Here we examine the effects of the atmosphere and clouds on the Earth's radiation budget (ERB). 
While the notions described deal with the simpler aspects of these effects and are heavily based on TOA 
observations, the material presented provides important insight into atmospheric radiation.  More detailed 
and rigorous understanding will come when the topics of this section are revisited in later sections in the 
context of radiative transfer. 
 
7.1  The ERB Measured From Space: An Overview of the ERBE 
 

The history of the ERB measurements closely parallels the overall space effort within the United 
States and other countries of the world. A reference that details the history of the ERB observation is that 
of House et al., 1986: History of satellite missions and measurements of the earth radiation budget 
(1957-1984), Revs. Geophys, 24, 357-377. Discussion of pre-satellite ERB studies is provided by Hunt, 
1986 (same issue of Rev. Geophys.). Table 7.1 provides a convenient overview of this history. The first-
generation instruments were narrow spectral channel scanning radiometers. These provided spectral 
radiance measurements for limited ranges of angle. Models of the angular distribution of radiance were 
required to convert these to flux (via bi-directional models). The second-generation instruments were flat  

 
Table 7.1: Historical Overview. 

 
Satellite 
Mission 

Launch Date 
Altitude 

Range (km) 
Inclination 

Angle (deg.) 
Orbit Time Lifetime(s) Contributions 

First-Generation Missions 
Explorer 7 Oct. 13, 1959 550-1,100 51 Drifter 7 months First dedicated satellite 

    providing usable ERB data 
TIROS 2 Nov. 23, 1960 717-837 48 Drifter 1-5 months First scanning radiometer with   

five SW/LW channels 
TIROS 7 June 19, 1963 713-743 58 drifter 12 months Provided 1 year of radiation 

balance observations 
Second-Generation Missions 

Research/ESSA 1960s ≈ 1,500 102 0900/1500 3-15 months Global data sets from WFOV 
nonscanning radiometers 

Nimbus 3 Apr. 14, 1969 1,100 99 Noon 1 year Detailed global radiation 
balance for 1 year 

NOAA 
NOAA-
N/NOAA 

1970s 
1978-1981 

≈ 1,500 
≈ 840 

102 
99 

0900 
1500/0730 

Years 
Years 

Combined data sets provided 
10 years of observations 

Third-Generation Mission 
Nimbus 7 ERB Oct. 1978 

To the present 
950 99 noon 6+ years Total and spectral solar 

monitoring; bi-directional 
reflectance and directional 
albedo models 

Geostationary Missions 
GOES-E/W 
(75°-135°) 
METEOSAT ½ 
(0° longitude) 

1970s/1980s 
 
1977/1982 

36,000 
 
36,000 

0 
 
0 

24 hours 
 
24 hours 

Years 
 
Years 

Diurnal variations of SW/LW 
exitances and cloud 
distributions: satellite 
mission simulations 

 
plate broadband instruments that measured a quantity more closely resembling the hemispheric flux (Fig. 
7.1) although some deconvolution is required to obtain fluxes. The third generation instrument suite 
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includes wide field of view, broadband instruments, and narrow field of view scanning instruments. One 
advantage of the latter is the spatial resolution. 

 

(b) 

(a) 

 
 
 

Fig. 7.1  (a) Flat plate instrument versus (b) Scanners. 
 
 

One of the significant problems of the early studies is the lack of sampling of the diurnal variations. 
Single satellite missions cannot provide enough observations to pull out the seasonal and diurnal 
variability at scales varying from the global scale to the synoptic scale to the more localized regional 
scale. ERBE proposed a three-satellite strategy for sampling the globe (Fig. 7.2a and b) involving two 
polar orbiters and the ERBS at a 57° inclined orbit. The resulting sampling is given in Fig. 7.2a. 

 
The ERBE instruments are built in two packages: a scanner package and a nonscanner package. The 

scanner contains three scanning radiometers and capabilities for onboard calibration. The scanner (Fig. 
7.3a) consists of a shortwave, longwave, and total radiometer mounted in a single scan head to receive 
radiation from the same FOV (usually scans across the track). The nonscanner (Fig. 7.3b) contains a total 
wide FOV (WFOV- view of the entire earth disc) radiometer and a shortwave radiometer. There are also 
medium FOV radiometers (MFOV) and an active cavity radiometer to measure solar output. 
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Fig. 7.2 (a) Local time coverage of Nimbus 7 satellites upper and the three satellites combined 
(lower).  (b) The three satellite orbit configurations.
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Fig. 7.3  (a) Scanning radiometer.  (b) Nonscanning radiometer. 
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7.2  Satellite Classification of Clouds 
 

Clouds provide a first-order effect on the radiative budgets and water exchanges in the atmosphere. 
They also play a fundamental role in studies of climate and climatic change. Several attempts have been 
made to classify the global distribution of clouds based on measurements obtained from radiometers 
flown on satellites. Two examples of these radiometric classifications of clouds will now be discussed. 
 
(a)  Emission Classification in the Split Window 

 
Inoue (1989) developed a simple way to classify clouds according to the difference in their emission 

properties at 11 and 12 µm. As mentioned earlier, ΔT = T10.8 - T12 is a good indicator of the opacity of 
clouds. Thick clouds, radiating approximately like a blackbody, possess small values of ΔT whereas thin 
clouds exhibit more variable values of ΔT as described earlier in a way that depends on particle size and 
other factors. 
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Fig. 7.4   An example of a cloud-type classification diagram introduced by Inoue (1989). 

 
Inoue's classification scheme is based on threshold analyses of the T - ΔT diagram like that shown in 

the example shown in Fig. 7.4. Two threshold values of ΔT can be identified, one at ΔT = 1 K 
corresponding to optically thick clouds and another to a slightly larger value corresponding to the clear 
sky value of ΔT. Two threshold values of the brightness temperature T10.8 are also introduced in the Inoue 
scheme; one is the high cloud threshold, which is set at -20°C, and the other corresponds to clear sky 
temperatures. Data representing different cloud types fall in the different classification boxes. For 
example, cumulonimbus clouds are thick, possess ΔTs less than 1 K, and are cold. These fall in the type B 
category. Low level cumulus and stratocumulus clouds fall into Inoue's category U. Thin cirrus clouds are 
characterized by values of ΔT that exceed the clear sky threshold value and fall in categories 12 and 13 
for thick and thin clouds, respectively.  Stratus clouds have opacities between cirrus and cumulus clouds, 
and fall into categories II and N. 
 
(b)  The International Satellite Cloud Climatology Project (ISCCP) 
 

ISCCP formerly began in 1983 with the collection of the first internationally coordinated satellite 
intensity data. The original plan called for this collection for only a five-year period but the ISCCP 
extended this collection to 1995. This program was the first of its kind involving routine collection of 
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operational satellite data. Many key problems needed attention including lack of global converge and 
cross calibration of satellite radiometers. These issues are addressed elsewhere. 

 
The cloud detection scheme used in ISCCP is different from the emission scheme highlighted above 

as it uses both visible reflection information as well as emitted radiation. The detection approach 
examines all of the data for one month to collect statistics on the space/time variations of the VIS and IR 
intensities. The key assumptions used in the analysis are that the intensities in clear scenes are less 
variable than those in cloudy scenes and that it is the clear scenes that compose the darker and warmer 
parts of the VIS and IR intensity distributions, respectively. Estimates of the clear sky values of VIS and 
IR intensities for each location and time are made and composited into maps (these are referred to as the 
"clear sky composites"). This approach is novel in two respects. First, all of the complicated tests usually 
used to detect cloudiness directly, many of which were first proposed by other investigators, are used here 
to identify clear scenes. The use of time variations at one location to identify clear scenes also differs 
from many other methods. 
 

The differences between the intensities measured and the estimated clear sky intensities are compared 
to the uncertainties in estimating the clear intensities. If the differences are larger than this uncertainty and 
in the "cloudy direction" at either wavelength (colder IR or brighter VIS), then the pixel is labeled cloudy. 
Once each pixel is classified as clear or cloudy, the measured intensities are compared to radiative transfer 
model calculations that include the effects of the atmosphere, surface and clouds. The intensity data are 
then converted into two-cloud properties—the "visible" optical thickness (defined at 0.6 µm) and a 
cloud-top pressure. The optical thickness parameter determines the amount and angular distribution of 
sunlight reflected by the cloud layer (the full effects of multiple scattering are included in the model and 
we will examine the form of this model later)—the cloud-top pressure is supposed to account for cloud 
emissivities less than 1. At night, when only IR intensities are measured, no cloud optical thickness is 
reported and IR variations are associated with the cloud-top brightness temperature. 

 
Thus, the ISCCP clouds are categorized in terms of cloud-top pressure and optical-depth properties as 

schematically shown in Fig. 7.5a. A second category group, based on a combination of those in Fig 7.5a, 
is given in Fig 7.5b. Two examples of the two-dimensional categories as defined in Fig. 7.5a for July 
1983 are presented in Figs 7.5c and d for two different latitude zones. Maps of the categories introduced 
in 7.5b are shown later in Fig. 7.9. In the subtropics during winter (Fig. 7.5c), the predominant cloud type 
has low tops and relatively low optical depths (probably associated with highly broken cloud). The 
tropical distribution is more complicated showing a prevalence of high, optically thick clouds and low, 
relatively thin clouds associated with highly broken low-level clouds. 
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(b) 

 (c) (d)

 
Fig. 7.5 (a) Radiometric classification of cloudy pixels in terms of optical thickness and cloud-top 

pressure.  (b) A second category group based on a combination of those in (a).  (c) The 
frequency distribution of cloud optical thickness and cloud-top pressure for July 1983 for the 
southern subtropics and (d) the northern tropics (from Rossow and Shiffer, 1991). 

 
 
7.3  The Effects of Clouds on the ERB: The Idea of Cloud Radiative Effect 
 

Our every day experience tells us that clouds are white and reflect significant amounts of solar 
radiation. Conversely, clouds are dark at infrared wavelengths, strongly absorbing and hence also strongly 
emissive. These characteristics are used to detect clouds in the ISCCP algorithm. What we will learn in 
later sections is that the ability of clouds to reflect solar radiation is related to their ability to emit 
radiation in a complex manner. When viewed from the top of the atmosphere, clouds produce a curious 
impact on radiative transfer, on the one hand increasing (solar) radiation leaving the planet, yet on the 
other hand inhibiting the emission of (infrared) radiation to space by absorbing radiation emitted from 
below and replacing it with a reduced amount of radiation emitted by the colder cloud particles 
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themselves. These two competing processes produce a net effect that is in somewhat delicate balance—a 
balance that depends on height, thickness, amount of clouds, and even on the size of the particles in the 
cloud that governs the ability of cloud particles to scatter and absorb radiation. 
 
 

Example 7.1: Golden Arches 
 

One of the advantages of satellites as observational platforms of clouds is 
their ability to record patterns and structures of clouds over wide ranges of 
space and time. A method that exploits this particular advantage, as well as 
using the properties of cloud emission, is the spatial coherence technique 
introduced by Coakley and Bretherton (1983). The idea behind the approach 
is portrayed in the upper panel in Fig. 7.6. It schematically shows a group of 
2 x 2 neighboring pixels of 11 µm radiances expressed in this specific 
example as brightness temperature. These pixels are processed to provide the 
average 11 µm brightness temperature of the group and the standard 
deviation about this average. The latter is a measure of the texture of the 
image on the scale of the pixel array chosen. These two pixel group 
quantities are then plotted on a scatter diagram in the fashion given by Fig. 
7.6. The satellite data used to construct this scatter plot are the 11 µm 
radiances obtained with the NOAA-9 overpass at 2242 GMT on July 7 
obtained from the AVHRR viewing marine stratus clouds off the west coast 
of California (Coakley, 1991). 

 
Fig. 7.6  A schematic demonstration of the method of spatial coherence 

(upper panel) as it might be applied to brightness temperatures. 
Spatial coherence analysis of 11 µm intensities for a (250 km)2 
region over stratus clouds off the west coast of California. Each 
point represents values for a 4 x 4 array of (1 km)2 AVHRR pixels 
(Coakley, 1991). 

 7-8



 

Example 7.1: Continued. 
 

The scatter of points on the diagram resembles an arch. The feet of the arch 
contain important information about those regions of the image that are 
relatively homogeneous across the group of neighboring pixels. One foot is 
associated with the relatively clear sky portion of the scene and the other to 
the pixel groups that are completely filled by a cloud with the same 
temperature. This provides a way of discriminating clear sky brightness 
temperatures from partially cloudy skies (Tbroken) and from the brightness 
temperature (Tcld) of a homogeneous layered cloud. For the case shown, only 
two effectively homogeneous surfaces exist, one is the clear sky background 
and the other is that of the solid cloud portions of the image.  The point in the 
arch corresponds to a partially filled pixel group of cloud cover N. This 
approach relies on the statistical nature of the observations that can be used 
to identify both Tclr and Tcld. 

 
 

We consider and refer to the two largely compensating effects as follows: 
 
• The albedo effect—clouds reduce the net solar input into the planet by reflecting more solar 

radiation to space. This is also sometimes referred to as a cooling potential of the planet. 
• The 'greenhouse' effect—clouds reduce the longwave output by effectively raising the level of 

emission to levels specified by colder temperatures. 
 

A graphic example of these two processes, manifested in the ERB, is shown in Fig. 7.7 in which the 
annual cycle of the ERB quantities of α, F∞, and Fnet are presented for a region of the Asian monsoon. 
What is remarkable is how nearly complete is the cancellation of these opposite effects. The fundamental 
question is do these effects cancel globally or does one component dominate over the other? 

 
 

Fig. 7.7 The annual cycles of α, F∞, and Fnet for the Asian monsoon region indicated. 
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(a) The Cloud Radiative Effect 
 

One way of studying these compensating radiative processes on the ERB is in terms of a comparison 
between the TOA fluxes in cloudy portions of the atmosphere to equivalent fluxes in clear skies. Flux 
difference quantities derived in this way are often mistakenly thought of as the measure of a forcing 
applied to the Earth-atmosphere system by radiative processes of clouds. As we will see it is not, but these 
quantities do serve as a useful and helpful diagnostic of the effects of clouds on the ERB. Unfortunately, 
these diagnostics do not provide the insight needed to determine just what properties of clouds govern 
these effects although we will hint at these governing properties here and return to these later. 

 
The flux difference quantities are introduced as follows. Suppose for the moment the shortwave 

component of the reflected radiation can be written as 
 

Fs (observed) = Fs (clear) (1 - N) + NFs (cloudy)           (7.1) 
 
where N = cloud amount, Fs (clear) is the radiation reflected by the clear sky portion of the atmosphere 
and Fs (cloudy) is that flux associated with reflection from the cloudy skies. It should be stressed that we 
use Eqn. (7.1) only to fix ideas as a relationship such as this and has no theoretical basis. Ignoring this 
with rearrangement   

            (7.2) 
0)observed()clear(

()observed( )

<−=

−+=

−

ssSW

C

clearcloudyclears

FFC
FFNFF

SW �� ��� �


 
The quantity CSW refers to the specific contribution to the ERB by reflection from clouds. It can be 
derived independent of the dubious assumptions of Eqn. (7.1) provided we know the clear sky flux. In 
going from Eqn. (7.1) to Eqn. (7.2) we can think of CSW as containing a factor due to how much cloud 
exists (i.e., N) and a factor that defines how readily clouds reflect sunlight when they exist. The flux 
quantity CSW is negative by convention since clouds increase the reflection to space relative to clear skies. 

 
Using entirely similar arguments 

 
CLW = F∞ (clear) − F∞ (observed) > 0             (7.3) 

 
is the effect of clouds on the longwave component. As noted, this component generally exceeds zero as a 
result of reduced emission from colder clouds. The net effect of clouds is 
 

Cnet = CSW + CLW               (7.4) 
 
(b) ERBE Results of Cloud Effects 
 

Once clear sky fluxes are derived, then CSW and CLW readily follow. Examples of these flux difference 
quantities are shown in Fig. 7.8. Monthly average fluxes derived from ERBE are composited together to 
produce JJA and DJF maps of CLW, CSW, and Cnet.  Features of most relevance to note are: 

 
• Longwave cloud forcing is a measure of the reduction by clouds of the longwave radiation 

emitted to space; hence it is a measure of the greenhouse effect of clouds. Clouds reduce emission 
to space because at their bases they absorb radiation emitted by the warmer surface and at their 
tops they emit to space at colder temperatures. Deep cold clouds such as occur as part of the 
monsoon cloud systems over the Indian Ocean and Indonesia have the largest greenhouse effect. 

 7-10



 

• Because clouds reflect more shortwave solar radiation than the adjacent clear skies, the shortwave 
forcing is negative—a 'cooling' effect. Surprisingly, the magnitude of this effect is almost 
precisely as large as the longwave forcing over the tropical cloud systems, and is even larger than 
the longwave effect over the mid- and high-latitude oceans in the summer hemisphere. 

• The net cloud radiative forcing (shown as the bottom panel) is the sum of longwave and 
shortwave cloud forcing. The averages range from -100 to –140 W m-2 (dark blue) to 10-40 W 
m-2 (red). The net globally averaged effect is largely negative; hence clouds overall act to cool the 
planet (see Tables 7.2 and 7.3). The strongest cooling is caused by the persistent maritime stratus 
off the west coast of continents and storm-track clouds in the summer hemisphere over the mid- 
and high-latitude Atlantic and Pacific Oceans. 

 
 

 
 
 
 
     CSW 
 
 
 
 
 
 
 
 
 
 
     CLW 
 
 
 
 
 
 
 
 
 
 
     Cnet 
 
 
 
 
 
 
 

Fig. 7.8  Cloud radiative forcing for JJA 1985 (scales expressed in W m-2). 
Because the effects of clouds on CLW and CSW are largely reciprocal, processes that affect one 

component by a disproportionate amount offers greatest potential for significantly influencing the ERB 
and thus the Earth's climate. We will study some of these processes later in this course and return to this 
reciprocity in Section 7.6. 
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Table 7.2  Nimbus 7 cloud short, long, and net radiative forcing (W m-2).  ERBE estimates are in 

parentheses for middle month of the three-month cycle. 
 

 CSW CLW Cnet 
JJA -42.1 (-46.4) 24.4 (30) -17.6 (-16.4) 
SON -44.0 (-45.2) 24.5 (32) -19.4 (-17.4) 
DJF -44.6 (-44.6 22.2 (30.6) -22.4 (-21.3) 
MAM -44.7 (-44.7) 25.2 (31.3) -19.5 (-13.2) 

 
Table 7.3 Contributions to flux effects by type. 

 
 Type 1 

high, thin 
Type 2 

high, thick 
Type 3 

mid, thin 
Type 4 

mid, thick 
Type 5 

low 
 

 
JJA DJF JJA DJF JJA DJF JJA DJF JJA DJF 

Sum 
Average

Ni 10.2 10.0 8.5 8.8 10.7 10.7 6.5 8.2 27.2 25.9 63.3 
OLF 6.5 6.3 8.4 8.8 4.8 4.9 2.4 2.4 3.5 3.5 25.8 
Albedo 1.2 1.1 4.1 4.2 1.1 1.0 2.7 3.0 5.8 5.6 14.9 
Net 2.4 2.3 -6.4 -7.5 1.4 0.8 -6.6 -8.5 -15.1 -18.2 -27.6 

 
 

7.4  Classification of Cloud Effects in Terms of Cloud Type 
 

Ockert-Bell and D. L. Hartmann (OBH), 1992: The effect of cloud type on earth's energy balance: 
results for selected regions, JGR, 86, 9739-9760. 

 
In this study, the effects of different cloud types, as defined by ISCCP are regressed with ERBE data. 

For convenience, a reduced cloud category was introduced (Fig. 7.5b) and the 1985/86 DJF and 1986 JJA 
distributions are also shown in Figs. 7.9a and b for reference. High cloud types occur preferentially where 
convection occurs in the tropics and in mid-latitude storm tracks. High thick clouds occur over a smaller 
portion of these areas than high thin clouds. Low clouds appear to be predominantly oceanic and most 
abundant in the eastern subtropical oceans where the SST is relatively low and the mean vertical motion 
is downward. Total cloud cover is greatest over the high-latitude ocean where stratus regimes are well 
developed and in regions of intense tropical convection. 

 
To isolate the contribution of each cloud type to the TOA ERB cloud flux effect, OBH uses a simple 

regression analysis of the form 
 

 
5

0
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Fig. 7.9a Geographic distributions of the cloud fraction as given by the categories of Fig. 7.5b for the 

JJA season of 1996.  Missing values occur where insolation is small. 
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Fig. 7.9b As in (a) but for DJF 1995/1996. 
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where R is the relevant flux quantity of interest (the net flux, OLR or albedo), Ni is the fractional cloud 
coverage by type i and ai is the coefficient of the regression. If this regression approximates the effect of 
cloud on radiation, its interpretation is as follows 
 

 
5

1
clear i i

i
R R

=

= + Δ¦ R N  (7.6) 

 
where Rclear = a0 is the radiation flux in the absence of clouds and ΔRi is the change in radiation associated 
with overcast cloud of type i. This interpretation does depend on how well the data fit this equation (e.g., 
if the scene is overcast most of the time it will be difficult to deduce the intercept a0). 
 

Figure 7.10a, b and c shows zonal average values of the OLR flux difference, the shortwave flux 
differences, and the net flux difference derived as the sum for all cloud types (i.e., the curves labeled 
ISCCP are the summation terms of Eqn. (7.6)) compared to the flux differences formed from ERBE data. 
ERBE values suffer in regions where persistent overcast conditions prevail and the differences between 
the two estimates tend to be greatest in these regions, particularly poleward of 60°S. 

 
The contributions by cloud type are more easily seen in Fig 7.11a, b and c. From these diagrams we 

note:  
 

• Highest clouds contribute most to the longwave flux effect (type 1 and 2 of Fig. 7.5b) although 
middle and low clouds contribute in high latitudes. 

• The largest effect on shortwave fluxes comes from thicker high clouds in the tropics and low 
clouds in mid-to-high latitudes. Optically thin clouds (type 1 and 3) contribute little. 

• The largest contributions to the net flux difference are provided by low clouds especially through 
their effect on solar radiation in the summer hemisphere. 

 
The flux differences by type are given in Table 7.3. The longwave effect is about 26 W m-2, some 5 

W m-2 lower than the ERBE value of 31 W m-2. The albedo effect is about 15% for both ISCCP and 
ERBE but the net flux of -27 W m-2 is more negative than the ERBE value by approximately 10 W m-2. 
 
7.5  Other Relations 
 
(a) SST 
 

The CLW provides a direct measure of the reduction of longwave radiation by absorption and emission 
of clouds in the atmosphere relative to clear skies. Figure 7.12a presents 12 months of CLW derived from 
ERBE data as a function of SST and compares the same flux quantity derived from the CSU GCM. The 
general behavior of CLW with SST appears to show two distinct regimes of behavior; in one regime, CLW 
decreases over much of the SST range varying from values of 40 W m-2 at Ts ≈ 273 K to about 0-10 W 
m-2 at Ts ≈ 300 K. The second regime occurs over water warmer than about 300 K, where CLW 
dramatically increases to values near 80 W m-2. This behavior is partly indicative of the increased 
cloudiness both equatorward and poleward of the subtropics, which are indicated on this diagram by the 
minimum in CLW, and partly a result of the changing macroscopic properties of clouds in these regions 
where cold deep clouds prevail over the warmer equatorial regions and give rise to the largest values in 
CLW. The comparison between the simulated relationship and that observed suggests that these two 
regimes are actually well simulated by the model although the magnitudes of CLW over the warm ocean 
regime are larger than observed and slightly smaller than observed over colder waters. Two possible 
sources for the discrepancy over the warmest SSTs may be related to specific assumptions in the model 
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regarding how clouds are treated. The assumption that anvil clouds radiate as a blackbody together with 
the assumption that clouds completely fill the grid box will exaggerate the model values of CLW over the 
warm SST regions. 

 

Fig. 7.10 Zonally averaged CLW, CSW, Cnet derived from the ERBE-ISCCP regression and compared to 
ERBE quantities. 
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a 

b 

c 

 
Fig. 7.11 Zonally averaged cloud radiative OLR (a) by cloud category and albedo difference (b), and 

(c) net flux differences. 
 

Figures 7.12b shows the January and July values of CSW as a function of SST. Values for each 
hemisphere are shown separately to highlight the complicated variation of CSW with SST. The solar fluxes 
reflected by the summer hemisphere clouds vary with SST in a way that resembles the two regimes noted 
for CLW, except that CSW increases from about -150 W m-2 for the colder SST's (and thus at higher 
latitudes) due to the reflection from the summertime clouds located in the mid- to high-latitude storm 
tracks. CSW increases to near zero over the subtropics, followed by a sharp decrease associated with the 
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bright clouds of the warmer equatorial oceans. The behavior of CSW in the winter hemisphere poleward of 
the subtropics differs from that just described for the summer hemisphere. In the former case, the 
variation of CSW with SST is a result of the product of two factors that have opposing variations with 
latitude; one is the decreasing insolation and the other is the increasing albedo with increasing latitude. 
The latter, in turn, is a result of both increasing cloudiness poleward of the subtropics and the decreasing 
solar elevation with increasing latitude. Both factors contribute to an increase in the albedo, of cloud from 
the subtropics to mid-latitudes as we show below. The two factors, that of an increased albedo and that of 
a decreasing solar flux, combine to produce a variation in CSW that starts near zero for clouds at high 
latitudes and decreases to a minimum of -50 W m-2 at approximately Ts = 293 K, followed by an increase 
towards zero and then a rapid fall off with increasing SST, similar to that noted for the summer 
hemisphere. 

 

 a 

a

b
b 

b

Fig. 7.12 (a) CLW as a function of SST.  (b) January and July CSW as a function of SST.  (c) Same as for 
(b) but albedo (Δα = 4CSW/Q

�
) as a function of SST.  Lines indicate CSU GCM model 

results. 
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Figure 7.12c presents January and July values of Δα as a function of SST. The remarkable feature of 
these diagrams is how the different hemispheric behavior of CSW maps onto one broad and apparently 
well-defined relationship. The albedo parameter Δα has a minimum over the subtropics where there is a 
minimum in cloudiness and increases both equatorward and poleward of these clear sky regions. The 
SST-Δα relationships obtained from the GCM are also given on these diagrams for comparison. The 
model behavior of Δα with SST broadly follows the observed behavior, although there are significant 
differences between the two sets of data. The cloud albedo predicted by the model exceeds that observed 
in the equatorial warm ocean regions but is much too low for the mid-latitude clouds over regions 
characterized by Ts < 285 K. These features may be due to poorly modeled cloud amount, poorly 
specified cloud albedo, or a combination of both (note that Δα is a hybrid of both factors). Comparisons 
conducted by Harshvardhan et al. (1989) between the total cloudiness of the model versus the ISCCP total 
cloudiness reveals that the model tends to overpredict cloudiness in the subtropics (hence the larger 
values of Δα at temperatures near 300 K), slightly underpredicts the total cloudiness in the equatorial 
regions and greatly overestimates the cloudiness in the summer mid-latitudes. This suggests modeling 
problems both with the parameterization of cloud albedo in the equatorial region and with estimating the 
effect of cloud amount on the subtropics and higher latitudes on albedo. 

 
(b) Relation to Liquid Water 
 

We will learn later the importance of the cloud water (and ice path) to the bulk radiative effects in 
clouds. In fact, it is shown that the liquid and ice water paths are directly related to the cloud optical 
depth. Global cloud liquid water information is presently derived from the microwave radiance data 
obtained from the SSMI operational instrument (e.g., Greenwald et al., 1993). From these data, we hope 
to establish a better understanding of the links between liquid water path, temperature and radiative 
properties of clouds. For example, Fig. 7.13a presents the results of the correlation between LWP and 
atmospheric temperature much in the way cloud optical depth and temperature were correlated in the 
study of Tselioudis et al. (1992). Figure 7.13a presents the parameter 
 

 
lnd Wf
T

=  (7.7) 

 
derived from gridded LWP data. The clouds used to define this parameter correspond to ISCCP defined 
low clouds and the liquid water is correlated with the mean temperature of the surface—680 hPa layer, 
which crudely approximates the cloud temperature. These data apply to the region from 60°N to 60°S and 
show that in the warmest regions of the globe a decrease in W is correlated with an increase of 
temperature. This result is similar to the optical depth sensitivities deduced by Tselioudis et al. (1992) 
who argue that specific regional changes in the optical depth-temperature correlation is more complex 
than one simply defined by thermodynamical considerations. 
 

The relationship between LWP and cloud albedo can be examined using global SSM/I information 
and cloud albedo available from ERBE. While this is an important task, it has been difficult to find 
enough coincident data to carry out correlations between albedo and LWP—a problem that will be 
rectified with the launch of NASA's Tropical Rainfall Measurement Mission (TRMM) in 1997. 
Nevertheless a limited match of SSM/I and ERBE was presented in the study of Greenwald et al. (1995) 
in which the albedo of low overcast clouds as determined by ISCCP is presented as a function of LWP 
(Fig. 7.13b). The curves shown represent relations derived from theory assuming different values of re. 
Possible reasons for differences between theory and observation as shown need to be explored and 
explanations vary from biases introduced in sampling the different data to macroscopic effects that 
dramatically alter the intrinsic relationship between albedo and LWP. 
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a b

 
Fig. 7.13  (a) Global observations between f versus temperature (C) of the atmospheric layer between 

the surface and 680 hPa. Observations using composite ISCCP and microwave liquid water 
are given by symbols and the light shading indicates the range of the relationship derived 
from adiabatic assumptions for clouds of varying thickness and height. (b) Scatter diagram of 
the instantaneous albedo measurements from ERBs at a solar zenith angle of 75° versus 
coincident SSM/I LWP data for low clouds over the Northern Pacific and Atlantic during 
June and July 1988. Also shown are relationships based on parameterized theory for differ-
ent values of re (Greenwald et al., 1995). 

 
(c) Net Radiation and Reciprocity 
 

One of the curiosities of the flux difference analyses post ERBE is the near reciprocity between 
longwave and shortwave effects over the tropics. We can begin to explore this reciprocity in the following 
way. Consider the following 

 

 
/// d

dC
d

dC
d

dC LWSWnet +=  (7.8) 

 
where / is some unspecified cloud parameter. To help fix ideas, we might think of / as the cloud liquid 
water path W or cloud fraction N or some combination of these such that some given increase in this 
parameter leads to more negative values of CSW and larger values of CLW. For example, Fig. 7.14a presents 
a scatter plot of Cnet as a function of satellite liquid water path for the mid-latitudes and tropics. 
 

The results for the two regions appear to be fundamentally different with an apparent change in sign 
if rearrange Eqn. (7.8) to obtain 
 

 1.net SW
f

LW LW

dC dCC
dC dC

= = +  (7.9) 

 
In this expression, dCSW/dCLW is the change in CSW with respect to CLW. Over ocean regions it is 
reasonable to suppose that these changes arise primarily from large-scale changes in cloudiness and 
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perhaps large-scale changes in cloud water. The interpretation of the right-hand side of Eqn. (7.9) is as 
follows, 
 

  
0 greenhouse effect dominates,
0 greenhouse and albedo effects cancel,
0 albedo effect dominates.

fC

>­
°

= ®
°<¯

 

 
Fig. 7.14 (a) Scatter diagram of an annual composite of Cnet versus W for the tropics (filled squares) 

and mid latitudes (open squares) using the Nimbus-7 ERB flux data.  (b) Scatter diagram of 
CSW versus CLW for the tropics (filled squares) and mid latitudes (open squares) using the 
Nimbus-7 ERB flux data.  The negative correlation indicates the general reciprocoal 
influence of clouds on the shortwave and longwave components of the ERB.  (c) Scatter 
diagram of Cnet and CLW for the same data used in (a).  The slope of a linear correlation 
between these flux quantities defines Cf and estimates of Cf are given. 
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An estimate of Cf may be obtained from plots of Cnet and CLW data presented in the manner shown in 
Figs. 7.14b and c. The negative correlation of CSW and CLW is indicative of the reciprocity of cloud effects 
on the ERB. The results indicate that a given change in CLW (the greenhouse effect) is associated with a 
change in CSW (the albedo effect) that is smaller for tropical clouds than observed for mid-latitude clouds. 
From the slope of the relationship between Cnet and CLW of Fig. 7.14c we deduce a value of Cf and 
therefore establish the combined impact of the greenhouse and albedo effects of clouds on the net 
radiation budget. We estimate Cf = 0.23 for tropical clouds, indicating that a change in the greenhouse 
effect is more dominant than the compensating change in albedo effect although the results are scattered 
and shows largely a reciprocity. On the other hand, Cf ≈ -2 for mid-latitude clouds, which implies that the 
albedo changes dominate the net radiation balance. The result of Fig. 7.14c is consistent with the notion 
that the differences in the response of the ERB to tropical clouds versus mid-latitude clouds relates to the 
differences in the ERB attributed to large-scale changes in cloud liquid water. The greenhouse changes 
associated with changes in LWP cannot be completely neglected as previous cloud water feedback studies 
have assumed (e.g., Sommerville and Remer, 1984; Paltridge, 1980, and others). 
 
7.6  Clouds and the Surface and Atmospheric Budget 
 

Although the net radiative effect of clouds at the top of the atmosphere is small throughout most of 
the low latitudes (e.g., 7.15a and b), the partitioning of this effect between the atmosphere and the surface 
is both large in magnitude and opposite of sign. This is evident in the model results presented in Figs. 
7.15c and d which show the distributions of the net flux differences within the atmosphere (this will be 
referred to as the atmospheric cloud radiative forcing, ACRF) and at the surface (the surface cloud 
radiative forcing) for the same GCM climate model simulations used to produce the TOA distributions 
presented in Fig. 7.15b. These simulations show how clouds radiatively heat the atmospheric column 
(relative to the clear sky) and how this heating is largely compensated by a cooling at the surface (e.g., 
Slingo and Slingo, 1988). The heating of the atmosphere by clouds is important for a number of reasons. 
The location of the maximum heating of the ACRF coincides with the maximum of deep convection and 
convective heating. The coupling of these different forms of heating and feedbacks between them are 
mentioned in more detail below. 

 
Estimating the proportional effect of clouds on the radiative balance of the atmosphere and surface is 

crucial for understanding links between clouds and other components of the climate system. For instance, 
both the heating of the atmosphere and the cooling at the Earth's surface (specifically the ocean) by clouds 
are key elements of hypothesized cloud-climate feedback mechanisms (Randall et al., 1989; Ramanathan 
and Collins, 1992). Unfortunately, there are no measurements to confirm model simulations of the par-
titioning of the cloud radiative forcing between the atmosphere and the surface and it is clear that more 
detailed information about the surface radiation budget is required to do this. 
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Fig. 7.15 Net cloud-radiative forcing for July 1988 (all numbers are in W m-2).  (a) The TOA forcing 

derived from ERBE.  (b) A GCM model comparison.  (c) The forcing derived from model 
simulations for the atmosphere, and (d) surface. 
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AT622 Section 8 
Elementary Molecular Spectroscopy 
 

The aim of this section is to build up some understanding of how gases absorb, why only certain 
gases absorb and what dictates where they absorb in the atmospheric absorption spectrum. 

 
References 
Chapter 3: Remote Sensing Notes 
Chapters 3, 4, and 5: Goody and Yung 
Selected reference cited in notes. 

 

8.1 Atomic Absorption 
 

In 1752 Thomas Melville studied the color of flames using a prism and found that the spectrum is not 
continuous like the spectrum of the sun or the radiation emitted by a blackbody. From this historical 
perspective we learned that the interaction of radiation with certain gases produce not a continuous 
spectrum like the emission spectrum but a discrete spectrum. 

 
The realization that the bright line spectra of vaporized elements match the dark lines in the solar 

spectra (Fig. 8.1) was the key to understanding the quantum nature of matter. The basic explanation was 
forwarded by Bohr who perceived an orbital model of atoms (Fig. 8.2). Electrons falling from one level to 
a lower level give rise to emission of photons 

Fig. 8.1  The bright line spectrum of the vaporized element iron is shown with the spectrum of the sun. 
The wavelength regions are from 300 µm to 330 µm, in the ultraviolet. The solar spectrum is 
in the center of each strip, and the iron spectrum is above and below it. The bright lines of 
iron occur at the same wavelengths as some of the dark lines in the solar spectrum. 
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hv = E2  – El = ΔE                    (8.1) 
 

• Thus absorption occurs when an electron jumps from level 1→2 (line absorption spectrum). 
• Emission occurs when an electron falls from level 2→1 (emission spectrum). 

 

 
Fig. 8.2 Energy levels of the hydrogen atoms according to the Bohr theory.  The first six levels are 

shown and drawn to scale.  Level 1 is the atoms’ ground state.  Light is emitted whenever the 
atoms make a transition from a higher state to a lower one, and the frequency of light is 
proportional to the energy difference.  Higher levels are closer together.  The line labeled 
infinity (∞) represents the energy the electron would have if it became barely free; that is, 
just able to escape from the nucleus. 

 
 

The atomic line spectrum is defined by internal energy states of atoms. The molecular line spectra are 
defined by the same plus the dynamic properties of the internal motions (such as vibrations and rotations). 
What determines whether a particular molecule absorbs radiation depends on, among other things, the 
way atoms are bonded and the geometry of the molecule. 

 
The prevalent type of bonding is the covalent bond—viewed as a sharing of electrons. Certain 

molecules, like H2O (Fig. 8.3) have a structure that naturally produces a dipole moment owing to the 
geometric configuration of the molecule that creates an asymmetry in the charge distribution that arises 
through this bonding. Molecules, like H2O, that possess a permanent dipole moment are called polar 
molecules. Homonuclear molecules like N2, O2, and H2 are homopolar as they do not possess a permanent 
p
&

. So too is CO2.  Homonuclear and homopolar molecules are not active absorbers in the IR region.  An 
exception is pressure-induced absorption (e.g., in the atmosphere of Saturn).  Polar molecules are 
radiatively active—the charge separation leads to oscillating charges, which according to EM theory 
produces an EM wave. 
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Molecule p, m C 
HCl 3.43 × 10-30 
HBr 2.60 × 10-30 
HI 1.26 × 10-30 
CO 0.40 × 10-30 
H2O 6.20 × 10-30 
H2S 5.30 × 10-30 
SO2 5.30 × 10-30 
NH3 5.00 × 10-30 
C2H3OH 3.66 × 10-30 

Molecules with sero dipole moment include: 
CO2, H2, CH4 (methane), C2H4 (ethane), and 
CCl4 (carbon tetrachloride). 

 
 
 

 
Fig. 8.3 Schematic of atomic configuration and electronic orbitals for water molecule, with oxygen 

atom at center and hydrogen atoms at an angle of 105°.  Dipolar character comes from 
protons at H+ positions and unshared electrons at e- locations; the direction of the dipole 
moment is along the symmetry axis.  The atoms and the electronic orbitals have tetrahedral 
symmetry.  The table to the right lists the dipole moment for selected molecules. 

 
8.2  Molecular Absorption Spectra 
 

The absorption spectrum of a molecule is substantially more complex than that of an atom. Not only 
are transitions possible between the energy states of the atoms that make up the molecule, but also 
transitions occur between energy states associated with movements of the atoms themselves. 

 
Since the energy required to induce a transition from a lower to a higher state is inversely 

proportional to the wavelength of the photon, the types of mechanisms that induce absorption also depend 
on the wavelength of the absorbed photon. These mechanisms must induce either a magnetic or an electric 
effect, which can be influenced by electromagnetic radiation. Mechanisms responding fastest occur at the 
shortest wavelengths whereas the more sluggish mechanisms produce absorption at longer wavelengths. 
We can use this wavelength dependence as a convenient classification of the absorption mechanisms as 
shown in Fig. 8.4, although the dividing boundaries are by no means precise.  

 
• In the radio frequency regime, the absorption is associated with the nucleons and electrons, which 

we consider to be tiny charged particles that spin, producing tiny magnetic dipoles. The reversal 
of this dipole due to spin reversal interacts with the magnetic field at frequencies in the range 3 x 
106 to 3 x 1010 Hz.  

 
• In the visible and ultraviolet region excitation of valence electrons results in moving electric 

charges in the molecule. Changes in the electric dipole give rise to a spectrum by its interaction 
with the oscillating electric field of radiation. These electronic transitions occur within the 
individual atoms of molecules and dominate the visible and ultraviolet portions of the 
electromagnetic spectrum. At even shorter wavelengths, photons can actually disrupt the 
absorbing molecule by photodissociation or even produce photoionization of individual atoms.  

 
• Absorption by molecules in the mid and near infrared occur by vibration (although a mixture of 

vibrations and rotations are usually induced at these frequencies). Induction of vibrations requires 
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more energy than rotations and thus takes place at higher frequencies of infrared wavelengths 
between about 0.7 µm and about 20 µm. 

 

 
Fig. 8.4 The electromagnetic spectrum and the possible types of interactions between photons and a 

molecule or atom (Bandwell, 1983). 
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• In the microwave and far infrared, the molecule undergoes a rotation like that depicted in Fig. 
8.5a and the component of the dipole in a given direction fluctuates in a regular fashion as shown 
in the lower part of Fig. 8.5a. These fluctuations are more sluggish than are the fluctuations 
associated with vibrations or the fluctuations associated with electronic transitions. Rotational 
lines generally occur in bands at the longer infrared wavelengths beyond about 20 µm extending 
into the microwave spectral region where individual rotational lines can be resolved. 

 
As a consequence of the vibrational-rotational transitions, absorption lines are spread into bands 

containing many lines (as illustrated in Fig. 8.5b), which are used, either individually or as a group, to 
fingerprint molecules in the same way that atomic spectral lines fingerprint atoms. It is the vibrational-
rotational absorption spectrum of molecules that is largely of interest to topics discussed in these notes. 

 
Fig. 8.5 (a) The rotation of a simple diatomic molecule showing the fluctuation in the dipole moment 

measured in a particular direction (Bandwell, 1983).  (b) Molecular absorption spectra 
actually consist of closely spaced lines due to rotational and vibrational transitions.  J and v 
refer to the quantum numbers associated with the rotational and vibrational transitions, 
respectively.  This diagram shows how these transitions are superimposed on electronic 
states. 
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8.3 Simple Model Analogs of Vibrating and Rotating Molecules 
 

Despite the complexity of the absorption processes within molecules, we can begin to understand 
their spectra by drawing on results from simple mechanical analogs to vibrating and rotating molecules. 
 

(a) Simple Model of Rigid Rotators 
 

Consider a simple diatomic molecule (Fig. 8.6), with the moment of inertia 
 
 2 2

1 1 2 2 ,I m r m r= +  
 
and the center of mass 

 
  1 1 2 2 .m r m r=

 
Thus 
 

 21 2
1 2

1 2

( )m mI r r
m m

= +
+

 

 
or 

 
 2I m r!=  
  
where m' is the reduced mass of the molecule and r is the distance between the two atoms. Quantum 
mechanics tells us that the angular momentum is !)1( +== KKIwL  where K is the rotational 
quantum number (K = 0,1,2,...). As noted above, only molecules with electric dipole moments (e.g., 
HCL) can interact with electromagnetic photons. The energy of a rigid rotator is 

 

 .
2

)1(
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Fig. 8.6  A diatomic molecule that rotates and vibrates about its center of mass. 
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Thus, since 
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Thus, the energy levels predicted for a diatomic molecule give rise to equally spaced absorption lines 

spaced 
I

v
π2
!

≈Δ  apart (Fig. 8.7).  
I

B
π2
!

=  is a basic quantity of the molecule known as the rotational 

constant. 

Iπ2
!

ΔK=-1 ΔK=+1 

v

(a) 

(b)

vr

 
Fig. 8.7  (a) Energy levels and rotation spectrum of diatomic molecule. (b) Vibration-rotation spectra 

of a hypothetical diatomic molecule. 
 

Note that: 
 
• v → (I)-1.  If we assume a value of r that is similar for all diatomic molecules, then the v spectra is 

largely determined by the mass distribution within molecules. For typical molecules (H2O), vrotation 
≥ 20 µm. 
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From Eqn. (8.2) the moment of inertia of a molecule can be deduced from its rotational spectra and, 

since the masses of its constituent atoms are known, the interatomic separation r can be calculated. 

 

Rotational molecules are generally specified in terms of its three principal moments of inertia 

• Linear molecules: CO2, N2O, C2H2… 

•  Symmetric to p molecules: NH3, CH3Cl, CF3C1, nonlinear with I1 = I2, I3 different 

• Spherical symmetric top: (methane) I1 = I2 = I3 

• Asymmetric top: H2O, O3 - all three moments of inertia are different. Absorption spectra defined 

by three rotational constants = 

Iπ2
!

and three sets of rotational quantum numbers. 

 

(b) Elementary Discussion of Vibrating Molecules 

 

Excitation energy required to vibrate molecules is greater than that of rotation—so rotation always 

accompanies vibration. Vibration can be treated as a simple analogy to two masses attached to a spring, 

for which the restoring force related to some displacement about equilibrium is 

 

F = -k(r – re) 

 

For a harmonic oscillator, the frequency of the vibrating body is 

 

1

2

k
v

mπ
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"
 

 

Quantum theory predicts that the frequency of a harmonic oscillator is quantized such that 
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where v is the vibrational quantum number. 

 

The energy required for a vibrational transition is larger than that required for a rotational transition. 

Vibrations, however, are typically accompanied by rotations so the rotating molecule is not exactly like a 

rigid rotator. We learn from quantum mechanics however, that only certain types of vibrations and 

rotations are permitted together. These are defined by selection rules, which for the diatomic molecule (or 

a longitudinal polyatomic molecule like the carbon dioxide molecule), the transition Δν = ±1 occurs 

simultaneously with a ΔK = ±1 transition. This selection rule produces pairs of transitions of the form 

shown in Fig. 8.7b. As a rule, each vibrational transition frequency is split up into a series of spectral lines 

with mutual separations that approximately correspond to the respective rotational constant. In Fig. 8.7b, 

the vibrational transition from ν = 0 to ν = 1 is shown. Two branches of rotation lines result for this 

vibrational transition: one for ΔK = +1, which is referred to as the R branch and the other for ΔK = -1, the 

P branch. 

 

(c) Triatomic Molecules 

 

The rotational and vibrational absorption spectra of polyatomic molecules are much more complex 

than are the spectra of diatomic molecules owing to the higher degrees of freedom of both vibrational and 

rotational motions. The absorption spectra of the CO2 molecule are highly relevant to atmospheric remote 

sensing. The CO2 molecule vibrates in four different modes, two of which are energetically equivalent. 
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These modes are referred to as the symmetric stretch mode, the asymmetric stretch mode, and the bending 
mode, which has two equivalent modes of vibration. The dipole moment of the symmetric stretch mode is 
plainly zero throughout the whole motion (Fig. 8.8a) and this vibration is radiatively inactive. The 
asymmetric stretch produces a periodic alteration of the dipole moment and this mode is 'infrared active' 
as is the bending mode (Figs. 8.8b and c). The bending mode actually permits Δv = ±1, ΔK = 0 transitions. 
These transitions then produce a large absorption peak centered on the fundamental frequency of the 
oscillator. The absorption is strong at these frequencies due to the superposition of all Δv = 1 transitions 
between all available J-levels. This absorption is referred to as the Q branch. 

 
Another molecule of considerable importance to the study of the Earth's atmosphere is the H2O 

molecule. Since this molecule is not linearly arranged like the CO2 molecule, geometrically different 
modes of vibration and rotation occur. Figure 8.8d indicates the three modes of vibration of the water 
molecule. Superimposed on these three modes are the rotational modes around three axes of rotation. The 
spectra arising from the multiplicity of vibration-rotation transitions are accordingly complex producing 
absorption spectra that are more irregular in appearance. 
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(d) 

Fig. 8.8 (a) The symmetric stretching of a vibrating CO2 molecule.  (b) The asymmetric stretching of 
the CO2 molecule showing the fluctuating dipole moment.  (c) The bending motion of the 
carbon dioxide molecules and its associated dipole fluctuation (Bandwell, 1983).  (d) 
Vibrational modes of a water-vapor molecule. 
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8.4  The Absorption Coefficient 
 

Energy states of a molecule are more complicated in structure than of individual atoms. This arises 

from complicated motions of the atomic nuclei that make up the molecule. The electronic excitation to 

higher energy levels within the atoms of the molecule require much more energy and involve radiation in 

the shorter visible and UV. Superimposed on these electronic transitions are the vibration and rotation 

effects (Fig. 8.9 and Table 8.1). 

 

 
Fig. 8.9 Possible interactions between a molecule of atom and a photon.  The longer wavelength 

events, which involve less energy, are at the top.  Bands in molecular spectra actually consist 
of closely spaced lines due to rotational and vibrational transitions. 

 
Table 8.1 Typical energy differences and spectral ranges in electronic, vibrational, and rotational 

transitions. 
 

Transition 

ΔW 

[eV] 

v = ΔW/h 
[Hz] 

Spectral range 

Electronic 10 2.4 × 10

15 

Ultraviolet and visible 

Vibration 10

-1 

2.4 × 10

13

 Infrared 

Rotation 10

-3 

2.4 × 10

11

 Millimeter waves 

 
 

The absorption spectra are characterized in terms of the absorption coefficient kv . For an absorption 

line, kv is characterized by its 

 

• spectral position vo, (and is determined by the factors already considered) 
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•  strength S (or effectiveness of absorber) 
•  shape f (v – vo) (spectral "fine structure").  
 
That is 

 
kv = Sf(v – vo)              (8.3) 

 
where the shape factor 
 

 ( )o 1f v v dv
∞

−∞
− =³  

 
by definition. We now consider the latter two factors in more detail. 
 
(a) Line Strength 
 

This is a product of two distinct factors 
 
• probability that a single isolated molecule in its lower state will absorb a photon (cross section σ) 
• relative population of lower and upper states 
 
Thus 
 

S = σ (n - nu)/ntotal 
 

The relative populations are determined by Boltzman's distribution (and hence are a function of 
temperature) according to e-ΔE/KT.  (This is not true in the mesosphere where a "breakdown" of local 
thermodynamic equilibrium occurs). Here, ΔE is the energy associated with a particular v and K 
transition. The effect of this factor on the absorption spectrum occurs in the following way: 

 
• Since ΔE is proportional to K + 1 for rotational lines, the line intensities are largest (i.e., 

absorption strongest) near the shortest wavelengths of each band. The important feature is the 
absorption line strength is temperature dependent owing to the temperature effects on population. 

 
(b)  Line Shape 

 
Lines are not sharp but "fuzzy". Three main mechanisms for broadening lines are 

 
• Natural broadening 
 

The energy level can only be defined within the uncertainty ΔE defined according to 
 

ΔEΔt ≤ h/2π 
 

 1
2 4 N
v

t
σ

π
= =

Δ
                  (8.4a) 

 
If we take the mean lifetime in the upper state of molecules as indicative of Δt, then we can derive 
an estimate of σN typically (~3 × 10-11 cm-1), which is negligible for absorptions in the 
troposphere and stratosphere.  
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• Doppler broadening 
 

Line broadening can occur through the motion of the molecules in the earth's atmosphere as 
they move about in random directions. The probability that molecules in a gas at temperature T 
possesses a velocity v is given by the Maxwellian distribution exp[-mmν2/2kT] where mm is the 
molecular mass. 
 

The shift in frequency due to such motion is 
   

 oo v
c

vvv
ν

±=Δ=−  

 
and the distribution of Doppler shifts follows as 

  

 2 21( ) exp( ( ) /D o o

D

f v v v v α
α π

− = − − )D  (8.4b) 

 

where αD is the Doppler half width 2
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Drawn for
αD = αL 

(b)(a) 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8.10  (a) Typical width of Doppler broadened lines of light molecules at room temperature as a 

function of the respective center frequency. (b) Lorenz and Doppler line shapes from 
approximately equal half-widths and intensities. The corresponding Voigt profile is also 
shown. 
 
For CO2 and IR wavelengths, αD  ~7 × 10-4 cm-1.  Doppler broadening is mainly important in 

the stratosphere and above. Accurate measurements of line width at low pressures allow 
deduction of T (through T1/2 dependence). 
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• Pressure broadening 

 

The third line broadening mechanism, and the one most relevant to our interests is through 

the effects of collisions (collision/pressure broadening). No precise model of this collision exists 

(the 'many' bodied problem).  So simple conceptual models of collisions are employed. One 

model is to treat the collision as a discontinuity in the phase of the EM wave. These phase shifts 

are modeled as randomly occurring between 0, 2π and the period of collision is considered small 

compared to the period associated with passage of one wavelength. 

 

 

 Before Collision 

Radiation emitted by a molecule before and 
after collision. 

After Collision 

 

 

 

 

 

 

 

 

 

 

The simplest and most successful treatment of this broadening is that of Lorenz 
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for which tL πα
2

1
=  ( t  = mean time between collisions, i.e., the more the collisions the broader 

the line). It follows that 
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For example Ps = 1000 mb, Ts = 273, αL ranges between 0.005 - 0.11 cm
-1

. 

 

Lorenz width is proportional to pressure (this is well confirmed by measurements). 

Dependence on T is less important and less well understood. Pressure dependence of absorption is 

of fundamental importance. 

 

Some issues are: 

 

• Line width is a function of type of colliding molecule (mostly N2).  Self-broadened lines 

(e.g., H2O → H2O) are broader than foreign-broadened lines (N2 → H2O) 

 
• A fundamental problem is in the wings of Lorenz lines—extended wings are important to 

transparent regions of the spectrum (windows). Departures from Lorenz line shapes 

(super and sub Lorenzian) in the extended wings are virtually impossible to measure and 

a major source of uncertainty. In the far wings v – vo >> αL and 
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• Example of the significance of p effect on line shape: intuitive description of weighting 

functions that are relevant to topics of remote sensing profiles of temperature and certain 
species. 

 

 
Fig. 8.11  Approximate relationship between atmospheric height h and line width for a microwave line 

of O2 and an infrared line of CO2 (idealized isothermal atmosphere and equal Δvo values for 
O2 and CO2 are assumed). 

 

 

Fig. 8.12  (a) The atmospheric pressure as a function of the height. (b) The line shapes at three different 
height levels and filter positions. 
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8.5  Problems 
 
Problem 8.1 
 

The wavelength of radiation absorbed during a particular spectroscopic transition is observed to be 10 
µm. Express this in frequency (Hz) and in wavenumber (cm-1) and calculate the energy change during the 
transition in both joules per molecule and joules per mole. If the energy were twice as large, what 
would be the wavelength of the corresponding radiation? Hint: Planck's constant has the value h = 
6.63 x 10-24 joules⋅s⋅molecule-1.  Avagadro's number N = 6.02 x 1023 mol-1. 

 
Problem 8.2 
 

The rotational spectrum of 79Br19F shows a series of equidistant lines spaced 0.71433 cm-1 apart. 
Calculate the rotational constant B and hence the moment of inertia and the bond length of the 
molecule. Determine the wavenumber of the J = 9 → J = 10 transition. 

 
Problem 8.3 
 

Using your answers to Problem 8.2, calculate the number of revolutions per second that a BrF 
molecule undergoes when in (a) the J = 0 state, (b) the J = 1 state. [Hint: Use (3.9) but remember that 
w is in radians per second.] 

 
Problem 8.4 
 

The masses of the H, Cl, C, and O atoms are 1.6 x 10-27 kg, 58.8 x 10-27 kg, 20 x 10-27 kg, and 
26.5 X 10-27 kg, respectively. 

 
(a) Calculate the reduced masses of the HCl and CO molecule. 

 
(b) If the spring constants of the HCl and CO molecules are 4.78 and 1907 kgs-2, respectively, 

determine the wavelength of the vibrational transition 0 → 1. 
 

Problem 8.5 
 

Derive a relationship between the central frequency vo of a line and the pressure (in atmospheres) 
at which the half-widths of a Lorenz line and a Doppler line are the same. Estimate this pressure for a 
CO2 and O2 molecule for the frequencies and temperature used to produce the curves shown in Fig. 
8.11b. Assume the reference value of the Lorenz half-width at the ground is that given in Fig. 811b. 
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AT622 Section 9 
Models of Transmission 
 

The aim of this section is to introduce popular techniques used to model transmission through an 
absorbing layer of gas. We have already seen how the mathematical description of absorption by the 
gases of the atmosphere can be formulated in terms of transmission functions (Section 4). There are 
several types of transmission functions that must be learned and the connections to one another 
understood. The ultimate purpose, however is to be able to characterize the transmission averaged over 
many absorption lines (band transmission). Connections between different forms of transmission 
functions are shown in Fig. 9.1. There are transmission functions that apply to the transmission of 
intensity and the transmission of flux. Transmission can either be monochromatic (i.e., at a single 
wavelength) or broadband (i.e., an average over a band of several wavelengths), which is one of the goals 
of this section. These functions can either apply to homogeneous paths (i.e., applies to uniform path of 
fixed p and T such as encountered in the laboratory measurements) or to heterogeneous paths of varying p 
and T (such as in the atmosphere). We will see that the transformation from intensity to flux transmission 
is largely trivial and we will spend the most time discussing broadband transmission models and how we 
treat absorption along variable p and T paths. 

 
 Molecular Spectroscopy
 
 
 
 
 
 
 

Absorption Line:  Centers, 
Widths, Strengths 
 
Pressure and Temperature 
Dependence 

 
 
 

Band Models 
 

x� Statistical treatment 
of lines 

x�Distribution of 
strengths and centers 

x�Neglect variations in 
line shape 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9.1 Connections between different forms of transmission functions. 
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9.1 Basic Definition of Transmission Functions 
 

The exchange of radiation with the gases of the atmosphere is described in terms of a transmission 
function. The concept of transmission follows directly from Lambert's law of extinction. 
 

dIQ = �kQIQds                (9.1) 
 
where kQ is the absorption coefficient (here we consider only absorption and ignore scattering), IQ the 
intensity of the radiation field, and ds is some measure of path, defined such that the quantity 

 
dWQ  =  kQds 

 
is unitless. Solution of Eqn. (9.1) gives 
 

QW
QQQQ WW �  eII )0()(               (9.2) 

 
where 

 

Q
W

Q
Q �, �  � 1e               (9.3) 

 
is the monochromatic "transmission" function and AQ is the monochromatic absorption. Since the re-
lationship between absorption and transmission is trivial, we will develop our models in terms of either 
absorption or transmission. 
 

The absorption coefficient (and for that matter the scattering coefficient) can be defined in a number 
of different ways according to how we measure the amount of matter along the path. Table 9.1 gives four 
more commonly used quantities together with the specification of the amount of matter. Note again that 
the product of extinction coefficient and amount of matter is unitless. 

 
Table 9.1 provides the conversion factors between the different forms of extinction coefficient (read 

extinction here as absorption). With volume extinction, the computations use distance as the independent 
variable. This is generally only used in calculations involving particle absorption (and scattering). For 
gases, the path length is usually defined in a way that reflects gaseous density and it is more convenient to 
use one of the other forms. Of these, es is the most popular choice by many spectroscopists and thus we 
see the path lengths per centimeter at STP often used in empirical transmission formulas like those 
presented later. 
 

Table 9.1  Dimensions and conversion factors for extinction coefficientsa. 
Symbol eQ em en es
Name Volume e.c. Mass e.c. Molecular e.c. e.c. per 

cm s.t.p. 
Dimensions cm-1 g-1 cm2 cm2 cm-1

eV  1 U-1 n-1 ns/n 

em  U 1 m Us
en  n m-1 1 ns
es  n/ns

1�
sU  1�

sn  1 

     a U = density of absorbing gas (g cm-3)     ns = molecular no. density at s.t.p. (Loschmidt no., cm-3) 
       Us = density of absorbing gas at s.t.p. (g cm-3)   m = molecular mass (g) 
       n  = molecular number density (cm-3) 
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Example 9.1: Two specific examples of conversion highlight the advantage of en and 
the number of molecules per centimeter as the measure of attenuation gas over the 
other combinations. From Table 9.1 we deduce that 
 

,gcm
1024.2

STPat  gas of cm 1 2
4

�

u
 

M  

 
where M is the molecular weight of the gas 
 

1 cm � STP = 2.69 u 1019 molecules cm-2. 
 
The above expression is valid for all gases. It follows from these two examples that 
for water vapor 

1g cm-2 (H2O) = 3.34 u 1022 molecules cm-2. 
 
Thus, the unit “molecule cm-2” is independent of the nature of the absorbing gas and 
basic to all gases and offers a way of unifying absorber concentration units for all 
atmospheric constituents. 
 
Despite this benefit, absorption by gases is often expressed in terms of the mass 
absorption coefficient. For this case, the path element is expressed as  
 

du = Ugds 
 
and in terms of the mixing ratio (mass) 
 

r = Ug/Uair 

 

du = rUairds 
 
For vertical paths (together with the hydrostatic approximation), it follows that 

 

³³   
1

2

2

1

1),( 21

p

p

z

z air rdp
g

dzrzzu U          (9.4) 

 
This is a formula that should be learned and its derivation understood. 
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Example 9.2: Water vapor and sea surface temperature. Develop a relationship 
between the vertically integrated water vapor path through the entire vertical extent 
of the atmosphere (precipitable water) and the sea surface temperature. Assume 
 

(a) the vertical profile of specific humidity (expressed in terms of mass mixing 
ratio) has the following form r(p) = rs(p/ps)O where rs is the surface mixing 
ratio. 

 
(b) the saturation vapor pressure at the surface is  such that  )]([ os TTa

s bee �|
rs | rh0.622es/ps. 

 
Derive your answer in terms of the surface relative humidity, O and the SST. 
 
Answer: The column path follows from Eqn. (9.4) as 
 

³� 
s

os
p

s
TTa

s

dpppbe
gp
rh

u
0

)]([ )/( O  

 
or 
 

)(

)1(
622.0 os TTae

g
rh

bu �
¸̧
¹

·
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©
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O

 

 

 
 
 
9.2  From Intensity (Beam) to Flux (Diffuse) Transmission  
 

Transmission along a slant path s1 o s2 

 

),,(),( 21
/

21 P
P

zzess
dzkm ,,   ³  
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,r(zl, z2,,P) is referred to as the beam (or intensity) transmission function for the path defined by (z1,z2,P).  
 

The flux transmission function is defined as (assume azimuthal symmetry) 
 

³³ 
1

0

1

0 2121 /),,(),( PPPPP ddzzTzzf,            (9.5) 

 
which is a P-weighted transmission function characterizing the transmission of the irradiance (flux) 
through the slab z1 o z2. 
 

As noted previously in section 4, we can write Eqn. (9.5) in the following way 
 

)],([2),( 21321 zzEzzf W ,              (9.6) 
 
where E3 (x) is the nth exponential integral 
 

³
f � 

1
/)( nx

n dexE KKK  

 
(K = 1/P, x = W). To a high degree of accuracy, 
 

xexE E�|)(2 3                (9.7) 
 
where E  = 1.66 (the so called diffusivity factor). Therefore, 
 

³�
 

kdu
f ezz

E
),( 21,               (9.8) 

 
The important point here is that the flux transmission can be modeled using the transmission for intensity 
with the path merely increased by the diffusivity factor E. Thus in developing theories for broadband 
functions, we will consider intensity transmission and note that broadband flux transmission is given by 
this transmission function with the introduction of this diffusivity function. 
 
9.3 Frequency Integrated Absorption of a Single Line 
 

Most problems of interest require spectrally integrated transmission (or equivalently absorption) func-
tions over a variety of spectral scales varying from the scale defined by the line half width to scales 
attached to broad spectral regions 10's-100's cm-1 wide. Before understanding how we can do this 
complicated integration, it is useful to study the heuristic properties of the integrated absorption of a 
single line. 
 
 The quantity of main interest is the monochromatic absorption as defined by the frequency integrated 
absorption, namely 
 

� �³ ³ ��� � � uSfuk oededuW )(1)1()( QQQQ Q          (9.9a) 

 
where u replaces s as a symbol of the measure of path. This absorption is called the equivalent width W(u) 
since it measures the width of Q units of a hypothetical square shaped line that gives the equivalent 
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integrated absorption. It is crucial to recognize that for the developments here and in the next section, the 
absorption parameters (such as line half width D and intensity S) are constant and independent of path). 
This is obviously unrealistic and we will discuss later how the results below can be modified to treat this 
added complexity. 
 
(a) Limits to the Integrated Absorption of a Single Line 

 
There are two extremely useful asymptotic limits of W(u) that occur repeatedly in discussion of 

molecular absorption. 
 
x� The weak line limit (linear limit) 
 

 
 

Fig. 9.2 Schematic interpretation of the equivalent width. 
 
 

Suppose u o 0, Sf (Q)u << 1, then 
 

uSfe uSf )(1~)( QQ ��             (9.9b) 
 

and 
 

³   SudfSuW QQ )(             (9.10) 

 
which is valid no matter what the line shape. 

 

x� Strong line or square root limit: 
 

For this limit we consider the Lorenz line shape 
 

22)(
/

)(
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L
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SD
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��
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Suppose | Q�Qo | >> DL so that 
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1
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and 

 
.2)( LSuuW D                  (9.11) 

 
Conditions of strong absorption occur either as a result of abundant u absorber and/or high 
pressure (i.e., large DL). Weak absorption is sensitive to abundance. A physical interpretation of 
these limits is afforded by reference to Fig. 9.3. In the linear region absorption occurs at the 
center of the line. A point is reached where all the energy is removed from the line center so that 
as u increases, the absorption increases through the wings (strong region).  

 
Fig. 9.3 The physical interpretation of strong and weak line absorption. 

 
 
(b) Broadband Absorption by a Single Lorenz Line 
 

The equivalent width of a single Lorenzian line is expressed by the Ladenburg-Reiche function, 
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where 
L

Suy
SD2

 .  This can be usefully approximated by 
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        (9.11b) 

 
within 1% for all values of Su/DL..  Figure 9.3 (upper panel) provides a schematic demonstration of the 
strong and weak absorption and the L-R function. We call such plots 'the curve of growth' and these are 
fundamental to very important topics of atmospheric radiation.  
 
(b) Absorption by Lines with Distributed Line Intensities 
 

Here we consider the absorption averaged over lines that vary in intensities from line to line but not in 
their width and do not overlap in any way. Since the variation in line intensity over a band of thousands of 
lines is much more significant than is the variation of DL, this is a reasonable approximation. Furthermore, 
we will see how certain models of bands of overlapping lines reduce to this simple distribution of single 
lines. 

 
Figure 9.4 is a diagram of the line intensity distribution expressed as the function p(S) where p(S)dS is 

the fraction of lines having intensities between S and S + dS. There have been different models derived 
according to the assumed form of p(S)dS and we will now consider two specific examples: 

 

 
Fig. 9.4   A histogram (vertical bars) of all CO2 lines at wave numbers between 450 and 900 cm-1.  Each 

bar represents the number of lines in a given line group.  Lines with strengths within 20% of the 
mean strength of a given group are gathered into that group.  Analytic line-strength 
distributions obtained with the Goody (dotted line) and Malkmus (long-dashed line) models are 
also shown (after Crisp et al., 1986, with modifications). 

 
 

x� Goody (1952) 
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x� Malkmus (1967) 
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where V is the mean line intensity, 
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x� Malkmus 
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9.4  Overlapping Lines: Band Models 
 

It is obvious that over some interval 'Q, increasing the optical mass (u) cannot yield an increase in 
absorptance indefinitely if several overlapping lines are present in 'Q. Thus the square root formula must 
fail. Attempts have been made to modify single line absorption theory to include line overlap—but these 
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on the whole are not fruitful. More successful are the approaches adopted based on treating the array of 
lines as a statistical entity rather than as a group of individual lines. Models of this type are referred to as 
statistical band models. 
 
(a) Regular Model 
 

Elsasser, 1938: Mean absorption and equivalent absorption coefficient of a band spectrum. Phys. 
Rev., 54, 126-129. Goody and Yung, 4.5. This model is most closely met for P + R branches of linear 
molecules. 
 

¦
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L
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SGSQGSD

GSD
G

Q       (9.13) 

 
The corresponding transmission for homogeneous paths is 

   

³' �
'

 
Q

QQ
Q

duSfEE ])(exp[1
,  

 
where 'Q = 6. This integral cannot be solved in terms of elementary functions. 
  

Consider two limits 
 

x� fo
G
D L , sin h2S/G, cos h2SD/G o f and 

 
]/exp[ GSuE � ,  

 
Here lines strongly overlap and there is no line structure. Further increase of DL/G (i.e., pressure) 
has no effect on the continuum. Transmission is independent of line shape. 
  

x� sin h2SDL ~ 2SDL/G., cos 2SDL/G ~ 1 (small DL/S) 
 

� � 2
2,

2
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G
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©

§
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"
,       (9.14) 

 
where 

 

³   ) �x xdxex
0

integraly probabilit2)(
S

 

 
The agreement with observation for this model is excellent when applied to an appropriate 
absorber (Fig. 9.5). 

 
(b) Random Models (G + Y, p. 158) 
 

Whereas the application of a regular band model to molecular absorption in the atmosphere has 
limited  scope,  use of  random  band  models  has  been  far  more  widely  used  and  validated  against  
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Fig. 9.5  (a) Line shape for the Elsasser model (after Goody, 1964). (b) Comparison of transmission 

for purely exponential type (single line) and the Elsasser band model of regularly 
overlapping lines, (c) Measured and fitted transmissions for a CO absorption band. 

 
observations. One approach to the development of a random model is to take an infinite array (like the 
Elsasser model) and then combine a number of these arrays by multiplication. Consider for illustration a 
band of constant line intensity, then 
 

¦
 

 
N

i

ikk
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is the absorption coefficient at Q due to the superposition of N lines distributed randomly in the interval 
�NG/2 and NG/2 by lines located at Qi. The transmission is 
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If the probability that a single line lies in the interval dQi is dQi/G, then the joint probability that there are 
lines between Q1 and Q1 + dQ1, Q2 and Q2 + dQ2,, and so on is 
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N
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             (9.16) 

 
For all possible arrangements of lines in the interval 
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with some approximation (n o f) 
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This states that the transmission through a random array of lines equals the exponential of the mean 
absorption (W/G) 
 

Consider now M such arrays of random lines superimposed on one spectral interval MG wide, then 
 

]/exp[ GMWii � ,             (9.19) 
 
where Wi is the equivalent width of one line in the ‘ith’ array. Since transmission is exponential, 
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Now the average absorption W  was derived according to Eqns. (9.12a) and (9.12b) for Goody and 
Malkmus line intensity distribution. Thus: 
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        (9.21) 

 
Clearly lines are not randomly distributed (they are predicted by quantum mechanical formula) and so a 
random band model is just an approximation to the actual transmission by a band of overlapping lines. 
The viability of the model, however, can be tested against laboratory data—with very good agreement 
(Fig. 9.6). 
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Fig. 9.6  Comparison between the random model (full line and observation (points) for sections of the 

6.3 Pm, 2.7 Pm, 1.87 Pm, 1.38 Pm, and 1.1 Pm band of water vapor. The different symbols 
represent absorptions by different bands. 
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(c) Band Parameter Fits (G + Y, p. 158) 
 

The idea of a band model is to use Eqn. (9.21) to fit actual spectroscopic data to deduce the band pa-
rameters, namely DL, G, V. We will not discuss the actual methods by which band models are matched to 
observations to provide these parameters.  It suffices to state that this is done by fitting in the strong and 
weak limits of absorption, using Eqns. (9.18a) and (9.18b) in the form 
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where we define the w (weak) and s (strong) parameters as 
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Table 9.2 

 
Band Interval (cm-1) G/S  (cm2 g-1) SD/G 

H2O rotational  40-160 7210.30 0.182 
 160-280 6024.80 0.094 
 280-380 1614.10 0.081 
 380-500 139.03 0.080 
 500-600 21.64 0.068 
 600-720 2.919 0.060 
 720-800 0.386 0.059 
 800-900 0.0715 0.067 
CO2 15 Pm 582-752 718.7 0.448 
O3 9.6 Pm 1000.0-1006.5 6.99 u 102 5.0 
 1006.5-1013.0 1.40 u 102 5.0 
 1013.0-1019.5 2.79 u 103 5.0 
 1019.5-1026.0 4.66 u 103 5.5 
 1026.0-1032.5 5.11 u 103 5.8 
 1032.5-1039.0 3.72 u 103 8.0 
 1039.0-1045.5 2.57 u 103 6.1 
 1045.5-1052.0 6.05 u 103 8.4 
 1052.0-1058.5 7.69 u 103 8.3 
 1058.5-1065.0 2.79 u 103 6.7 
H2O 6.3 Pm 1200-1350 12.65 0.089 
 1350-1450 134.4 0.230 
 1450-1550 632.9 0.320 
 1550-1650 331.2 0.296 
 1650-1750 434.1 0.452 
 1750-1850 136.0 0.359 
 1850-1950 35.65 0.165 
 1950-2050 9.015 0.104 
 2050-2200 1.529 0.116 
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Fig. 9.7  Absorption in the spectral region from 4400-2800 cm-1 where CO2 and H2O overlap. 
 
 

Example 9.3: Transmission in the CO2-H2O overlap band. In the 15 Pm region, the 
transmission associated with two overlapped absorption bands has the form 
 

2222 COOHCOOH ,,, u �  
 
From the band parameters listed in Table 9.2, we have 

 
CO2  s/G  = 718.7  SD/G  = 0.448 
H2O  s/G   = 2.919 SD/G  = 0.06 

then 
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where uH2O and uCO2 are the respective path lengths of water vapor and carbon 
dioxide under consideration. A typical column value of water vapor (see Example 
9.2) is uH2O = 2.8 gcm-2 and a typical value of the column carbon dioxide path is uCO2 
= rsps/g | 44 u 330 u 101300/(980 u 29) = 0.5 gcm-2. These values together with E = 
1.66 lead to  

88 1068.2106.6406.0
22

��
� u uu COOH,  

and for double the amount of CO2, 
1111 1084.2100.7406.0

22

��
� u uu COOH,  

We conclude that the CO2 portion of the band is highly opaque and increases in this 
absorber only marginally reduce the already small transmission. 
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9.5 The Method of k Distribution 
 

The k-distribution method for transmission is based on grouping of the absorption coefficients kQ in 
some spectral interval (or band) (Fig. 9.8). In a homogeneous atmosphere, the spectral transmittance is 
independent of the ordering of k for a given spectral interval. Hence, the wave number integration may be 
replaced by an integration over the k space. If the normalized probability distribution function for kQ in the 
interval 'Q is given by f (k) and its minimum and maximum values are kmin and kmax , respectively, then 
the spectral transmittance may be expressed by 
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Fig. 9.8  The concept of the k-distribution approach.  Divide the plot into n horizontal slices, centered 

on values k1, k2,…, kn.  Fi denotes the area of the Q axis covered by points where 
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Moreover, a cumulative probability function may be defined in the form 
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)()(            (9.22) 

 
where g(0) = 0, g(k o f) = 1, and dg(k) = f(k)dk. By definition, g(k) is a monotonically increasing and 
smooth function in k space. By using the g function, the spectral transmittance can be written 
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Since g(k) is a smooth function in k space, the inverse will also be true here: that is, k(g) is a smooth 
function in g space. Consequently, the integration in g space, which replaces the tedious wave-number 
integration, can be evaluated by a finite and relatively small number of exponential terms. 
 

The steps to implementing the k-distribution approach are highlighted schematically in Fig. 9.9. 
Figure 9.9(a) shows the spectrum of kQ in a portion of the 9.6 Pm O3 band at a pressure of 30 mb and a 
temperature of 220 K. Figure 9.9(b) shows the probability distribution f(k) as a function of k derived 
from this spectrum (we will not discuss the details of how this is done although it is portrayed in Fig 9.8 
and discussed further in G+Y). In Fig. 9.9(c) the cumulative probability function g(k) is shown as a 
function of k. We may then compute k(g) as a function of g from Eqn. (9.22). This curve is illustrated in 
Fig. 9.9(d). Since g is a smooth monotonic function, a few quadrature points suffice to achieve a high 
degree of accuracy in the transmittance computations. 

 
 
Fig. 9.9 (a) Absorption coefficient kQ in units of cm-1atm-1 as a function of wave number with a 

resolution of 0.05 cm-1 in the 9.6 Pm O3 band p = 30 mb and T = 220 K.  (b) The probability 
function f(k) of the absorption coefficient.  (c) The cumulative probability function of f(k) 
shown in (b), plotted as a function of k.  (d) Same as (c), except that values of the absorption 
coefficient are expressed as a function of g. 

 
The physical foundation for the k distribution is quite simple, but it offers clear advantages in the 

computation of broadband transmission. It has also been discussed by Domoto (1974) on some aspects of 
the theoretical foundation and the Laplace transforms for a number of band models. The idea of 
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scrambling and ranking absorption lines was described in the work of Ambartsumian (1936) of stellar 
atmospheres.   

 
There is a second way to approach the k distribution and it follows from a closer look at Eqn. (9.22). 

It follows by definition that the transmission can be expressed as 
 

)]([)( kfu $,   
 
where $ is the Laplace transform. Thus the transmission is the Laplace transform of f(k) and this 
distribution is obtained as the inverse transform 
 

)]([)( 1 ukf ,$�  
 
For some functions, this provides a convenient way to obtain the spectral function f(k). As it turns out, the 
inverse Laplace transform of the Malkmus model is obtained analytically as 
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where GV / k  and GD /Ly  . 
 
9.6  Selected Empirical Transmission Functions 
 

A wide variety of empirical transmission models based on laboratory measurements have been em-
ployed in the literature. For example: 
 

n
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where A. B, C, Wo, and n are empirical constants.  is absorber mass, p is pressure (subscript "LAB" 
refers to laboratory conditions). Most only involve single path parameter u. All empirical models should 
be used with caution: unless based on theory, applicable only to a range of parameters for which they are 
fitted. 

u~

 
Two widely used empirical approximations to the solar weighted broadband absorption function 
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duAF
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for the path u were derived by Lacis and Hansen (1974) for UV and visible ozone absorption and near 
infrared water vapor absorption. (The transmission is just 1 � A ). The formulae are: 
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where X is the ozone amount for the slant path expressed in cm STP and X = :mr where : is the column 
ozone amount above some specified level 
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and P

�
 = cos T

�
. This factor (referred to as the relative airmass) differs only from sec T

�
 for T

�
 near 90q 

due to refraction effects of the solar beam at these glancing angles.  
 

The formula for water vapor is 
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where u = wmr such that w is the column water vapor amount (precipitable water) in units of gcm-2 (this is 
equivalent to cm STP). The total broadband absorption with respect to the entire solar spectrum is 
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given that the three absorptions occur in three different portions of the solar spectrum such that they 
overlap in a simple additive way. Figure 9.10a presents comparisons of the two formulae against actual 
spectrally integrated ozone absorptions. Figure 9.10b shows the broadband water vapor absorption 
derived from a number of different sources of both absorption data and spectral solar flux. Much of the 
difference can be explained by the actual choice of F

�,O for integrating the spectral absorption. These 
differences lead to significant differences in calculating the solar flux. 
 

Example 9.4: Broadband transmission of the direct solar beam. Consider the 
following 

 
Two overlying absorbing layers of path ul and u2. In the shaded upper layer, the 
absorbed flux is 

)( 11 rmuAQF ��P '  
where mr | 1/cos T

�
 The absorption in the lower layer is then 

)]())(([ 1212 rr muAmuuAQF �� ' ��P  
The transmission through the two layers is ))((1 21 rmuuA �� ,  
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Fig. 9.10  (a) Percentage of the total solar flux absorbed as a function of ozone amount :..  (b) Same as 

(a) but as a function of water vapor amount. 
 
 
9.7    Transmission Along Inhomogeneous Paths (Section 6.4 Goody and Yung) 
 

So far all our discussion of transmission applies to the case of homogeneous paths (i.e., paths over 
which temperature and pressure and hence k(Q) are constant) such as might arise in the laboratory. We 
now must modify this view as 

 
x� Most problems of transmission in the atmosphere apply to paths for which p and T vary. 

 
x� Laboratory data are obtained for fixed p and T, which might not be representative of atmospheric 

conditions and some adjustment is needed. 
 
Figure 9.11 provides a schematic illustration of the consequence of transmission along a pressure varying 
path. The atmospheric line profile is no longer Lorenzian. 
 

 
Fig. 9.11  Schematic composite showing how an actual line profile over a variable pressure path forms 

as a composite of the individual Lorenz profiles. The atmospheric line profile is not Lorenz in 
general: it is more sharply peaked because of low-pressure contributions, with broader wings 
due to high-pressure contributions. 
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In treating inhomogeneous effects, the assumption is made that the absorption for paths along which p 
and T vary can be approximated by absorption expressed in terms of a homogeneous path with the 
parameters scaled in some way. Two principal forms of scaling are used. Before discussing these, it is 
worthwhile considering one case for which an analytic solution exists.  

 
(a) Constant Mixing Ratio, Isothermal Atmosphere—An Exact Solution  
 

There is one hypothetical case for which the algebra can be done. Consider a line centered at Qo = 0 
for convenience, then W(v) has the form 
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Also, assume the property 
 

rS  = constant            (9.26) 
 
such as occurs for an isothermal atmosphere (S constant) with a uniformly mixed absorber (r constant).  
Then 
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for ioi p~DD  .  Figure 9.12 in Example 9.5, shows the comparison between the transmission derived 
according to Eqn. (9.28) with -K = 1 and the transmission calculated assuming the mean pressure 

2/1
21 )(~ ppp   in the homogeneous path formula 
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(b)   Scaling Approximation 

 
The simplest and most common way of dealing with nonhomogeneous paths is the 'scaling' or one 

parameter approximation. Let us start with the assumption that pressure and temperature effects on the 
absorption are separable according to 
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Example of factorization: Q � Qo > DL as occurs in line wings, then 
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where  
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It is generally assumed that 
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Table 9.3 provides some often used values of n and m for various absorbing gases. 
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Table 9.3: Generally accepted values of n and m for various absorbing species. 
 

Gas Spectral Region n m 
Water vapor  0.9-1 0.45 
Carbon dioxide Shortwave 1.75 11-8 
Ozone  0 0 
Water vapor Longwave 0.5-0.9 0.45 
Carbon dioxide  1.75 11-8 
Ozone  0.4 0.2 

 
It is generally assumed that there is no foundation for Eqn. (9.25) other than it seems to work. While 

this statement is generally true, we see in the strong absorption limit that the absorption coefficient 
actually factors in this way with n = 1. 
 
(c)   Two Parameter Approximations: The Van de Hulst - Curtis - Godson (VCG) Approximation 
 

The previous method relies only on a scaling of the absorber amount to correct for path inhomo-
geneities. In general n varies depending on the absorption regime (n = 1 strong, n = 0 weak) and so is 
poorly defined in general. Obviously, a better and more sophisticated approach would be to employ two 
disposable parameters to simulate the absorption (e.g., u and n in the scaling approximation). The most 
useful two-parameter method proposed is the Curtis-Godson approximation, which attempts to define a 
scaled absorber amount specified for a mean pressure. The approach was developed independently by 
Curtis (1952) and Godson (1954) and earlier by Van de Hulst (1945) in a rather intriguing article (unfor-
tunately in French)—thus I prefer to call the approximation VCG. The aim of the VCG approximation is 
to provide such a fit of the transmission. To discuss this approximation, consider isothermal paths (for 
convenience only). The criteria adopted are to match the absorptions exactly in the strong and weak 
limits. To proceed, we start with 
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x� Weak limit 

 
We obtain the weak-line limit directly by considering the exponent in Eqn. (9.32) as it 
approaches zero 
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Since ³ f(Q)dQ = 1 for regular band models, Di and Si are constant over the interval chosen and 
thus the VCG approximation in this context states. 
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³ duu~            (9.33a) 

 
 
x� Strong limit 

 
The strong-line limit follows in an analogous way to the derivation of the strong limit for 
homogeneous paths. For the inhomogeneous case, in the strong limit where |Q - Qo| >> DL then 
for a single line 
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and since 'Q >> DL, the integral limits are effectively infinite. Thus 

 

> @ 2/1
)(21~

~
³� duS LD,  

 
and by matching the equivalent homogeneous limit, we obtain 
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Example 9.5: Band model example revisited. Suppose that the vertical distribution of 
absorber has the form 3)( prpr s  where sppp / . Then under the VCG 
approximation, 
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and thus .  Now this may be simply applied to either the Goody or 
Malkmus band models in the following way. Consider the Goody band model: for a 
uniform path 
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where DL,s is the band line half width defined at pressure ps. Using the parameters 
from our earlier example, with u  = 2.8 gcm~ -2 then 
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compared to the homogeneous path value of 0.498. 
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Example 9.6: A test of the VCG. The accuracy of this approach can be tested for the 
hypothetical case considered above. Consider the atmospheric layer as shown below, 
which extends between pressure p1 o p2.  Set 

p2 = fp1 

then according to Eqn. (9.28) 
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where LD  is the mean half width defined as 2/1)]2()1([ LLL DDD .  The VCG 
approximation expresses the optical thickness in the form 
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where  and u~ LD~  are defined by Eqns. (9.33a) and (9.33b). It is straightforward to 
show that 
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for the case considered here. Thus the optical thickness of the layer predicted by the 
VCG approximation in terms of f and LD  is 
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Fig. 9.12  Percentage error of the VCG for a single line and a constant mixing ratio 

for f = 0. 
 



9.8  Problems 
 
Problem 9.1
 

Briefly explain or interpret the following: 
 

(a) Two sealed chambers contain the same amount of water vapor and are at the same temperature. 
One contains only water vapor, while the other holds a mixture of water vapor and air. Which has 
the smaller transmissivity averaged over a narrow spectral region containing a single water vapor 
absorption line? 

 
(b) The two sealed cells of (a) now both contain some amount of water vapor mixed in air. The 

concentration of water vapor in one cell is adjusted so that the transmission of 10 Pm radiation 
through one cell matches the transmission of 6.3 Pm radiation through the other cell. Which cell 
contains the most water vapor? 

 
(c) The temperature of both cells is now increased thus raising the pressure within the cell but 

assume no other changes occur. At which wavelength is the transmission a maximum (ignore any 
temperature effects on absorption)? 

 
Problem 9.2
 

Develop a relationship between the vertically integrated water vapor path through the entire vertical 
extent of the atmosphere (precipitable water) and the sea surface temperature. Assume 

 
(a) The vertical profile of specific humidity has the following form qs(p/ps)O where qs is the surface 

specific humidity. 
 
(b) es | bexp[a(Ts � To)]. Derive your answer in terms of the surface relative humidity, O, and the 

SST TS. 
 
Problem 9.3
 

Compute the optical path for: 
 

(a) Water vapor of a 100 mb thick homogeneous layer of mixing ratio r. 
 
(b) Total atmospheric CO2 if the mixing ratio is 330 ppm by volume. 

 
Problem 9.4
 

The following function 
 

22

2

)1(
4)(

\
\\

a
a

rr p �
  

 
reasonably resembles the vertical profile of ozone mixing ratio such that with a = 1600, the maximum 
occurs at \ = p/ps = 0.025. Assuming a value rp = 1 x 10-5 kg/kg, derive the total column ozone and 
express your answer in Dobson units (the density of ozone at S.T.P. is 2.14 kgm-3). 
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Problem 9.5
 
The rationale for the surface pressure measurement using two frequencies in the O2 A band is 

discussed in Section 3.5. Given the definition of optical thickness, obtain an explicit form of the function 
t(ps) given in (3.41) assuming (1) a Lorenz line and frequencies at the line center (Q = Qo), and (2) 
frequencies in the line wing | (Q � Qo) | >> DL. Neglect the effects of atmospheric temperature on line 
intensity and half-width. Express your answers in terms of S, the line strength; Do the line half width 
defined at some reference pressure po the mixing ratio r of the gas, psat the satellite pressure, and the 
acceleration by gravity g. 

 
Problem 9.6
 

Absorption in the atmospheric window between 8 and 13 Pm is represented by an absorption 
coefficient of the form k2e where e is the water vapor pressure (in kPa), k2 # 10-1 (g cm-2)-1 kPa-1. If the 
water vapor pressure near the surface is 1 kPa, calculate (1) the transmission of a horizontal path l km 
long near the surface, and (2) the transmission of a vertical path of atmosphere assuming that the 
distribution of water vapor pressure is proportional to pressure units of atmospheres) raised to the fourth 
power. 
 
Problem 9.7
 

The absorption coefficient in the continuum has the form 
 

ekk QQ ,2|  
 
where e is the water vapor partial pressure in units of atmosphere. Assuming a hydrostatic atmosphere 
 

Hz
sepp /�  

 
where ps = 1013.13 mb, and assuming that the mixing ratio profile of water vapor is similarly exponential 
with 
 

Hr = H/3 
 
where Hr is the scale height of vapor 
 

(a) Derive an expression for the optical mass u for the vertical path from 0~  p  to p~  where 
 is the pressure in atmospheres. Express your answer in terms of rsppp /~  s, the surface mixing 

ratio of water vapor, and p~ . 
 

(b) Assume that the temperature dependence of the absorption parameter k2,Q has the form 
 

pkk s
~/,,2,2 QQ   

 
show that 
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where 
 

g
krp sss

354.4
,,2

2
QE   

 
where 622.0/~pre  . 

 
Problem 9.8
 

Assume the following profile for water vapor mixing ratio:  
 

Hz
serr /3�  

 
Calculate the broadband water vapor absorption of solar radiation in 10 adjacent 100 mb thick layers from 
the top of the atmosphere (0 mb) to 1000 mb and plot this absorption as a function of the mean layer 
pressure. 
 

(a) Contrast the vertical profiles of absorption assuming the following values of rs: 5.4, 10.2 and 18.4 
gkg-1. 

 
(b) Calculate the Planck weighted broadband flux absorption using a Goody band model and the 

parameters given in Table 4.4 (p. 11) for the rotation band and the vibration band. Calculate this 
transmission for a path extending through the column for the model atmosphere of 1 above (do 
only for rs = 10.2 gkg-1). Assume T = 270 K in calculating the Planck Function. 

 
(b) Calculate the broadband transmission as in (2) above but for a path extending up from a reference 

level located at 800 mb to the top of the atmosphere and for a path extending downwards from 
this reference level to the surface. Plot these transmissions as a function of either pressure or 
altitude (your choice). 
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AT622 Section 10 
The Atmospheric Absorption Spectrum 
 

The aim of this section is introduce the characteristics of the atmospheric absorption spectrum as 
summarized in Fig. 10.1. 

 
 

 
Fig. 10.1  (a) The broad characteristics of the atmospheric absorption spectrum. (b)The spectrum of 

solar flux between the ultraviolet and infrared with molecular absorption features indicated. 
 
10.1 Visible - UV 
 

Atmospheric absorption calculations in the visible and UV spectrum are commonly done on the basis 
of empirical data and at a level without requiring the degree of understanding applied to vibration-rotation 
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bands. Figure 10.2 shows the absorption by O2 and O3 by electronic transitions. It doesn't show the near 
UV Huggins bands of the visible Chappuis bands of O3. Both of these electronic bands are of some 
importance to solar absorption but the absorption is weak. 

 
 
Fig. 10.2  Depth of penetration, defined as altitude at which τ = 1 of solar radiation in the ultraviolet 

spectrum as a function of wavelength. The line shows the altitude of unit optical depth. The 
vertical arrows indicate ionization limits. The broken line represents predissociation for 
molecular oxygen.  After Herzberg (1965). 

 
10.2 The Near IR 

 
The predominant absorption of near infrared wavelengths (0.7-4.0 µm) is by several vibrational-

rotational H2O absorption bands. CO2 also contributes to near IR absorption by bands centered at 2.7 and 
2.0 µm and weak bands at 1.6 and 1.4 µm. These features appear in Fig. 10.1b. 

 
10.3 The Far IR 

 
Again the most dominant absorption in the far IR is that of water vapor.  Figure 10.3 shows the H2O 

absorption spectra based on use of a theoretical line shape. Superimposed on this absorption is the 
absorption centered at 15 µm and at 4.4 µm by CO2 and weaker bands at 10 and 5 µm. Ozone has a strong 
vibration-rotation band centered at 10.6 µm and a weaker band at 14 µm. 
 
10.4 'Greenhouse Gases' 

 
A variety of trace gases absorb in the far infrared and may be considered as greenhouse gases (e.g., 

CH4, ... etc.) and the prevalence of the absorption by these gases is highlighted in Fig. 10.4.  
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Fig. 10.3  Theoretical absorption coefficients of pure water vapor at 1 bar and 296 K. The vertical axis 

is the molecular absorption coefficient divided by a "radiation term", 
)2/tanh()/()/( θkhvcvcvf = , which is approximately equal to v/c (the frequency in wave 

numbers) for v/c > 500 cm-1.  After Clough et al. (1980). 
 

 
Fig. 10.4 Some general properties of absorption by greenhouse gases. 

 
 

Molecule Lifetime 
(years) 

Concentration 
(ppbv) 

Spectral Range 
(cm-1) 

Band Strength 
(cm-2atm-1) at 296K 

CO2 2 3.39 x 103 550-800 220 
O3 0.1-0.3 variable 950-1200 312 
N2O 120 300 1200-1350 218 
CH4 5-10 1650 950-1650 134 
CFCl3 (CFC11) 65 0.18 800-900 1828 
CF2Cl2 (CFC12) 110 0.28 875-950 1446 
CF3Cl (CFC13) 400 0.007 1075-1125 1758 
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10.5   Water Vapor Continuum Absorption 
 

An especially important form of absorption for atmospheric problems is the more or less continuous 

absorption in regions where line absorption is weak. The continuum occurs at all frequencies (Fig. 10.3) 

but is most important in window regions in which continuum absorption exceeds line absorption. 

 

The absorption in these windows has special properties such that 

 

ekpkk
21

+=ν  

 

where p = atmospheric pressure, e = water vapor partial pressure, and k2 > k1.  Thus, 
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This is called "e-type"' absorption. The mechanism for this absorption is not decisively known at this 

time. 

 

Mechanism? 
 

• Overlapping foreign broadened lines, but 
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in wings. This was the historical explanation. It was discovered however that continuum 

absorption was much stronger than this (especially in the tropics) 

 

• Overlapping self broadened lines (water-water collisions)? 
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• Dimer absorption? 

 

Temperature variation is the reverse of line absorption and has the approximate form 
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Roberts provides a parameterization of kν such that 
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where 
 

21 cmg)00787.0exp(557818.4 −−−+=Ψ ν  
 
for To = 296 K with ν in crn-1. 

 

 
 

Fig. 10.5  Absorption coefficients for water-water collisions in the 1000 cm-1 window. ns is Loschmidt's 
number. 
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AT622 Section 11 

Broadband Infrared Fluxes 
 

The aim of this section is to introduce the more common, approaches to solving broadband infrared 

radiative transfer. This will culminate in Section 11 in an understanding of the factors that define the long 

wave radiative heating and cooling in a cloud free atmosphere. 

 

11.1  A Return to the Radiative Transfer Equation 
 

Here we employ the radiative transfer equation developed previously in Section 4 for an absorbing 

and emitting horizontally stratified atmosphere 
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for 0 < µ < 1 which defines radiation that upwells from the atmosphere, and 
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for 0 > µ > -1 for downwelling radiation. We now develop this equation in flux form and seek to solve it 

when it is integrated spectrally. 

 

11.2 Flux Equations and the Infrared Emissivity 
 

It is trivial to transform Eqns. (11.1a) and (11.1b) from an equation of intensity into a radiative 

transfer equation for flux. First introduce 
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Broadband fluxes are then obtained by 
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In evaluating the fluxes via the radiative transfer equation (11.2) and subsequently integrating these fluxes 
over the entire IR spectrum, four basic λ scales of dependence need to be resolved (Fig. 11.1) 
 

• slow λ variation of Bλ 
• the unresolved contour of absorption bands 
• line structure, separation, etc. 
• the finest scale on which Lambert’s Law (and thus on which the RTE) applies. 
 

The usual strategy to accommodate these variations is to: 
 

1. Resolve Planck variation by dividing the spectrum into N discrete intervals (typically ranging 
from 4-20 intervals). Models at this resolution are referred to as coarse or wide band models). 

 
2. Develop a model of the transmission function for each of these intervals. This can be done using a 

band model or the k-distribution model of transmission 
 
3. The broadband fluxes are then obtained for example by summing over all N intervals, namely 

 

¦ Δ≈
N

i
iiFF λ           (11.3b) 

 

 
Fig. 11.1  Schematic of the various frequency scales encountered in the calculation of atmospheric 

longwave flux.  These scales refer to (a) the Planck curve, (b) atmospheric gaseous 
absorption spectrum for longwave radiation reaching the ground, (c) higher resolution 
spectral absorption highlighting individual lines and line separations, and (d) the 
convolution of the absorption spectrum and the Planck function to give atmospheric flux 
(shaded area). 
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(a)  Emissivity Approaches 
 
Obviously the problem of calculating flux can be significantly simplified by keeping the number of 

spectral intervals to a minimum.  An approach designed to do this is the emissivity method, which in 
principle seeks to reduce N → 1. 

 
If we note that 
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as the "emissivity" (note this is a function of temperature in principle), then 
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The approach is then to estimate the value of the absorption path u defined along the path (z, z") and 
deduce the value of ε from an a priori relationship between ε and u.  Examples of such relationships are 
given in Figs. 11.2a and 11.2b. The latter shows the emissivity for three broad spectral regions and 
indicates how the temperature dependence reverses from one region to another to produce a much weaker 
dependence on the broadband emissivity. 
 
(b)  Illustrating the Emissivity Approach 
 

Consider an n-layer atmosphere as shown in Fig. 11.3. Suppose we require to calculate the up- and 
downwelling broadband fluxes at some level between layer m and m + 1 (i.e., at level m + 1).  For 
illustration, consider the contributions to the upwelling flux by the Ɛth layer as illustrated. In calculating 
this contribution, we consider two basic approaches; 

 
• Use Eqn. (11.1).  The first step is to establish the path length. For example, the path length 

extending from level Ɛ to level m + 1 is 
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Fig. 11.2  (a) The emissivity ε and the modified emissivity ε" as a function of water vapor path u.  These 

relationships are taken from a variety of sources.  R. Rodgers (1967), S. and J. Staley and 

Jurica (1970), RAM-Ramanathan et al. (1983), S. Sasamori (1969).  The upper curves show ε 
for three different temperatures and the lower curves show comparisons of ε and ε".  (b) The 

contributions to the total water vapor gray body emissivity by three broad spectral regions, 

which include the water vapor rotation band, 6.3 µm band and the atmospheric window 

(excluding e-type absorption).  These contributions are shown as a function of u (of u as the 

case may be) for two different temperatures (from Staley and Jurica, 1970). 

 

Fig. 11.3 (a) An illustration of an emissivity flux calculation. (b) The cusp in the transmission 

function with a discontinuity at level m + 1. 
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where the overbar on pressure denotes the layer average, and the power n is the scaling factor 

(note we again neglect temperature here for simplicity). The contribution to the broadband 

upwelling flux at m + 1 by the Ɛth
 layer is 
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and the total flux follows as 
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• An alternative approach is to integrate Eqn. (11.1) by parts to obtain 

 

³

³

∞
∞

−

+
+

&
&

&
&+∞−=

&
&

&
&+−+=

z

z

gg

zd
zd

zTdzzezTzF

zd
zd

zTdzzTTzTzF

)(
),()),(1()(

)(
),())(,0()(

4

4

0

4

444

σ
εσ

σ
εσσεσ

      (11.5) 

 
where T∞ is usually set to zero and where T+ is the air temperature just above the surface (and 

allows for a temperature jump there). The contribution to the flux at m + 1 is thus 

 

)]()1()[(),1(
44† """ TTumF σσε −−=+Δ  

 

where u is the scaled path extending from the mid-point of the Ɛth
 layer to the m + 1 level. This is 

usually the preferable way to evaluate the integral term as ΔσT4
 is known more accurately in 

principle than is Δε (i.e., this implies that the temperature variation with z is better known than is 

the variation of q with z). 
 

There are two important issues to bear in mind in performing these calculations. First, calculation of 

the flux at each level requires the evaluation of the transmissivity/emissivity for all n levels. Thus the 

computation of the flux profile therefore goes as n2. The second point is that no matter which approach is 

taken, the integration through the adjacent most layer (i.e., the mth
 layer for the example considered here 

for upwelling radiation) should be performed by dividing the layer into sublayers to resolve the cusp (Fig. 

11.3a) in the transmission function (note that ,(z, z&) = 1 - ε(z, z')). Both issues pertain to band model 

schemes as well as emissivity schemes. 
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Example 11.1. The emissivity of the atmosphere. Consider a single isothermal layer 
atmosphere of temperature T1 overlying a black surface radiating at a temperature Tg. 
The temperature of this surface is maintained through absorption of solar radiation by 
an amount Qo(1 − α)/4 and the atmosphere is transparent to this radiation. Assuming 
the atmosphere, planet, and surface are in radiative equilibrium, we seek to estimate 
the emissivity of the atmosphere and T1 that give rise to the Tg = 288 K for Qo = 1370 
Wm-2 and α  = 0.3. 

 
From Eqn. (11.1) it follows that the outgoing longwave radiation at the top of the 

atmosphere simplifies to 
 

 
 
and the radiative equilibrium condition at the top of the atmosphere is 
 

 

 
where we simply write ε for ε(0,∞). The equilibrium condition for the atmosphere is 
 

 
 
and it follows that T1 = 242 K for Tg = 288 K. The equilibrium at the surface is 
 

 

 
where the second term of the left-hand side is the atmospheric emission to the 
surface.  Rearrangement gives 
 

 

 
and a value ε = 0.78 [Compare this with the value you estimate from Fig. 11.2 
assuming 2.8 gm-2 for a global mean value of u.] 
 



(a) Overlapping Gases in the Emissivity Approach 
 

REF: Staley and Jurica, 1970: J. Appl. Met.  When two overlapping gases, such as CO2 and H2O, 
absorb in the same spectral region, the combined transmission may be written as the product 

 

OHCOover
22

,,, ×=  

 
provided the transmission function for each species is of a pure exponential form (as applies to the 
random band model). For broadband emissivity, 
 

, = 1 − ε 

 
and, since ε is not a simple exponential function of path u (c.f., Fig. 11.2), the following is NOT true 
 

)].(1[)](1[
22 COOHover uuT εε −×−=  

 
An approach to treat this type of overlap in the framework of emissivity models is to define the emissivity 
of the combined path 
 

),()()()(
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where Δε is an overlap correction factor. 

 

11.3 Intercomparison of Different Methods and Some Selected Results 
 

Performances of both emissivity and coarse band models were tested as part of an international 
intercomparison program, the Intercomparison of Radiation Codes for Climate Models (ICRCCM). The 
results of these intercomparisons are summarized in a special issue of J. Geophys. Res., 96, D5, 1991. 

 
(a) Features of the Clear-Sky Results (Ellingson, et al. 1991) 
 

The range of in-model flux calculations and the manner by which these have changed over the course 
of ICRCCM is given in Fig. 11.4a through a comparison of the 1984 (open) and 1988 (shaded) 
distributions of downward fluxes at the surface relative to line-by-line calculations. The LBL calculations 
are from the Fels-Schwarzkopf (GFDL) model, and the MLS profile with all of the constituents (i.e., H2O, 
O3, and 300 ppmv CO2) was used as input to all models. For this case, the 1988 data show nine more 
non-LBL models that agree to within ±2% of the GFDL LBL results, seven of these being from new 
participants. Of the 22 climate model type calculations for this case, 13 are within the ±2% range, and all 
but one fall within the ±6% range. On a percentage basis, 67% of the 1998 non-LBL model results agree 
to within ±2% of the LBL results as compared with 58% in 1984. Similar results hold for the net flux 
comparisons at the tropopause and the upward flux at the top of the atmosphere for this atmospheric 
profile. 

 
The increase in the fraction of models agreeing closer with the LBL results also holds for the change 

of the net flux between the surface and tropopause (13 km), denoted ΔFnet, as illustrated in Figure. 11.4b.  
The 1988 data find more than twice the number of models agreeing with the LBL results to within ±2% 
than the 1984 data. About 82% of the 1988 and 75% of the 1984 model data agree with the LBL results 
when the range for agreement is increased to ±6%, or a rate of temperature change of about ±0.1 K/d. 
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However, only 60% of the climate model type calculations fall within this ±6% range. It should be noted 
that comparisons of vertical profiles of flux divergence have not been examined in detail, but our 
experience with the 1984 data suggest that much larger differences than those noted above will be found 
in some layers. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11.4 (a) Comparison of 1984 (open) and 1988 (shaded) distributions of downward fluxes relative 
to a LBL calculation.  (b) The flux divergence of the troposphere (0-13) km.  (c) The 1988 
distributions of downward flux differences relative to a LBL result with vaporlines only 
(open) and lines plus continuum (shaded).  (d) Change in the net flux at the tropospause after 
doubling CO2 from 300 ppmv relative to the LBL calculation. 

 
Although Fig. 11.4a and b give some confidence in the general ability of the less detailed models to 

reproduce the gross features of the line-by-line results, this confidence is shaken somewhat when we 
examine the results when H2O is the only absorbing gas as shown in Fig. 11.4c. When only the local lines 
of H2O are included in the downward flux calculations more than half of the results are outside of the 
±2% range, which was also seen in the 1984 data (not shown). The continuum masks many of the very 

 11-8



large positive differences, but it also amplifies many of the large negative ones. In general, the effect of 
the continuum and the overlap of different species tends to mask many of the large differences between 
absorption parameterizations of individual gases. Although this masking reduces the range of flux values 
expected from absorption differences alone, it also prohibits extending the range of agreement of this 
study to significantly different atmospheric conditions. 

 
One of the major areas of study for ICRCCM was the sensitivity to changes in the concentration of 

the major absorbers, particularly CO2. An important quantity calculated in CO2 doubling studies is the 
change in the net flux at the tropopause as CO2 doubles, denoted as δFnet. Figure 11.4d shows the 
distribution of δFnet relative to the LBL calculations clear-sky MLS conditions. The LBL models agree on 
this result to about ±1% of 5.6 Wm-2. However, the various band model results differ by up to 50% of this 
value. Of the 17 codes actually used in climate models, six fall within ±5% of the LBL results, and one 
differs by more than 25%. The close agreement with LBL results for some of these models is not 
surprising because of tuning. 
 
11.4  Flux Profiles 
 

Figure 11.5a shows the vertical profile of the change in net upward longwave, net downward short-
wave and total flux due to doubling the amount of CO2. The solar flux change ΔS is negative due to 
enhanced absorption by CO2, and the longwave flux change ΔF is positive indicating enhanced emission 
of approximately 1 Wm-2. 

 

 
 

Fig. 11.5  Effect of CO2 doubling on net radiative fluxes at 30°N. S is the net downward solar flux, F 
the net upward IR flux, and R = S − F is the net downward radiative flux. The symbol Δ 
preceding a quantity denotes a change in the flux due to doubling of CO2. The arrow 
indicates the value at the top of the atmosphere for ΔR. 
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11.5   TOA Clear Sky Longwave Fluxes 
 

Slingo and Webb (1992) apply a 10 cm-1 band model, together with data from the operational archive 
at the European Centre for Medium Range Weather Forecasts (ECMWF) to simulate the clear sky o1r. 
Temperature and specific humidity data on 19 model levels were directly incorporated into the 
simulations along with analyzed surface pressure.  The radiation model is constructed around a high 
spectral resolution radiative transfer model (Shine, 1991) that incorporates the ECMWF analyses from the 
operational archive. The accuracy of the radiation model employed by SAMSON was checked using a 
single column version applied to ICRCCM test profiles (Ellingson et al., 1991). Calculations of clear sky 
outgoing longwave radiation (hereafter represented as F∞) for five standard atmospheres with effects of 
water vapor, carbon dioxide, and ozone differed from line-by-line calculations of F∞ by approximately 1 
Wm-2 suggesting excellent agreement with these reference calculations (Slingo and Webb, 1992).  
Comparison of clear sky values of Fg depend to a small extent an the specific details of how the 
continuum absorption is dealt with in the model.  The treatment of the continuum is described by Shine 
(1991) and is based on the far wing treatment of Clough et al., (1986). Variations of the treatment of this 
continuum can introduce uncertainties in calculations of the surface flux up to 10 Wm-2 (Ellingson et al., 
1991). SAMSON simulations of Fg agreed with reference ICRCCM calculations of this flux within 3 
Wm-2. 

 
 Simulations of the monthly mean clear sky fluxes over the ice-free oceans were carried out for the 
period March 1989 to February 1989, which is also a period for which both ERBE and SSM/I 
observations are available. As in the original Study of Slingo and Webb (1992), these simulations apply 
to a horizontal resolution of 5 degrees. The radiation code applied to each daily analyses (a mean of four 
6-hourly analyses for each day) and then averaged to produce the monthly mean flux distributions, which 
are used in the analyses described below. Both Slingo and Webb (1992) and Webb et al. (1993) discuss 
the differences between the simulated fluxes from SAMSON and the clear-sky values of F∞ obtained 
from ERBE. Figure 11.6a presents examples of scatter diagrams of the SAMSON F∞ versus the ERBE F∞ 
for April, July and September 1988 and January 1989 to highlight some gross features of these 
comparisons. For instance, a slight positive bias of 3-5 Wm-2 exists between the SAMSON and ERBE 
fluxes, a bias similar in both sign and magnitude to that of the ERBE clear sky flux data (Harrison et al. 
1988). As Webb et al. (1993) show, there are regions (not shown) where the differences between the 
simulated fluxes and ERBE derived  fluxes exceed this small bias, such as over the areas of marine 
boundary layer clouds off the west coasts of the major continents where differences may be as large as 10 
Wm-2 (Fig. 11.6b). These areas can be traced to biases in the ECMWF water vapor data (e.g. Liu et al., 
1992; Stephens and Jackson, 1994) as highlighted in the difference between TOVS and SSMI column 
water vapor. 
 
11.6 Longwave Fluxes at the Surface - A Satellite Retrieval 
 

In Section 4, we derived a relationship between the longwave flux to the surface and the OLR (Eqn. 
(4.16c)).  With arguments similar to those introduced in Section 6.2(b), we introduce the relationship 
(rearrangement of Eqn. (4.16c)), 
 

s
g b

F
F

τ==
∞

�              (11.6) 

 
and suppose that a simple relation exists between � and precipitable water w of the form 
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Fig. 11.6 (a) Scatter diagrams of SAMSON simulated F∞ versus ERBE analyses of clear-sky longwave 

fluxes for April, July and September, 1988, and January 1989.  (b) Comparison of the OLR 
difference between ERBE and the ECMWF simulation (upper) and the TOVS precipitable 
water and SSM/I precipitable water (lower). 

 
 
 

wca 22 +=�              (11.7) 
 

in an entirely analogous way to Eqn. (6.5) where a2 = 0.937 and c2 = 0.0102 kg-1m2. Unfortunately, we 
do not have global observations of Fg and thus we cannot derive � solely from independent observations 
to test this relationship.  The relationship between predicted fluxes and w is shown in Fig. 11.7 
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Fig. 11.7  The flux ratio �  derived from combined simulations of January and July fluxes as a function 
of w. 

 
Except for particular regions, the simulations of clear sky F∞ from SAMSON generally agree with 

ERBE estimates of this flux to within 5-10 Wm-2, which is considered to be of the same order of 
uncertainty as the latter. There are also no a priori reasons to expect the simulations of clear-sky Fg to be 
grossly in error although how the specific details of how the continuum absorption is modeled may 
introduce an uncertainty of the order of 10 Wm-2. Bearing this possibility in mind, simulated distributions 
of Fg over the ice-free oceans are presented in Figs. 11.8a and b in the form of the surface net flux (i.e., 

 F,,). The distributions in Figs. 11.8c and d were derived from satellite distributions of w and 
OLR and the specified relationship that best fits the data in Fig. 11.7. The maps of the surface net flux 
derived by this approach and are presented here for comparison with actual model simulations shown in 
Figs. 11.8a, and b and match the simulations to ±6 Wm

gs FT −4σ

-2. 
 
The smallest net fluxes of around 40-50 Wm-2 occur in the tropical convergence zones over the 

Pacific and Indian Oceans and in the Northwest Pacific in July. A significant annual variation close to the 
northern continents also appears to exist which is associated with changes in the atmospheric circulation 
associated with the summer and winter monsoons. 
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Fig. 11.8 (a) and (b) are distributions over the oceans of the July and January SAMSON simulations of 
surface net longwave flux.  (c) and (d) are the same as (a) and (b) but the net flux is deduced 
using a linear regression of the flux ratio, ERBE air and SSM/I precipitable water. 
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AT622 Section 12 
Heating 
 

Figure 12.1 provides a perspective on the topic of radiative heating. For infrared radiation, a layer in 
the atmosphere emits radiation at a rate defined by its temperature and the emissivity of the layer. This 
layer also receives radiation from layers above and layers below. When it receives more than it emits, the 
layer radiatively heats and vice versa. We think of this as an exchange process: radiation is exchanged 
between the reference layer and the surrounding atmosphere and surface. The aim of this section is to 
consider the dominant exchanges and how they shape the radiative heating distribution in the atmosphere. 

 
 
Fig. 12.1  A schematic of two different contributions to the radiative cooling by a layer. The first is by 

cooling to space (this occurs mainly in the transparent regions of the absorption spectrum in 
which contributions by surrounding layers are small). The second is by mutual exchange 
between layers; such as illustrated between layer A (reference) and layer B. 

 
12.1 The Radiative Heating Rate 
 

Consider a volume of atmosphere irradiated by a flux 2/x
x

F
F x

x δ
∂

∂
−  on one face and a flux 

2/x
x

F
F x

x δ
∂

∂
+  exiting on the other face (Fig. 12.2). The net flow of energy into the volume along x is 
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In three dimensions, the rate at which heat is added per unit volume of air is 
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For monochromatic, radiative equilibrium 
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0=⋅∇ λF  

 
where the wavelength dependence of the flux is brought to view. 

 
 

 
 

Fig. 12.2  Energy budget of a volume of atmosphere used to establish the heating rate equation. 
 
 

From the first law of thermodynamics, the heat added to a volume per unit mass is 
 

VdpdTCQ p −=  
 
from which it follows 
 

dt
dpV

dt
dTCQ p −=�             (12.2) 

 
Combining Eqns. (12.1) and (12.2), we obtain 
 

V
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dF
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dTC net

p δδ ⋅−≈⋅∇−= )(           (12.3) 

 

And, using the specific heat 
m

C p
p =c  and assuming that heat is added at constant pressure, we derive 
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or for an atmosphere in hydrostatic equilibrium, 
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c
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for a plane parallel atmosphere (for which x and y variability is neglected). This is the radiative heating 
rate and defines the potential of radiation for heating or cooling the atmosphere. 
 

Heat added at constant temperature (e.g., tropics) 
 

dz
dF

g
F

gdt
dz

ρρ
11

≈⋅∇−=         (12.4c) 

 
or 

 

dp
dF

dt
dz net−=           (12.4d) 

 
which defines the potential of radiation for inducing vertical motion. 

 
 

Example 12.1: The heating rate of the atmosphere 
 
Based on Fig. 6.13, we deduce that 
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in which case it follows that 
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or alternatively that 
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12.2  The IR Radiative Heating From Satellites 
 

The rate of cooling of the atmospheric column follows from Eqn. (12.4b) as 
 

net
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F
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where the flux difference 
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which can be written as 
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the column heating becomes 
 

],1[ −−= ∞ ��
sp pc

gF
dt
dT            (12.6) 

 
where we introduce the ratio terms defined earlier in Eqns. (6.5) and (11.7) and which vary in a 
systematic way with the PWC w. Furthermore, for a given w, the heating of the column varies 
proportionally with the clear-sky outgoing longwave radiation F∞. 
 

Using the retrieval strategy to estimate clear-sky values of Fg from satellite measurements of F∞ and 
w as described earlier and substituting a value of 1013 mb for ps and use the monthly mean SST of 
Reynolds for Ts in Eqn. (12.6), we arrive at monthly mean distributions of the column averaged clear-sky 
heating rates shown in Figs. 12.3a and b (negative values represent cooling) for July 1988 and January 
1989, respectively. A reasonable estimate of the uncertainty of the monthly averaged values of F∞ and Fg 
is ±10 Wm-2 based on published estimates in ERBE clear-sky flux uncertainties and in the uncertainties in 
Fg expressed by the rms differences discussed in relation to the comparisons shown previously in Fig. 
10.8. These flux uncertainties in turn imply an uncertainty of approximately ±0.2 K/day in the column 
cooling rate. The SSM/I fields of w for July 1988 and January 1989, which are used to produce these 
heating rate distributions, are also shown in Figs. 12.3c and d for comparison. It is evident that the clear 
sky column heating rate distributions resemble the distributions of w, which is consistent with Eqn. (12.6) 
and the relationship between �, � and w. The largest coolings occur in the moist equatorial regions and in 
the areas of moisture convergence over the northwest Pacific and Atlantic Oceans during July as well as 
in the South Pacific Convergence Zone. 
 

The association between the column averaged heating rate and w is explored further in Figs. 12.4a 
and b, where the data displayed in Fig. 12.3a and c and Figs. 12.3b and d, respectively, are plotted against 
each other. Based on Eqn. (12.6) and the relationships assumed between the ratio quantities and w, we 
expect the cooling rate to increase in an approximate linear way with increasing w as confirmed in Figs. 
12.4a and b. Linear fits of both � and � as a function of w yield the following slope coefficients: c2 = 
0.01015 (kgm-2)-1 and c1 = 0.00524 (kgm-2)-1, respectively, which, according to Eqn. (12.6), implies a 
slope of -0.005 (kgm-2)-1. An example of a relationship with this slope, defined using the global-mean 
value F∞ = 266 Wm-2, is also given on each diagram for reference. The column cooling rate deviates from 
this simple linear dependence on w in such a way that the rate of increase of column cooling with 
increasing w above about 40 kgm-2 decreases. 

 
When the column cooling rate is expressed as a function of SST rather than as a function of w as it is 

shown in Figs. 12.4c and d, a number of features emerge. The first is the general change in the 
cooling-SST slope for SST exceeding approximately 295 K due to the rapid increase in w as the SST 
increases beyond this value. The second feature that emerges from Figs. 12.4c and d are the 
winter-summer hemispheric branches in the column cooling similar to those noted in the �-SST 
relationship. The characteristics of the relation between the column cooling rate and SST, especially the 
increased rate of cooling with increasing SST, may be better understood by reference to Fig. 12.5. This 
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diagram presents scatter diagrams of fluxes as a function of SST. The left panels are F∞ and Fg derived 
from satellite data for July 1988 (left panels) as a function of SST and the matching fluxes derived from 
SAMSON are shown to the right. We can deduce that the enhanced rate of change of cooling for SSTs 
greater than about 295 K is a result of the enhanced emission from the atmosphere to the surface 
associated with the increasing water vapor with SST at these temperatures. The rate of increase of 
emission from the atmosphere as the SST increases exceeds the rate of change of the emission from the 
surface (i.e., ). The latter is represented by the solid curve in the lower two panels of Fig. 12.4. For 
the SST > 290 K, we deduce that ΔF

4
sTσ

g/ΔSST ≈ 15 Wm-2 K-1 and that  ≈ WmSST/4 ΔΔ sTσ -2 K-1. 
 
 
 

Fig. 12.3 (a) and (b) clear-sky column cooling rate distributions for July 1988 and January 1989 
(in units of Kday-1).  (c) and (d) same as (a) and (b) except for vertically integrated water 
vapor (in units of kgm-2). 
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Fig. 12.4 The clear-sky column cooling rate correlated with the SSM/I derived column water vapor 

obtained from the data of (a) July 1988 and (b) January 1989.  The solid lines are simple 
linear relationships implied by Eqn. (12.6), Fig. 1.3(a) and (b) and F∞ = 266 Wm-2.  The 
clear-sky column cooling rate correlated with SST for (c) July 1988 and (d) January 1989. 

 
 
12.3 The IR Radiative Heating Rate Exchange Equation 
 

We start with the flux Eqns. (11.2) written as 
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Fig. 12.5 F∞ as a function of SST (upper two panels) from ERBE (left) and SAMSON (right).  Fg as a 

function of SST (bottom panels) derived from the retrieval method described in the text (left) 
and from SAMSON (right).  The solid line on each of the bottom panels represents black body 
emission at the prescribed value of the SST and the scale on the left represents the scale of 
this blackbody flux. 

 
for the ith spectral interval. The heating rate for this interval at level z is 
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where the net flux at this level is 
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Combining the above into Eqn. (12.8) and differentiating w.r.t. z yields 
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where we suppose the surface emits as a blackbody such that (z = 0) = πB(0). If we note that +
iF
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then we can add each to Eqn. (12.10) to obtain 
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TERM A: is the exchange with z and space. Since 0),( >∞z
dz

d f
i, , Term A < 0 and this term contributes 

to cooling at z. This is referred to as the cooling to "space" term and generally the most dominant term 

in the heating rate equation (Fig. 12.6b). It represents radiation escaping to space primarily through 

the more transparent regions of the spectrum at lower levels and through the more opaque spectral 

regions at higher levels. This is discussed in more detail below. 

 

TERM B:  this represents the exchange with the underlying surface. Since B(0) > B(z) generally and since 

0)0,( <z
dz

d f
i, , this term is positive and contributes to heating at z.  

 

TERM C+D: these represent the exchanges with the layers below z (C) and above z (D). For both terms 

0),(
2

<"
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∂
zz

zz

f
i, 1so that these terms define a heating whenever B(z') > B(z). This is usually the case 

for term C as z' refers to levels below z and thus are typically at a higher temperature. Since z' is 

above z in term D, this term usually contributes to cooling. 

 

                                                           
1It is relatively simple to demonstrate this. Suppose the transmission function has the form 
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since k > 0. 
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Figure 12.6a presents an example of the IR cooling rate profile from a radiative transfer model. This 
diagram shows the contribution to the net cooling by different spectral regions. In general, the 
troposphere cools at a rate of approximately 2-3 Cday-1 primarily through emission by water vapor bands 
and by the continuum at lower levels although this contribution diminishes rapidly away from the moist 
tropics. The cooling in the stratosphere is dominated by emission from the 15 µm CO2 band throughout 
and by water vapor in the lower stratosphere. Ozone emission gives rise to cooling in the stratosphere (in 
the vicinity of the ozone layer) and small warming below this. Figure 12.6b presents the profiles of 
longwave cooling separated into the exchange terms discussed above. The cooling to space term (A) 
dominates in the troposphere and exchange terms contribute in the stratosphere (B, C and D). 

 
 
 

 
 
 

 
Fig. 12.6  (a) Total and spectral cooling rates in a clear tropical atmosphere (after Foewe and Liou). 

(b) Contributions of exchanges with surface, space and other layers to the total infrared 
cooling rate as functions of height. 

 
(a)  The Spectral Distribution of Longwave Cooling 
 

The spectral distribution of the infrared cooling rate for selected layers in a model atmosphere is 
presented in Figs. 12.7a and b. These diagrams indicate how the cooling of layer shifts in its spectral 
properties from a maximum in the window (continuum absorption) low in atmosphere for the example of 
a tropical atmosphere shown to the stronger absorption regions of the rotation band higher up. The shaded 
bar in Fig. 12.7a is the cooling by the layer and the unshaded bars represent the heating of the layer by the 
surrounding atmosphere. Both this and Fig. 12.7b demonstrate how the net cooling of the layer is the 
residual of larger exchange terms. A clearer perspective of the spectral contribution to the cooling and 
how this contribution changes with pressure is presented in Fig. 12.8. The upper panel shows the cooling 
by a mid-latitude summer atmosphere by water vapor lines alone (no continuum) and the lower panel 
shows this cooling with the continuum added (both a foreign broadened continuum in the water vapor 
bands—especially the rotation band and the self broadened e continuum in the window). Note how the 
former enhances the cooling in the upper troposphere and the latter at lower levels. 
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Heating of layer 
3 by layer 2 
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(cooling) by 
layer 3 

 
Fig. 12.7  (a) The contribution to the overall radiative cooling by emission from the layer itself (shaded 

area) and the absorption of radiation that originates from layers adjacent to the reference 
layer. The separation distance between the reference layer and the surrounding layers is 
shown on the upper horizontal axis. The total cooling by the reference layer is found from the 
sum of each individual contribution shown on (a). Note that the shaded area represents 
cooling, while the open areas define the heating by adjacent layers. (b) The spectral 
distribution of cooling for the three reference layers shown in (a). The contributions are 
separated into net cooling of the layer, heating from adjacent layers surrounding the 
reference layer and heating from all other layers (modified from Wu, 1980). 

 
12.4 Curvature Effects on the IR Cooling 
 

The dominance of the cooling to space term suggest that a convenient approximation to the IR 
cooling rule 
 

).at emission  local()()( 4 zzTz
dt
dT

εσ→  

 

However, the situation is more complicated than this as 
dt
dT  depends also in a complicated way on local 

curvature of temperature and moisture.   
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Fig. 12.8 Spectral  cooling rate for water vapor for an mls atmosphere.  Color scale is in units of Kday-

1 (cm-1)-1.  The top panel is for no continuum and the bottom panel includes both a p and e 
continuum. 

 
12.5 Climatology of Radiative Heating 
 

• troposphere generally cools ~ 2° Cday-1 except at poles where the smaller water vapor decreased 
emission 

• upper tropical troposphere, lower stratosphere - slight warming 
• cooling increases with z in stratosphere. 

 
(a) Solar and Net Heating Rates 
 

We have not discussed solar heating rates in any detail. If we make some (reasonable) assumptions 
such as neglect Rayleigh scattering and multiple scattering, the clear-sky solar heating can be deduced by 
treating only absorption of the collimated solar beam, namely 
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where we use empirical function for transmission (refer to Section 8). For example, water vapor 
absorption 
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Scatter indicative of effects 

• different absorption data 
• different treatment of pressure scaling 
• different solar flux data and others. 
• O3 heating increases systematically with z 
• troposphere heating ~ 1° Cday-1 decreasing to winter pole 
• combined heating-minimum in lower stratosphere 

 
(b)  Net Heating Rates 
 

An example of the vertical profile of solar heating and IR cooling is shown in Fig. 12.9 derived from 
a climate model (after Manabe and Strickler, 1964). These profiles can be thought to be representative of 
globally averaged clear sky conditions. The net (solar+IR) profile highlights the radiative cooling of the 
troposphere of approximately 1 Kday-1 and a stratosphere that is in radiative equilibrium. Here, the solar 
heating by ozone absorption is balanced largely by CO2 emission and to a lesser extent by water vapor 
emission. 

 
 

Fig. 12.9 Radiative cooling profiles associated with a temperature inversion and different degrees of 
“sharpness” in the water vapor profile.  T and Td are the dry and dewpoint temperatures, 
respectively (after Staley, 1965).

 12-12



 

 
 
Fig. 12.10 (a) Mean net thermal radiative heating (°Cday-1) for December-February.  (b) Mean net 

thermal radiative heating (°Cday-1) for June-August. 
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 Tropospheric Heating—Mainly by H2O 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 12.11  Clear sky solar heating rate profiles due to water vapor absorption in model mid-latitude 

summer and subarctic winter atmospheres. The profiles were calculated for θo = 60° and αg 
= 0.07 for a variety of different absorption parameterizations that use either different absorp-
tion data and/or different extraterrestrial solar fluxes (refer Table 4 and discussion in text) 
(from Wang 1976). 

 

 
 
Fig. 12.12 (a) Mean solar heating (°Cday-1) by O3 for December-February.  (b) Mean solar heating 

(°Cday-1) by H2O + CO2 + O2 for December-February. 
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AT622 Section 13 
Elementary Dielectrics: Interaction with Condensed 
Matter 
 

The object of this section is to introduce elementary properties of dielectric materials that shape the 
properties of scattering from homogeneous slabs and particles. 
 
13.1 Polarization of Matter 
 

The polarization of matter, in contrast to the polarization of radiation, is a property that relates to the 
ability of the material to form dipoles. This polarization occurs either by mechanisms that are induced 
(Fig. 13.1) or when molecules possess a permanent electric dipole moment so that they align themselves 
with the dipole moment parallel to the applied electric field. As a consequence of either induced or 
permanent dipoles, a piece of matter placed in an electric field becomes electrically polarized and the 
material polarized in this way is called a dielectric. 

Fig. 13.1  Polarization of matter under the influence of an electric field. 
 
 

The polarization per unit volume of matter is defined as 
 

�
&&

orP εε )1( −=              (13.1) 
 
where εo is the electric permittivity in a vacuum. This macroscopic expression states that the electric field 
and polarization are directly related and the proportionality constant, εr, is referred to as the relative 
permittivity or alternatively as the optical or dielectric constant. 
 

Various mechanisms cause displacement of charge in matter and therefore contribute to its 
polarizability. Under the influence of oscillatory fields of different frequency, the constituents of matter 
vibrate on different time scales and thus contribute to the observed properties in different portions of the 
electromagnetic spectrum. Figure 13.2 schematically depicts the three principal polarization mechanisms 
that are relevant to atmospheric radiation. Lightest parts (electrons) vibrate fastest (UV), the heavier parts 
(atoms and molecules) are more sluggish-IR and microwave. One of the mechanisms of interest involves 
oscillations and the other relaxation. 
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Fig. 13.2  The three main mechanisms of polarization under consideration are (a) electronic (b) atomic, 
and (c) orientation. 

 
 

Let us now consider what happens to an individual dipole when an electric field is applied to it. The 
dipole moment of an individual atom or molecule p&  can be related to the locally active electric field �! 
by which α is the polarizability* of the material. If there are N of these molecules per unit volume of 
matter, then the polarization per unit volume of the material is pNP &&

= . 
 

� !=
&&

αp              (13.2) 
 

We cannot yet combine Eqns. (13.1) and (13.2) to establish the link between the macroscopic 
parameter εr to the microscopic parameter α. The problem is that in condensed matter, where molecules 
are tightly packed, the field �! acting locally on the dipole is not the same as the external field � applied to 
the material. We will not discuss the way that we can express the local field in terms of the applied field 
here and references elaborating on this topic are given at the end of this chapter. Suffice to say that the 
field at the dipole may be derived by imagining that it sits in a spherical hole in a surrounding dielectric 
material. The field in such a hole is increased over a uniform static field � by an amount P/3εo. The same 
argument applies for an electric field in the form of a wave so long as the wavelength of the wave is much 
longer than the spacing between atoms and molecules. In this case, the field locally is increased by the 
fields associated with the neighboring dipoles such that 
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Combining Eqns. (13.1) and (13.3) produces 
 

                                                           
*There are different forms of polarizability that can be defined. The polarizability introduced later is referred to as the 
atomic polarizability, the ratio of P to � defines the volume polarizabilty (i.e., Nα) and the quantity Noα is the molar 
polarizability where No is Avocadro’s number. 
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which is known as the Clausius-Mosotti equation. 

 

13.2 Classical Theories 
 

The relative permittivity εr, a property relating the response of dense matter to the action of an electric 

field, is obviously related to the properties of atoms and molecules of the material as suggested by the 

discussion of Fig. 13.2. In this section, we provide a more quantitative, albeit phenomenological, account 

of how this quantity relates to these properties. 

 

Actual calculation of εr reduces to the calculation of the polarizability of atoms or molecules. This 

amounts to determining the effects of an external field on the motion of charge in the material following 

the laws of quantum mechanics. For our purposes, simplified mechanical models suffice to approximate 

the permittivity. 

 

(a)  The Lorentz Model 
 

We often picture in our minds a model of an atom represented by electrons whirling around a nucleus 

in a kind of fuzzy orbit. So far as problems involving nonresonant interaction with radiation, these 

electrons behave as though they are attached to springs producing a distortion of charge in response to an 

oscillating electric field. These electrons react to electromagnetic radiation in such a way that they vibrate 

just like a classical harmonic oscillator (Fig. 13.3). H.A. Lorentz introduced his model of electronic and 

atomic polarization around the beginning of the last century based on the principle of a classical harmonic 

oscillator. 

 

 
Fig. 13.3 The Lorentz model of matter. 

 

The equation of motion of such an oscillator is 

 

,
2

2

� $=++ qkx
dt
dx

dt
xdm γ            (13.5) 

 

where m is the mass of the oscillator, γdx/dt is the damping force exerted by neighboring dipoles, and k is 

the 'spring' constant. In this expression, q�' is the driving force produced by the local electric field �', and 

x is the displacement of the mass from its equilibrium position. This is not really a legitimate model of an 
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atom but simple cases of correct quantum mechanical theory gives results equivalent to this model. In a 
crude sense, the effects of quantum theory are accounted for by the appropriate choice of the properties of 
oscillators. 
 

If the electric field acting on the dipole vibrates with a frequency ω, the displacement x of the charge 
oscillates at the same frequency. Assuming that x = x0eiωt, then x can be solved for in terms of �" 
producing 
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where γ = b/m and mko /=ω  is referred to as the resonant frequency of the oscillator. This 

displacement is complex and it is convenient to express it in the form AeiΦ(q/m)�" where A(q/m)�" is the 
amplitude of the oscillation and Φ is its phase relative to the driving force of the electric field. Simple 
algebra provides us with 
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which follow from Eqn. (13.6). An interpretation of these results is provided in Fig. 13.4a and b where A 
and Φ are shown as a function of frequency ω. How these properties of the oscillator vary with frequency 
depends on the value of ω relative to the resonant frequency ωo of the oscillator. For ω >> ωo, the 
nonresonant oscillations are weak and out of phase with the driving force of the light. The amplitudes of 
the oscillation for this range of frequencies, according to Eqn. (13.7a), decreases at a rate proportional to 
1/ω2 (Fig. 13.4b). In the spectral range of low frequencies ω << ωo, the nonresonant oscillations are 
again weak but, in this case, in phase with the driving force (Fig. 13.4a). In this spectral range, the 
amplitude approaches a constant value as ω is decreased from resonance. Only the resonance case (ω = ωo 
and Φ = 0) corresponds to a transition from one quantum state to another. 
 

Given the response of the single oscillator to a time-harmonic electric field, the relative permittivity 
can be derived using the definition of the dipole moment for a single oscillator as p = qx, and since p = 
α�", then 
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and the polarization per unit volume, P for N oscillators in a unit volume follows as 
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Fig. 13.4 (a) The response of an oscillator to a periodic driving force serves as a model of how charges 

in matter react to an electromagnetic driving force.  The response of the oscillator depends 
on the frequency of the forcing ω to the oscillator’s resonant frequency ωo.  (b) The oscillator 
amplitude and phase as a function of the ratio between the frequency ω and the resonant 
frequency ωo.  The amplitude approaches a constant value when the frequency of the driving 
force is much below resonance as in the case of N2 and O2 molecules exposed to visible light. 

 
 
where is the plasma frequency. The difference between the local field and the external 
field is ignored since a proper treatment of local field effects only complicates matters without adding 
further insight. With this assumption, it follows by matching Eqn. (13.1) to Eqn. (13.8) that 
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which has the following real and imaginary parts 
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respectively. The frequency dependence of each of these components is schematically shown in Fig. 
13.5a. The complex component provides the dampening of the oscillations and is a maximum at 
resonance and coincides with the most rapid change of the real part of the relative permittivity with 
frequency. 
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Fig. 13.5  (a) The frequency dependence of the real and complex parts of the relative permittivity. Note 
that when the damping terms are neglected, γ = 0 and rε ##  = 0 and the unphysical result 

occurs at the resonant frequency (dashed curve). Damping is not a result of the viscous 
movement of the oscillators but represents transitions from one state to another and therefore 
represents absorption processes.  (b) The frequency dependence of the real and complex 
parts of the refractive index. 

 

Quantum mechanical solutions provide similar results but with the following modifications. Atoms 

and molecules have several natural frequencies and each has its own dissipation constant. The effective 

strength of each mode is also different and we represent this by the strength factor f. Summing over all 

modes leads to a modification of Eqn. (13.9) of the form 
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(b) Orientational Polarization-Debye Relaxation 
 

 Lorentz's classical model describes polarization arising from the distortion of charge in nonpolar 

molecules. In solids and liquids composed of polar molecules, the orientation of the dipoles with respect 

to an electric field produces an additional low frequency contribution to the polarization. The ability of a 

molecule to reorient depends on its shape and its interactions with the environment. The nearer to 

sphericity and the lower the dipole moment, the more easily and faster the molecule reorients itself in a 

changing electric field. An asymmetrical molecule like H2O has several stable orientations and changes 

direction relatively slowly from one stable orientation to another. The average time between these 

changes is the relaxation time. 
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The polarization that results via orientation of dipoles can be computed from methods of statistical 
mechanics. We consider only very simple aspects of these methods here. Consider a molecule with a 
permanent dipole moment po aligned at some angle θ to the electric field. The potential energy of the 
dipole is (e.g, Kittel, 1971) 
 

.cos oopU θ� "−=  
 
Statistical mechanics tells us that in a state of equilibrium, the relative number of molecules with a 
potential energy U is 
 

e-U/KT 

 
and the number of molecules oriented at an angle θo 
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where K is Boltzmann's constant and T is temperature. For normal temperatures and � fields, this 
approximates to 
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where no is N/4π (we find this by integrating n(θo) over θo and this should just be N, the total number of 
molecules). The net dipole moment per unit volume follows from the integration of the moment po cos θo 
over solid angle dΩ = 2π sin θodθo, 
 

³=
π

θθθθπ
0

,sincos)(2 ooooo dpnP  

 
resulting in an average dipole moment 
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and by combining Eqns. (13.4) and (13.12) leads to 
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Debye (1929) has given an elegant discussion of dielectric relaxation of polar molecules in liquids. 

He supposed that dipoles initially aligned themselves in the direction of a field only to relax their 
orientations back to an equilibrium state as defined by the average dipole moment above relevant to a 
static field. This relaxation occurs on a time scale τ. The central result of Debye’s theory is that the 
orientational part of the polarizability depends on the applied frequency ω such that 
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Using the Mosotti field for �!, then 
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From this expression, the complex permittivity is given in terms of the permittivity defined at the limits 

ω→0 (εrs, the static permittivity) and ω→∞, the high frequency permittivity) and the effective relaxation 

time constant is, 
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and it follows that 
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This expression is the Debye relaxation formula for the permittivity of a friction-dominated medium in 

which the internal field is assumed to be the Clausius-Mosotti field. The relaxation time is lengthened 

from τ to τe due to the difference between the internal field and the applied field.  

 

The real and imaginary parts of εr follow from Eqn. (13.15) as 
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where Δ = εrs − εrh. The imaginary part of the dielectric function, according to Eqn. (13.16), is a maximum 

at ω = 1/τe , and its behavior with frequency is broadly similar to rε !!  predicted for the Lorentz oscillator.  

The real part behaves quite differently: it has no maxima or minima but decreases monotonically with 

increasing frequency from a value of εrs at low frequencies to εrh at high frequencies. At low frequencies, 

permanent dipoles react to the more slowly oscillating electric field in enough time that they become 

aligned, producing a significant polarization and large values of . At higher frequencies, this part of the 

matter is unable to respond quickly enough to produce any polarization. 

 

The Debye relaxation model has been successfully used to describe measured values of the dielectric 

function at microwave frequencies as demonstrated in Fig. 13.6. Both the real and complex parts of εr for 

water at microwave frequencies are compared to the Debye theory on this diagram. The parameters εrs,  

εrh, and τ are chosen to provide the best fit to the data. An especially relevant consequence of the 

relaxation spectrum of H2O to remote sensing lies in the change of the spectrum of εr with the phase 

transition from liquid to solid water. To understand the differences in εr as this transition occurs it is 

helpful to consider the simple classical expression Debye derived for τ, namely 
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aπη

τ =            (13.17) 

 

for a sphere of radius a in a fluid of viscosity η. This time constant is a ratio of the viscous-restoring 

torque applied to the sphere that maintains alignment to the thermal forces that act to disrupt this 

alignment. When numerical values are substituted into Eqn. (13.17), the derived relaxation time 

corresponds approximately to that estimated from measurement. A naive interpretation of the phase 

transition from liquid water to ice is to consider a large discontinuous increase in viscosity that occurs 

when water freezes. Thus, the permanent electric dipoles that were free to rotate in the liquid are now 

immobilized. The relaxation time for ice is significantly larger than it is for water leading to smaller 

values of rε %%  and a dramatic shift in the maximum of rε %  to smaller frequencies. The consequences of 

such large changes in εr as ice melts are observed when microwave radiation transmitted by a radar 

system is backscattered by melting ice particles producing the "bright band" in vertical profiles of radar 

reflectivity. 

 
 

Fig. 13.6  The dielectric function of water at room temperature calculated from the Debye relaxation 
model with τ = 0.8 × 10-11 sec, εrs = 77.5, εrh = 5.27. Data were obtained from three sources 
(after Bohren and Huffman 1993). 

 

(c) Summary 
 

We learn from both models that when a sunusoidal electric field acts on a dieletric material, there is 

an induced dipole moment that is proportional to the electric field. The proportionality constant εr − 1 

depends on the frequency of the oscillating field and is a complex number, which means that the 

polarization does not follow the electric field but is shifted in phase. A schematic diagram summarizing 

the frequency dependence of rε %  and rε %%  for an ideal nonconducting substance is shown in Fig. 13.7. At 

the low frequency end, rε %  is composed of contributions by all three mechanisms with the largest 

contributions resulting from dipole orientation processes. As the frequency increases, the dipoles are 

unable to respond fast enough, and this mechanism ceases to contribute to rε % , instead the atomic 

polarization processes that produce vibrational motions contribute.  For the water molecule, the 

resonances associated with these processes are found at infrared wavelengths. At even higher frequencies, 

inter-atomic vibrations cannot respond fast enough to the applied field. At these frequencies, the 
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electronic oscillations that are induced by the electric field now contribute to rε "  and the resonant 
frequencies associated with these oscillators are typically found at UV wavelengths. Finally, as the 
frequency increases beyond the point where all electronic modes are exhausted, rε "  approaches unity. 
 

 
 
Fig. 13.7 Schematic diagram of the frequency variation of the dielectric function of an ideal 

nonconductor (Bohren and Huffman, 1983). 
 

Where rε "  changes most dramatically with frequency there is an associated peak in rε "" , which 
characterizes the absorption of radiation by the substance. This absorption arises from the resonances 
associated with the vibrations of atoms and molecules of matter. In dense matter, the molecules are so 
tightly packed together that significant interactions exist between them. The internal modes of the 
oscillations are therefore modified and the natural frequencies of the atomic oscillations are spread out by 
the interactions producing a broadening of the absorption lines much in the same way as pressure 
broadening occurs in gases. In place of the precisely defined characteristic energy levels associated, for 
example, with the vibration and rotation states of the individual molecules, are energy bands composed of 
a continuum of levels. Thus the energy levels of the vibration and rotation states of, for instance, a water 
molecule, form a continuous absorption band resulting in a broad absorption spectrum as indicated in Fig. 
13.7. Figure 13.8 provides a schematic illustration of the electron energy bands of two different types of 
material. 
 

Since the energy bands in a solid form as a superposition of the energy levels of the individual 
molecules, the spectral positions of the more continuous absorption bands for solid matter more or less 
overlap the absorption spectrum of the individual molecules. Thus the infrared absorption spectra of 
liquid water and solid ice, for instance, occur at roughly the same wavelengths where absorption bands of 
water vapor lines are found. 

 
There are features of the energy bands that have a significant bearing on the way radiation interacts 

with condensed matter and which are therefore important to our understanding of particle scattering. The 
energy bands of certain materials overlap, as depicted in Fig 4.8, and the electrons in such a material have 
a continuous distribution of energy within these overlapped bands. If one of the overlapping bands is 
partially empty, application of an electric field readily excites electrons into adjacent unoccupied states 
and an electric current results. The material is said to be a good conductor of electricity and its electrical 
behavior is determined by both the energy band structure and how the bands are normally filled by 
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electrons. This is the case for metals that can absorb radiation at any wavelength. When a photon is 
absorbed in a metal, the electron jumps to an excited state. A photon of the same energy is immediately 
re-emitted and the electron returns to its original state. Because of this rapid and efficient reradiation, the 
surface of the metal appears reflective rather than absorbant. Another type of material is the 
nonconductor, which possesses energy bands that are separated by intervals referred to as forbidden 
bands; absorption of radiation by such material is therefore only likely for photons possessing energies 
greater than this energy gap. 

 
Fig. 13.8  Electron energy bands in nonconductors and conductors. The filled bands are shown hatched 

(Bohren and Huffman 1983). 
 
 
13.3 The Refractive Index 
 
 The two sets of quantities that are often used to describe optical properties of matter are the relative 
permittivity εr and the refractive index m†. Both are related according to 
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where n and κ are used here to denote the real and imaginary parts of the refractive index, respectively.  
The spectral variations of both n and κ from the near infrared to the microwave regions are depicted in 
Fig. 13.9. Certain features of the hypothetical spectra of rε #  and rε ##  shown in Fig. 13.7 can be identified 
in the refractive index spectra. Readily apparent are the relaxation spectra extending from about the 
millimeter wavelength range into the centimeter range. For water and ice, the values of κ lead to 
significant absorptions in clouds when wavelengths are greater than about about 1 µm. For ice, κ 
decreases again beyond wavelengths of about 100 µm. At microwave frequencies, ice particles in the 
atmosphere are more effective scatterers of radiation than absorbers, whereas the reverse is true of water 
drops. There are also significant differences between values of κ for water and ice in the near infrared 
especially around 1.6 and 3.7 µm, which also happen to be channels associated with radiometers flown 
(or to be flown) on meteorological satellites. The consequence of the different values of n to the transfer 
of solar radiation through clouds at these wavelengths has been proposed as a way discriminating ice 
clouds from water clouds. 
                                                           
† The refractive index is sometimes written as m = n + iκ and other times as m = n - iκ.. The latter applies when the time 
dependence of factor of the wave is exp(iωt) rather than exp(-iωt). Both will be used in these notes. 
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Fig. 13.9 Typical values of the refractive indices for water and ice. 
 
 
 Determining the refractive indices of atmospheric aerosol is quite a complex problem and a topic of 
apparent controversy. In Fig. 13.10, the spectra of the imaginary parts of the refractive index of several 
materials that exist in atmospheric particles are shown. Results are given for water, ammonium sulfate, 
crystalline quartz, sulfuric acid, carbon, sodium chloride, and hematite over selected spectral regions. As 
we have come to expect from our previous discussions, κ is large (around unity) in the infrared and 
ultraviolet spectral regions and small at visible wavelengths for all materials, except for carbon and 
hematite both of which significantly absorb visible light. To emphasize the transparency of the material in 
the visible region, the dashed line is the value of κ corresponding to a 1% transmission through a 1 cm 
thick homogeneous slab of material. Only carbon, which has metal-like overlapping electronic energy 
bands (e.g., Fig. 13.8), has high values of κ throughout most of the spectrum. The mineral hematite, 
although a very minor constituent of the atmospheric aerosol, is one of the few known materials that are 
also highly absorbing at visible wavelengths. 
 
 

The hatched region in Fig. 13.10 shows the values of κ obtained from remote measurements using a 
retrieval scheme based on the particle scattering theories discussed in the following chapter. Clearly these 
derived values of κ do not seem to match those of any of the pure materials that make up the particle, and 
are presumably some kind of average of a mixture containing a small amount of a highly absorbing 
material. The meaning of such an average value and its direct application to theories of particle scattering 
must be treated with caution. Measurement of the refractive index of a substance in a pure homogeneous 
slab form is difficult enough, and these results highlight the complexity of estimating the refractive index 
when such material is broken up into small particles of heterogeneous material. 
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F ig. 13.10  The imaginary part of the refractive index of several solids and liquids that are found as 
atmospheric particles (Bohren and Huffman, 1983). 

 
 
13.4 Dielectric Slab 
 

The formal analogy between scattering by a particle and by a slab is shown in Fig. 13.11 in its most 
general aspect. The wave scattered by a particle is analogous to the waves reflected and transmitted by a 
slab. However, there are important differences between these two cases that need to be noted. We will 
learn that particles scatter in complicated ways depending on the direction of scatter, whereas the 
scattering by a slab occurs through interference effects such that radiation is concentrated in only two 
directions. 

 
Fig. 13.11 A schematic depicting the analogy between scattering by a slab and by a particle.  The 

scattered wave by a particle is analogous to the wave transmitted and reflected by the slab 
(from Bohren and Huffman, 1983). 

 13-13



General expression for a propagating plane wave along the z axis is 
 

)( tkzi
oe ω−= ��           (13.19) 

 
where, in a slab of condensed matter of refractive index m, 
 

zmkkz o=            (13.20) 
 
which is defined relative to the wavenumber ko in a vacuum. In an absorbing slab, m is complex and thus 
k is complex. For the simplest case of plane wave propagation along the z direction, and with m = n + i in 
Eqn. (13.20), Eqn. (13.19) may be written as 
 

[ ] .)(/2 tznkik
o

oo ee ωλπ −−= ��          (13.21) 
 
The first of the exponential factors describes the rate at which the radiation is attenuated in the slab. The 
second exponential factor represents the oscillatory part of the wave and we observe that the real part of 
the refractive index determines the phase speed of the wave. The attenuation factor can be written in 
terms of a bulk absorption coefficient β = 4πk/λo such that the intensity of the radiation is attenuated 
according to the formula 
 

.zIeI β−=            (13.22) 
 
A useful and convenient way of interpreting this attenuation is in terms of the penetration depth dI  = 1/β, 
which is the depth to which the intensity is reduced by 1/e of its incident value. 

 
Example 13.1: Depth of Penetration 

 
Water and ice possess refractive indices that are strongly frequency dependent 
and thus have a penetration depth that varies significantly from wavelength to 
wavelength. Calculate the depth of penetration dI in a water and ice slab for the 
following wavelengths and refractive indices. What inferences would you make 
about scattering versus absorption processes by water and ice particles at each 
wavelength? 

 
Refractive Index (n, κ) Wavelength Instrument 

water ice 
0.7 µm AVHRR (1.33, 0) (1.31, 0) 
1.6 µm AVHRR (1.317, 8 x 10-5) (1.31, 0.0003) 
3.7 µm AVHRR (1.374, 0.0036) (1.40, 0.0092) 
10.8 µm AVHRR (1.17, 0.086) (1.087, 0.182) 
0.8 cm k-band radar (8.18, 1.96) (1.789, 0.0094) 
10 cm S-band radar (5.55, 2.85) (1.788, 0.00038) 

 
The depths of penetration are listed on the table above. From these we can make 
a number of inferences about the difference between water and ice scattering at 
the wavelengths given. For example we expect that water surfaces and clouds 
will be relatively dark (relative to ice surfaces and clouds) at 3.7 µm, that ice 
particles are relatively transparent at 0.8 cm and more so at 10 cm, and that 1.6 
µm may be useful in discriminating ice properties in clouds from water 
properties (glaciated clouds will be darker, all things equal, than water clouds). 
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AT622 Section 14 

Particle Scattering 
 

The aim here is to provide a conceptual grasp of particle scattering without inundating with 

complicated recipes. 

 

Particle scattering is a complex topic—but we can simplify the view of particle scattering by 

visualizing the scattered radiation as composed of contributions of many waves generated by oscillating 

dipoles that make up the particle (Fig. 14.1). The complication is that each dipole affects the other such 

that the resulting field emitted by an oscillating dipole has a contribution that is due to stimulation by the 

incident field and a contribution due to stimulation by the fields of neighboring dipoles. Another 

complication is that the charge distribution in the particle forms higher order poles than dipoles and these 

multipoles also contribute to the scattered radiation. 

 

 
 
Fig. 14.1  The radiation scattered by a particle and observed at P results from the superposition of all 

wavelets scattered by the subparticle regions (dipoles)—from Bohren and Huffman (1983). 
 

14.1  Scattering by a Single Dipole: Rayleigh Scattering 
 

Assume that a spherical wave is emitted from a (spherical) dipole, i.e., 

 

Φ−→ io e
kr
�

�  

 
where Φ = (kr − ωt) is the phase of wave and k is the wavenumber. Based on arguments of geometry 
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where α is the polarizability (this is a parameter that is a 'measure' of how readily matter polarizes 
charges—refer to Section 4), and where radiation scattered by a single oscillating dipole is a spherical 
wave, which is represented by the factor in parentheses. In terms of intensities, the two components of 
polarized radiation therefore take the form 
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Fig. 14.2  (a) Geometry for scattering by a single dipole. Shown are the plane of reference and the 

orthogonal components of both the electric field and the dipole moment, which lie parallel 
and perpendicular to the plane. The scattering angle θ is defined on this plane.  (b) 
Scattering pattern of a single dipole. 

 
 A special but nonetheless important case applies to an unpolarized beam of radiation, like sunlight, 
scattered by small particles. Unpolarized radiation can be viewed as a mixture of two independent linearly 
polarized beams of the same intensity. Therefore Ior = IoƐ = Io/2 and 
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describes the scattered intensity of unpolarized radiation by small particles. The scattering pattern pre-
dicted by Eqn. (14.3) is also shown in Fig. 14.3 for unpolarized incident radiation. 
 

There are a number of consequences of Eqn. (14.3) including:  
 
• under pure Rayleigh scattering as much radiation is scattered forward as backwards 

 
• at θ  = 90, Rayleigh scattering completely polarizes unpolarized incident light (such as from the 

sun). 
 

• the amount (i.e., intensity) of light scattered varies as k4 or as λ-4. Consequently, the blue portions 
of white light are preferentially scattered whereas the red portions of white light are 
preferentially transmitted. 
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Fig. 14.3  Two isolated dipoles emit waves in all directions. At some point P far from the 'particle', 

these waves superimpose to create the scattered wave along the direction θ. These waves 
either constructively or destructively interfere depending on their relative phase difference 
ΔΦ, which is defined in terms of the extra distance the incident wave travels first to the 
second dipole (r) less the extra distance from the first dipole to P(r cos θ). 

 
14.2   Radiation From Multiple Dipoles: Towards Understanding Scattering 

by  Large Particles 
 
 Phase difference between waves 1 and 2 (simply proportional to the difference in path length) 
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The EM waves from dipoles 1 and 2 superimpose (i.e., they add) 
 

ΔΦ+ΦΦ
+ += ii ee 2121 ���            (14.4) 

 
and in terms of intensity (= radiance, which is proportional to |� |2) 
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 (Assume �1 = �2). Now for certain phase conditions, such as ΔΦ = π, 3π, … the fields cancel (are out of 
phase). For other conditions, ΔΦ = 0, 2π, … and the fields reinforce (Fig. 14.4a). The latter condition is 
always met in the forward direction, -M radiating dipoles (Fig. 14.4b) each radiating with an intensity I at 
θ  = 0 produces an intensity which is M2 times the intensity of a single dipole in the forward direction. 
Some other general inferences are 

 
• The larger the particle, more radiation is scattered forward 

 
• The larger the ratio 2πr/λ (size parameter) the more convoluted is the scattering (i.e., more maxima 

and minima are expected as θ is varied, e.g., Fig. 14.5). 
 

Although the simple discussion of multiple dipoles given above ignores the complicating effects of 
dipole-dipole interactions, the broad behavior predicted carries over to the more complete calculation of 
particle scattering illustrated, for example, in Fig. 14.5. 
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Fig. 14.4  (a) Excited by an incident wave, two dipoles scattering all directions. In the forward 

direction, the two waves are exactly in phase regardless of the separation of dipoles. (b) The 
greater the number of dipoles in the particle array, the more they collectively scatter toward 
the forward direction, For the example shown here, all dipoles lie on the same line, are 
separated by one wavelength, and interact with each other. The scattered intensity is 
obtained as an average over all orientations of the line of dipoles (from Bohreu, 1988). 

 

 
Fig. 14.5  Polar plots of the scattered intensity for the values of size parameter stated derived from 

Lorentz-Mie theory. The numbers indicate magnitudes in the forward and backward direc-
tions (note the scale change) - from Bohren and Huffman (1983). 
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14.3 Particle Extinction 
 

Forward scattering is a special measure of the totality of the interaction. Depletion of forward propa-
gating radiation is referred to as extinction, BUT we cannot distinguish scattering from absorption along 
this direction. So in addition to a measure of extinction (this is measured by the extinction coefficient), we 
also need a parameter that defines the ratio of extinction by scattering to extinction by absorption.  This 
ratio defines the single scatter albedo 
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Some idea of the general properties of oω

~
 for spherical particles of a size that is typically found in 

clouds is provided in Figs. 14.6a and b. Example spectra of oω
~  for 5 and 50 µm water and ice spheres are 

shown for wavelengths between 0.3 and 50 µm. The spectra presented in these diagrams illustrate a 
number of important properties of oω

~
: 

 
 
 
 

 
 
 

Fig. 14.6 (a) The single scatter albedo as a function of λ for 5 µm water and ice spheres.  (b) The 
single scatter albedo of a model cloud as a function of wavelength.  The solid line refers to 
droplet absorption alone, whereas the dashed line to droplet plus vapor absorption (from 
Twomey and Seton, 1980). 

 
• values of oω

~
 ≥ 0.99 are typical of wavelengths less than about 1.5 µm (this is made clear in Fig. 

14.6b). The spectra of oω
~  in the visible and near infrared region is actually complex. 

 

 14-5



• The minima in 
o

ω~  represent absorption features by ice and water and these align with the 
corresponding maxima of the complex part of the refractive index κ. This is consistent with our 
expectations from the simple theories described below. 

 
o Particle absorption (to the extent it is defined by the co-albedo 1-

o
ω~ ) is dependent on particle 

radius.  
o There are a number of spectral regions where the differences in 

o
ω~  between ice and water 

spheres are large. Differences that exist in the near infrared region (such as near 1.6 µm) 
cannot be seen but others can. 

 
o The single scatter 

o
ω~  is a volumetric quantity defined as the ratio of the scattering properties 

of the volume to the properties that define the total extinction by the volume. For most 
wavelengths of interest, this extinction is a result of both absorption and scattering by cloud 
particles as well as absorption by the minor gases in the volume, especially water vapor. An 
example of the effects of water vapor absorption on 

o
ω~  over the wavelength range 0.5 to 2.5 

µm is presented in Fig 14.6b. What makes the problem of multiple scattering particularly 
troublesome at these wavelengths is the fact that both liquid water and bands containing 
thousands of water vapor lines overlap in the same spectral region. 

 
(a)  Cross Sections and Efficiencies 

 
Particle extinction is conveniently defined in terms of a quantity called the extinction efficiency Qext 

way of visualizing this quantity (but not an entirely correct way) is provided by reference to Fig 14.7. In 
this simplistic view, we consider radiation as a stream of photons that flow into a volume containing the 
scattering particles. Each particle within the volume blocks a certain amount of radiation resulting in a 
reduction of the amount of radiation directly transmitted through the volume. The reduction in the 
radiation as it passes through a volume of spheres can be expressed in terms of a cross-sectional area Cext , 

which is generally different from the geometric cross-sectional area of the particle. For spherical particles 
of radius r, the definition of Qext then follows as 
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ext

ext

π
=              (14.6) 

 

 
Fig. 14.7  An approximate view of particle extinction. Particles 'block' a certain amount of radiation 

from penetrating through the slab. The reduced transmission can be described in terms of a 

cross-sectional area Cext shown as the shaded area around the particle. While this view of 

extinction is a simple one, to visualize it is not entirely correct as extinction occurs through 

subtle interference effects. 
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When Cext exceeds the value of the geometrical cross-sectional area of the particle, Qext > 1 and more 
radiation is attenuated by the particle than is actually intercepted by its physical cross-sectional area. 
Since this extinction occurs by absorption or by scattering or by a combination of both, it follows that 
 

Qext = Qabs + Qsca .              (14.7) 
 

We expect that Qext depends on the refractive index of the material, the wavelength of radiation and 
the size of the particle. Figure 14.8 shows a plot of Qext, calculated from Lorentz-Mie theory, as a function 

of the size parameter x for water sphere illuminated by light of a wavelength of 0.5 µm. Somewhat 
obvious are the large maxima and minima with a superposition of finer scale variations (referred to as 
ripples). Another familiar phenomenon that follows from consideration of Fig. 14.8 is the reddening of 
white light as it passes through a collection of small particles. This is depicted by the rapid rise in 
extinction as x increases (i.e., toward shorter wavelengths) and is a general characteristic of nonabsorbing 
particles that are smaller than the incident wavelength. Thus, blue light is extinguished (scattered) more 
than red light, leaving the transmitted light reddened in comparison to the incident light. This reddening is 
a phenomenon that is not only limited to sunlight in the Earth's atmosphere but also for starlight reddened 
by interstellar dust particles. It is obvious from Fig. 14.8 that extinction is highly dependent on the size of 
the particle. 

 
Fig. 14.8  Extinction efficiency for water droplet in air calculated for λ = 0.51 µm as a function of size 

parameter x. There are two ways of presenting results of this type. For the example shown, 
the size parameter can also be varied by changing the wavelength, while fixing the size of the 
particle. The results are not the same because as wavelength varies so does the refractive 
index and extinction depends not only on the size parameter but also on the refractive index 
(adapted from Bohren and Huffman, 1983). 

 
(b) Extinction by a Cloud of Many Particles 
 

The opposite spectral effect of reddening is the blueing of transmitted white light that occurs as the 
extinction decreases with increasing x on the high x side of the extinction peaks shown in Fig. 14.8. 
Unlike reddening, this blueing phenomenon is highly dependent on the character of the particle size 
distribution and occurs rarely: "once in a blue moon." In fact, this extinction feature and others that 
depend on particle size are obscured, if not totally obliterated, when the extinction is determined from 
observations of light scattered by a small volume of air containing particles of a variety of sizes. Under 
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atmospheric conditions, the intensity of radiation scattered by such a volume of particles may be simply 
obtained as the addition of the intensities of light scattered by individual particles. 

 
 Suppose  
 

,constant )( //)31( mrrbb errn −−=            (14.8) 

 
represents the size distribution of (say) water droplets in a given volume of cloud. Some basic properties 
of this distribution are: 
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The parameter b is a measure of the distribution variance and thus the width of the distribution.  

When the scattered fields from all particles in the volume are added, we see a general smoothing of the 
extinction spectrum as b increases. The very fine ripple structure in extinction for the monodispersed 
cloud (i.e., b = 0) disappears as b is systematically increased from zero and the interference structure (i.e., 
the broad maxima and minima) eventually fades away as the distribution widens. For the widest 
distributions chosen for this illustration (b = 0.5), the only remaining features are reddening at small size 
parameters, and, the asymptotic approach to the limiting value 2. 
 
(c)  The Extinction Paradox 

 
Another important feature of the Qext − x spectrum is the tendency for the extinction Qext either to 

oscillate around the value of 2 as x → ∞ as illustrated in Fig. 14.8 or to converge to the value of 2 as in 
the cases of Fig. 14.9. This behavior of particle extinction is referred to as the extinction paradox. Why a 
paradox? Intuition suggests that if we consider extinction as just the radiation that is blocked by the 
particle, like that illustrated in Fig. 4.7, then the extinction cross section is just the shadow projected by 
the very large particle. This geometrical view of extinction predicts that the limiting value of Qext is 1 and 
not 2. However, no matter how large the particle, it still has an edge, and in the vicinity of the edge rays 
do not behave the way our simple geometrical arguments say they should. The energy removed from the 
forward direction can be thought of as being made up of a part that represents the amount blocked by the 
cross-sectional area of the particle and a part diffracted around the particle's edge. The diffracted amount 
eventually fills in the shadow area when viewed far enough from the particle. The total amount removed 
from the incident beam by diffraction is therefore also characterized by the particle cross-sectional area. 
The net result is that an amount twice the cross-sectional area of the particle is scattered out of the 
incident beam. We learn from this, and further discussion below, that particle extinction is not just a 
process of blocking light, but is actually a result of more subtle interference effects (Fig. 14.10). 
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Fig. 14.9  (a) Standard size distribution (14.8) for 2 values of a and three values of b. The size 
distribution is normalized so that the integral over all sizes is N = 1. (b) The extinction 
efficiency, Qext, as a function of the effective size parameter x = 2πa/λ for the values of 
effective variance b given. Mie theory was used with a refractive index n' = 1.33, κ = 0 (after 
Hansen and Travis 1974). 

 

 
 
Fig. 14.10 An illustration of the extinction paradox.  The photograph shows the diffraction pattern 

produced by a round stop.  In the middle is the Poisson spot.  The image is created by 
observing a light source obscured at some distance by a ball bearing of 10 mm diameter.  
The telescope is located several meters behind this obstacle. 
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14.4 A Simple Model of Particle Extinction 
 
General references: 
 
Van deHulst, 1957: Chapts. 3 and 11 
 
Stephens, 1984: Appl. Opt., 23, 954-959. 
 
Ackerman S. and G.L. Stephens, 1987 J. Atmos. Sci.,  
 
G.L. Stephens, 1994: Remote Sensing.,  
 
(a)  Fundamental Extinction Formula 

 
Consider a plane wave incident on a particle that we choose to write as 
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where we conveniently assume the wave has a unitary amplitude. 
 
 Suppose the scattered wave at O' in Fig. 14.11 is a spherical wave of the form1 
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that introduces the function S(θ), which we hereafter refer to as the amplitude function. This function 
accounts for the fact that the intensity of the scattered radiation varies with scattering angle θ. Now 
extinction is defined at θ = 0 and Cext can be derived in terms of S(θ)—this relation is known as the 
fundamental extinction formula. In deriving this relation, consider points near θ = 0 such that2 
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Fig. 14.11 An arbitrary particle that scatters a plane wave to the point O!. 

 
 
 The intensity is obtained by squaring the modulus of this expression 
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Now, the total intensity is 
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    (14.11) 

 
where O is the integral of the first term and corresponds to the geometric area projected by the particle on 
a distant screen and C is the integral of the second term and can be interpreted as the amount of light 
reduced by the presence of the particle (due to extinction). This integral reduces to 
 

.)]0([
4

thus,)];0([
4

22
=ℜ==ℜ= θθ

π Se
x

QSe
k

C extext      (14.12) 

 
(b) Anomalous Diffraction Theory 
 

One may gain the false impression, both from Fig. 14.7 and from the arguments leading to Eqn. 
(14.12) that extinction occurs through blocking an amount of incident light of magnitude Cext. In fact, 
extinction is a subtle interference phenomenon and not one of merely a blocking of light as the extinction 
paradox reminds us. In discussing this paradox, we learn that the particle not only 'blocks' an amount of 
light that is defined by the geometric cross section but also removes some of the energy of the original 
wave via interference. A relatively simple, but nonetheless useful model of extinction is provided by the 
anomalous diffraction theory of Van de Hulst (1957, Ch. 11), which seeks to model these interferences. 

 
In the ADT of van de Hulst, we are interested in defining the characteristics of the wave on a 

reference "screen" V far removed from the particle (Fig. 14.12). We argue that the characteristics of this 
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wave at V are governed only by diffraction resulting from interference between the ray just outside the 
particle to one that passes through the particle. A difference in phase between these rays creates this 
interference. The basis that we claim these can interfere results from considering that V is infinitely far 
from the particle and that the particle is both large (such that we can trace rays through it and 'soft' so that 
refraction at the surface interface is negligible). 

 

 
 

Fig. 14.12 Ray passing through sphere. 
 
 
We begin by noting that the extinction paradox predicts  

 
Cext = 2G           (14.13) 

 
where G is the geometric cross section leading to a value of Qext = 2 when r → ∞. From this and Eqn. 
(14.12) it follows that 
 

GkS
π

θ
2

)0(
2

==           (14.14) 

 
Now consider a transparent particle with a ray traversing it along the direction drawn in Fig. 14.12. The 
phase difference between the ray outside the particle to the ray that penetrates the particle at an angle ϕ as 
shown in Fig. 14.12 is 
 

ϕρϕφ sinsin)1(2 =−=Δ mx  
 
where ρ defines the phase shift of the central ray.  At point Q the amplitude �Q is 
 

ϕρφ sini
Q ee −Δ− ==�  

 
for an amplitude of the incident wave �o. Thus the net attenuation is 
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π
θ  

 
where the integral is taken over the geometric shadow area of the particle. With substitution and change 
of coordinates, the above integral can be evaluated (refer Van de Hulst, p175) to yield 
 

)()0( 2 ρθ iKxS == $           (14.15) 
 
where 
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and thus 
 

)).((4 ρiKeQext ℜ=           (14.16) 
 

Figure 14.13 shows examples of Qext calculated using this simple formula and compares it to the 
Lorentz-Mie formula. Clearly the approximate formula has some shortcomings (no ripple structure) but 
the overall characteristics of the Qext curves are well represented (especially as m → 1). The simple theory 
also allows us to interpret the larger maxima and minima as interference features. The approach is very 
simple and readily adapted to non-spherical particles. It may prove to be a desirable way of incorporating 
scattering parameters into atmospheric circulation models for example. 

 

 
Fig. 14.13  Extinction curves computed from Mie's formulas for m = 1.5, 1.33, 0.93, and 0.8. The scales 

of x have been chosen in such a manner that the scale of ρ = 2x | m – 1 | is common to these 
four curves and to the extinction curve for m – 1 = ±ε . 

 14-13



Absorbing particles can also be simply handled in the ADT approach. If m = n − iκ.,  then we can 
define the quantity 
 

1
tan

−
=

n
κ

β  

 
and note that β is very small for most solar wavelengths (see Fig. 14.14). 

 
Fig. 14.14 The angle as a function of wavelength for water 

 
 

The phase shift of the central ray is then 
 

)tan1()1(2* βρρ imx −=−=         (14.17) 
 
where ρ = 2x(n - 1) and from Eqn. (14.16) 
 

)]tan([4 βρρ +ℜ= iKeQext         (14.18) 
 
The energy absorbed inside the sphere is simply calculated by considering the dampening factor of the 
wave in the particle. The waveform is 
 

].sinexp[]sin2exp[)sin*exp( τρτκτρ ixi −−→−  
 
The decrease in intensity on passage through the particle is therefore 
 

ϕκ sin41 xe−−  
 
which is due to absorption. Thus 
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and 

 

)4(2 κxKQabs            (14.20) 

 

where v = 4xκ serves as a particle absorption similarity parameter—i.e., absorption by two particles one 

of radius al and composition κ1, and the other of radius a2 and composition κ2, are identical (self similar) 

when v1 = v2 . Figure 14.15 presents a plot of Qabs as a function of v from Eqn. (14.20) and contrasts this 

with efficiencies derived from Lorentz-Mie theory, assuming ice spheres. The ADT results match those of 

Lorentz-Mie when v is small (which is the range of validity of the ADT). Spectra of Qabs, also indicate 

reasonable agreement and serve to remind us that this absorption is sensitive to particle size. 

 

 

 

 

 

 

 

Fig. 14.15  The absorption efficiency as a function of v. Spectra of Qabs and v as a function of wavelength 
for 5 µm and 10 µm water spheres. 

 

14.5 Extinction Coefficients and Optical Depths 
 

The extinction coefficient (in this case, volume extinction coefficient) is defined as 

 

³= drrQrn extext
2

)(πσ           (14.21) 

 

for spherical particles. Similar expressions apply to scattering and absorption. Based on dimensional 

arguments, n(r) → L-4, r2 → L2, and dr → L and σ → L-1. By definition, the optical depth is 
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dzd extστ =  

 

(a)  Rayleigh Scatter (Liou, p76-79) 
 

 

³ #
#

=
0

)()(
p extRAY pd

pd
dzpp στ  

 

 O2 and N2 are conservative scatterers and the scattering cross section per unit molecule is 

 

),(
3

)1(8

24

223

δ
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π
σ f

N
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s
sca

−
=  

 

where f(δ) accounts for depolarization effects induced by the nonsphericity of the molecule [f(δ) = (6 + 

3δ)/(6 - 7δ)], δ = 0.035. The optical depth is thus 

 

³ ##= zdzNsca )()( σλτ  

 

where N(z) is the number concentration of molecules as a function of height. Since this is proportional to 

pressure, 

 

oo ppp /)(),( λτλτ =  

 

A convenient parameterization of the Rayleigh optical depth is 

 

]0016.01188.0exp[0088.0)(
22.015.4 zzzRAY −−= +− λλτ  

 

where z is expressed in km. The variation different than λ-4
 arises through the slight dependence of a 

(polarizability) on λ. 

 
Fig. 14.16  Rayleigh normal optical thickness between the top of the atmosphere and the altitudes given 

on the figure. (From Marggraf and Griggs, 1969). 
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(b)   Cloud Optical Depth (at Solar Wavelengths) 
 

³= dzextcloud στ  

 
where 
 

³= drrQrn extext
2)( πσ  

 
At these wavelengths and for tropical cloud droplet sizes, x >> 1 so that 

 
Qext → 2 

  
(the extinction paradox). Thus 
 

³³≅ drdzrrncloud
2)(2 πτ  

 
With the following definitions 
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it follows that 
 

er
W

2
3

~τ             (14.22) 

where W =  = liquid water path. Thus extinction is inversely proportional to r³ '' zdzw )( e –this is 

important as it says that clouds composed of high concentrations of small droplets are optically thicker 
than clouds composed of fewer but larger droplets. 
 
(c) Cloud Optical Depth (IR) 

 
Let's suppose that only the absorption of IR radiation by cloud particle is important. Then the optical 

thickness is 
 

³ ³
Δ ∞z

absabs drdzQrrn
0 0

2)(~~ πττ             (14.23a) 

 0   0 

For IR wavelengths and cloud droplets ~ few microns, the size parameter is small and Qabs is 
approximately a linear function of x and thus r (e.g., Fig. 14.17). 
 

To some limit, we can approximate Qabs by 
 

mabs rrrQ <⋅ ,constant~  
 
where rm is the characteristic radius of the distribution n(r).  On substitution 
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{ }³ ³
Δz

abs dzdrrrn
0

3)(constant~ πτ  

 
the terms in brackets is proportional to the cloud liquid water, therefore 
 

Wabs ⋅≅ constantτ              (14.23b) 
 
where W is cloud liquid water path. 

 

 
 
Fig. 14.17  The Mie absorption efficiency Qs as a function of size parameter x = (2πr/λ) and thus, of 

particle size for λ = 9.5 µm, xm corresponds to 2πrm/λ where rm is referred to in the text (from 
Pinnick et al., 1979). 

 

 
 

Fig. 14.18  The broadband optical thickness for the 0.3—0.75 µm (a) and 0.75—4.0 µm (b) regions as a 
function of liquid water path and for several cloud types. 
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14.6 Scattering Phase Function 
 

The scattering pattern is described in terms of the amplitude function S(θ). We can gain a better grasp 
of this function by considering the following experiment. In this experiment, a particle of arbitrary shape 
is illuminated by a plane wave traveling from the negative z direction as shown in Fig. 14.11. A detector 
is placed at O' some distance R from the particle and is moved around the particle at this distance. The 
field incident on the particle is 
 

.iwtikz
oinc e +−= ��           (14.24) 

 
and the field measured at O' is (refer to Eqn. (14.7)) 
 

.)(
kR

eS
iwtikR

sca

+−

= θ�           (14.25) 

 
This field can be expressed in terms of the incident field at the particle by combining Eqns. (14.24) and 
(14.25) 
 

,)( o

ikzikr

sca kr
eS ��

+−

= θ  

 
and in terms of intensities it follows that 
 

.
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22
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ISI o

sca
θ

=           (14.26) 

 
It is more usual to describe the angular patterns of scattered light in terms of a quantity referred to as 

the scattering phase function.3 We can consider the relation of the phase function to the amplitude 
function in the following way. Consider an instrument located at the position at O'. If the area of the 
detector is dA, then the amount of radiation received by the detector is contained in the set of directions 
confined to a small solid angle element dΩ = dA/r2. Therefore the total energy per unit time at a given 
wavelength that is received by a detector capable of measuring the scattered radiation over the entire 
range of solid angles is 
 

³³ ΞΞ
Ω=Ω≈= dS

k
I

dIRdAIdw o
scasca

2

2

2 |)(| θ       (14.27) 

 
where Ξ is used to denote the entire sphere of directions over which the integration is taken. Now we 
mentioned that the total amount of radiation scattered by a particle can be defined in terms of its 
scattering cross-sectional area Csca. By definition, 
 

,2 ³Ξ Ω= dIRCI scascao          (14.28) 

 

                                                           
3 The use of the word phase to name this function has no relation to the phase of the wave but originates from the 
astronomical literature where it refers to lunar phases. 
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and 

³Ξ Ω= .|)(|
1 2

2
dS

k
Csca θ          (14.29) 

 

These relationships provide us with the definition of the scattering phase function P(θ) 
 

scaCk

S

r

P
2

2
|)(|)( θ

π
θ

=           (14.30) 

    
which is a unitless quantity and when integrated over solid angle obeys the following condition 

 

³Ξ =Ω .1)(
4

1
dP θ

π
          (14.31) 

 

This is an energy conservation condition, which simply states that in the absence of absorption the energy 

scattered in all directions around the particle must be just that amount that has been decreased from the 

original direction of propagation of the incident field. 

 

Figure 14.19 presents plots of the phase function derived from Lorentz-Mie theory for spheres of 

varying size. 

 
Fig. 14.19  Comparison ray optics and Lorentz-Mie theory for phase functions derived from three size 

distributions (xm = 2πrm/λ) and two values of refractive index. 
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(a) Parameters of the Scattering Phase Function 
 
 One parameter that usefully characterizes the asymmetry of particle scatter is the asymmetry 
parameter. It is defined as 
 

³
+

−
=

1

1
.coscos)(cos

2

1
θθθ dPg          (14.32) 

 
Note that g = 1 is complete forward scatter and g = 0 is isotropic and symmetric scatter (e.g., Rayleigh 
scatter). 

 
 

Consider as an example, the simplistic phase function shown below.  
 
Forward scatter: 
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sin)(cos

4
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Backscatter: 
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2
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1
sin)(cos

4

1 ddPb  

 
Normalization: 
 

f + b = 1 
 
 For the simple phase function illustrated, it follows that 
 

g = (+l)f + (-l)b 
 
and  
 

b = (1 − g)/2 
 

f = (1 + g)/2 
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Fig. 14.20  The asymmetry factor as a function of wavelength for the three cloud models. 

 
(b) Simple Parameterization of the Scattering Phase Function 

 
We find it convenient to present the phase function by 

 

¦
=

=
N

PP
0

)(cos)(cos
"

"" θχθ  

 
where Pр is the Ɛth order Legendre polynomial and χƐ are the associated expansion coefficients. (Refer to 
exercise 14 (summer lecture course), for further discussion of phase function expansions.) A general rule 
of thumb is, the larger the particle the more terms are required to represent the phase function (Fig. 
14.21). 

Fig. 14.21  Coefficients of the Legendre polynomial expansion for a hypothetical cloud model derived for 
both Lorentz-Mie and Henyey-Greenstein phase functions. 
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A specific form of phase functions useful in cloud calculations is the Henyey-Greenstein phase 
function. The H-C function decays monotonically with θ unlike real functions that possess glories, 
rainbows, and other optical phenomena (Fig. 14.22).  It can be expressed in terms of g as 

 

2/32
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gg
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++
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=  

 
which has a very convenient expansion 
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Combinations of H-G functions have been proposed to model the scattering in the back-hemisphere more 
realistically. An example is the double H-G function 
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which is also graphically illustrated in Fig. 14.22c 
 
 

 
 
Fig. 14.22  Comparison of three different phase functions plotted as functions of (a) θ and (b) cos θ. Two 

are Henyey-Greenstein functions with g = 0.75 and 0.85 and with values at θ = 0 of 28 and 
86, respectively. The third is a Lorentz-Mie case for a polydisperse water cloud of effective 
radius 10 µm, with a value of 9.7 x 103 at θ  = 0. (c)  Example of a double H-G function with 
the values of b, g1 and g2 as indicated. 

 
14.7     Scattering by Spheres: A Brief Outline of Lorentz-Mie Theory 
 

The theory for scattering by dielectric spheres was developed independently by Lorentz in 1890 and 
Gustav Mie in 1908 (refer to the discussion of these developments in the bibliographical discussions at 
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the end of this chapter). The derivation of the solution is a straightforward application of classical 
electromagnetic theory so only the resulting formulae are given here. 

 
(a)    General Formulae 
 

Mie's solutions for scattering by a dielectric sphere are infinite series whose rates of convergence 
depend on the value of the size parameter x. The two scattering amplitude functions have the form 
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and where  is the associated Legendre polynomial (e.g., Abromowitz and Stegun 1971). The 
coefficients a

1
nP

n and bn are referred to as Mie scattering coefficients and are functions of refractive index 
m and size parameter x. The mathematical forms of these coefficients are given as ratios of Ricatti-Bessel 
functions. The extinction and scattering efficiencies are also series 
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AT622 Section 15 
Radiative Transfer Revisited: Two-Stream Models 
 

The goal of this section is to introduce some elementary concepts of radiative transfer that accounts 
for scattering, absorption and emission and introduce simple ways of solving multiple scattering 
problems. We introduce simple models to solve the relevant radiative transfer equation and demonstrate 
how they offer a glimpse at the intricate way in which the radiance field depends on the properties of the 
scattering and absorbing medium. 
 
15.1 Scattering as a Source of Radiation 
 

Photons flowing along a given direction are removed by single scattering as Beer's law predicts. 
However, these photons can actually reappear again along that same direction when scattered a multiple 
number of times. In fact, many of the scattering media of interest to studies of the atmosphere are multiple 
scattering media, that is media containing a sufficient number of scatterers that photons traversing it are 
likely to be scattered more than once. Multiple scattering of sunlight, for instance, gives rise to many 
observable phenomena that cannot be explained from single scattering arguments alone. For example, 
single scattering predicts a sky that is of uniform brightness and color contrary to what we observe. The 
whiteness and brightness of clouds is also a result of multiple scattering. Reflection of visible and 
microwave radiation from various surfaces is largely influenced by multiple scattering. Multiple 
scattering is thus relevant to many topics and we need to develop a mathematical description of how these 
photons reappear along the reference direction in order to account for it. 
 

Consider a beam of monochromatic radiation flowing along a direction defined by the vector ξ "
&

 illu-
minating a small volume located at  and of length ds containing scattering particles (Fig. 15.1).  The 
volume is taken to be small enough that only single scattered photons emerge from it.  The incremental  

r&

Fig. 15.1  Geometry for scattering of diffuse light. ξ "
&

is the unit vector that defines the direction of the 
flow and  is the vector that specifies the position of the volume element relative to an origin 
point. 

r&
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increase in intensity along the direction specified by ξ
&

due to the scattering of this incident beam is, by 
virtue of the definition of the phase function1 given in Section 13, 
 

 ( , , )( , ) ( , ) ( ) ,
4sca

P rI r ds I r dξ ξ
δ ξ σ ξ ξ

π
%

%= %Ω

& '&& '& & '
 (15.1) 

 
where σsca is the volume scattering coefficient given earlier and the wavelength dependence on all 
quantities is understood. The total contribution to I( ,r ξ

&& ) by scattering of the complete diffuse field 
surrounding the volume is given by the integral of Eqn. (15.1), namely 
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which leads to the following definition 
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such that 
 
 ( , ) ( , ) .scadI r ds J rξ σ ξ=

& && &  (15.4) 
 
The quantity J( ,r ξ

&& ) is the source of radiation due to scattering of diffuse light (sometimes this source is 
referred to as virtual emission) and  is the single scatter albedo defined as oω�
 

 sca
o

ext

σ
ω

σ
=�  

 
and varies between zero for pure absorption and unity for pure scattering (the latter condition is known as 
conservative scattering) such that the quantity 1 -  is the fraction of the incident radiation that is 
absorbed by the small volume element under consideration. 

oω�

 
The monochromatic radiative transfer equation defines the net change in intensity of a beam as it 

traverses the path element ds through a small volume. The change in intensity as the beam traverses a 
volume of atmosphere that both absorbs and scatters {and emits} radiation is 
 

dI = dI(extinction) + dI(scattering) + {dI(emission)},        (15.5) 
 
or 
 

 ( , ) [ ( , ) ( , )] { ( )} ,ext
dI r I r J r dI emision

ds
ξ

σ ξ ξ= − − +
&

& &       (15.6a) 

                                                           
1 The phase function is a bidirectional scattering function that is entirely analogous to the bidirectional functions. 
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after collecting the extinction term and Eqn. (15.4) for scattering. It is relevant to note the similarity of 
this equation to Eqn. (4.8a,b) except that the scattering source in Eqn. (15.6a) is replaced by the Planck 
function in (4.8b).2 
 

The radiative transfer equation relevant to a horizontally stratified atmosphere is 
  

 
4

( , , )
( , , ) ( , , , ) ( , ) ( ) .

4
sca

ext abs
dI z I z P z I r d B T

dz π

σθ φ
µ σ θ φ θ φ θ φ θ φ σ

π
% % % % %= − + Ω +³  (15.6b) 

 
where if it were not for the presence of the integral term, this equation would be a mere differential 
equation and the theory of multiple scattering would have been worked out and forgotten long ago. 
 

Example 15.1: Virtual Sources? 
 
The problem of solar radiation multiply scattered by cloud or aerosol is more 
conveniently posed in terms of a source of collimated light that enters the 
cloud and by scattering creates a virtual source of diffuse radiation. This 
leads to an additional source term in the equation of transfer, which may be 
derived as follows. Consider Eqn. (15.6b), and suppose that the global 
intensity I(z, θ, φ) may be expressed as two components: 
 

 *( , , ) ( , , ) ( , , )oI z I z I zθ φ θ φ θ φ= +  
 
one for the diffuse field I* and the second 
 

 )()()(),,(0 ��� φφδθθδφθ −−= zIzI  
 

for a collimated beam of intensity I
�

 along the solar direction θ = θ
�

, φ = φ
�

. 
Substitution leads to 
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dI sca

ext  
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����

µσσµ /)(0 )()(where, zz
rext

rextezIzII
dz
dI −−=−=  

                                                           
2 We can also follow the procedure of Section 4.3 to obtain an integral equation of transfer that is analogous to Eqn. 
(4.10). However, there is a fundamental difference between this and the equivalent integral equation that follows in 
this way. In Eqn. (4.10) the source function appearing in the integrand is known as a priori (assuming that the 
temperature distribution along the path is known) and the solution requires a straightforward integration of known 
functions. For scattering, the source function appearing in the integrand unfortunately contains the desired intensity 
and cannot be evaluated a priori unless some approximation is made. The presence of the intensity in the definition 
of J is what complicates the problem of multiple scattering and why a host of different approaches exist to 
overcome it. 
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15.2 Multiple Scattering: A Natural Method of Solution 
 

A natural solution to problems of multiply scattered light in the atmosphere is one that decomposes 
the light field into components that can be identified with the number of times a photon has been 
scattered. This is termed the method of orders of of scattering and Fig. 15.2 provides the general 
geometric setting for discussing this approach. Suppose light of intensity Io enters the medium along the 

direction ξ
&

 at the point . The amount of radiation leaving the distant point or
&

or
&

 along ξ
&

 is 

 
 0 ( , ) ( , ) ( , , )o o oI r I r T r rξ ξ ξ=

& & && & & &
 (15.7) 

 
where ( , , )ot r r ξ

&& &
is the transmission function defined by the path ro → r& &

alongξ
&

)

as shown in Fig. 15.2.  

We refer to I0 as the reduced or unscattered intensity. When some light ( ,I ro ξ# #
&&

at an intermediate point 

 undergoes a scattering event, a first order or primary scattered intensity is generated at that point by an 
amount defined by Eqn. (15.3). This amount of intensity per unit length of path is 
r#&

 
 
Fig. 15.2  Geometry for orders of scattering and geometry of a plane parallel atmosphere for 

computing the primary scattered intensity induced by a collimated source of solar radiation 
of intensity Io. 
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where, according to Eqn. (15.3), J1 may be considered as the source associated with the primary scattering 
of I0. It therefore follows that the radiation from primary scattering of light from all directions is 
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 (15.8) 

 
 
The amount of this primary scattered radiation that is accumulated along the path from r r is o →

& &
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It is a simple and somewhat intuitive matter to show that construction of the intensities associated with 
higher order scattering then follows from the repeated application of Eqns. (15.8) and (15.9) such that 
 

1
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          (15.10a) 
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for each integer order n = 0, 1,… of scattering. The total intensity is therefore the sum of all orders of 
scattering, namely 
 
 0 1 2 ... ... ,n n

n
I I I I I I= + + + + + =¦   (15.11a) 

 
which is conveniently written as 

 
 I = I0 + I*               (15.11b) 

 
where I* in this case is the total diffuse intensity I* = ¦n=1 In. 
 

An obvious question to ask is how many orders of scattering are required to approximate the diffuse 
field to some given accuracy? The general answer to this question depends on how many particles there 
are in the volume and on how efficiently the particles scatter the radiation. A rough idea of the effect of 
the single scatter albedo on scattering is given by the following arguments. Suppose 0I  is an upper bound 
on I0. Then from Eqn. (15.8) 
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by virtue of the phase function renormalization condition Eqn. (15.9) then becomes 
 

 | |1 1
*( , ) ( , ) ext r rI r I r e drσξ ξ $− −$ $= ³

& && && & &  
 
where the exponential factor is the transmission function for the path of length .  From the 
condition on  it follows that 

| |d r r$= −
& &

1
*I

 
 1 0 0( , ) (1 ) .ext d

o oI r I e Iσξ ω ω−≤ − ≤
&&

�  
 
Repeating this procedure for the next order of scattering leads to 
 
 2 0( , ) oI r Iξ ω≤

&&
�  

 
and 
 

0( , )n
oI r I nξ ω≤

&&
�  (15.13)  

  

 15-5



 

for every scattering order n. With the following notation 
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Example 15.2: How many times does a photon get scattered? 

 
Consider the example with  = 0.5 and suppose that we require Ioω�

k to differ 
from the actual intensity by an amount no larger than 1% of 0I . It follows 
that 0/ IΔ ≤  0.01 and that 
 

 
10.50.01

0.5

j+

≤  

 
or j = 7 for the nearest integer value. Thus only 7 orders of scattering are 
required to model the diffuse intensity with a 1% accuracy when  = 0.5. 
This simple exercise offers a clear illustration of the significance of  to 
multiple scattering. We infer that the number of scatterings required to 
represent the total intensity decreases as the absorption by the particle 
increases (or as ). For example, many orders of scattering contribute 
to the total radiation field in clouds at solar wavelengths where  > 0.9 but 
relatively few scatterings contribute at the infrared wavelengths where  < 
0.5 

oω�

oω�

oω�

0oω →�

oω�

 
 
15.3 The Two-Stream Approximation 

 
 On examination of the equation of transfer, which includes scattering in either its interodifferential or 
its integral form, one is confronted with the complicating presence of the integral term that involves an 
integration over the direction variable. In fact if it weren't for this term, the equation of transfer would be 
but a mere differential equation and the theory of multiple scattering would have been worked out and 
forgotten long ago. Thus the essence of the simplification that is introduced by the class of simple models 
discussed here is to approximate, in some way, the angular shape of the radiance field so as to introduce 
some approximation to this integral term. To this end there is a property of the radiance field that is 
utilized to great benefit by these approximate methods although it is not often explicitly realized. This 
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property is illustrated in Figs. 15.3a and b in which the zenith radiance distribution is shown on descent 
into the sea (Fig. 15.3a) and deep in a thick cloud (Fig. 15.3b). It is apparent that this radiance structure 
approaches some sort of asymptotic form with increasing depth into the "medium". Eventually some 
steady distribution is reached and all radiances decrease at the same exponential rate with increasing 
depth ultimately shrinking down in size but preserving its shape. It is also apparent that this asymptotic 
distribution can be described as some simple function of zenith angle (this is the basis of the diffusion 
approximations, which we will not discuss here). 

 
 
Fig. 15.3  (a) The flux distribution on a clear sunny day at three indicated depths in Lake Pend Orielle, 

Idaho (adapted from Preisendorfer, 1976). These fluxes are defined for a collecting surface 
inclined at an angle θ as shown in the inset. (b) Measured intensity as a function of zenith 
angle obtained from a scanning radiometer on an aircraft as it flew through the center of a 
deep stratiform cloud. The lower curve is the difference between measurement and a simple 
cosine of zenith angle variation (King et al., 1990). 
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While we can approach the development of the two-stream equations in a number of different ways, 
the end result is always the same, namely that we arrive at equations of the form 
 

 
F t r F Qd

r tdt F F Q

+ +

− −

§ · § · §−§ ·
= +¨ ¸ ¨ ¸ ¨¨ ¸¨ ¸ ¨ ¸ ¨−© ¹© ¹ © ¹ ©

+

−

·
¸̧
¹

)

 (15.15) 

 
(a) The Two-Stream Equations—The Conceptual Approach 
 

The arguments formulated here are similar to those used in the pioneering work on radiative transfer 
by Schuster in 1905. Consider a parallel, horizontally uniform slab of cloud and consider the fluxes 
flowing in two opposing directions.3  We will use the + superscript to refer to quantities associated with 
flow in the upward direction and a – superscript on quantities relevant to downward flow. The two-
stream equations define the energy balance of this thin slab of thickness Δz in exactly the same way as 
Eqn. (15.6b) describes an energy balance of a small volume of cloud. In order to express the radiative 
energy budget of a layer Δz thick, it is necessary to define the following optical properties:  

 
• The proportion of the incident flux lost by absorption as the radiation flows through the layer of 

unit thickness is kabsD± where D± is a measure of the 'diffuseness' of the radiation field. This 
parameter more or less represents the mean extension of the path, relative to the vertical, that a 
diffuse radiation field travels as it penetrates the layer. It is a function of the angular properties of 
the intensity field among other parameters and represents one of the simplifications mentioned 
above. If we suppose that the angular distribution of radiation that produces the flux is the same 
in both directions (the magnitudes might be different), then 

 
D+ = D- . 

 
Although this assumption is questionable, it tends to be universally used in two-stream models.  

 
• The proportional loss of flux by scattering is sscab± per unit thickness. Here we note that the 

process of absorption is treated differently from scattering in that a measure of the path length is 
needed for estimating absorption but this measure is not needed for scattering. We will further 
suppose that this scattering is the same whether the radiation flows upward or downward, and 
thus 

 
b+ = b- . 

 
Another parameter of relevance is the fraction of radiation f that is scattered in the forward direction. This 
fraction is defined such that 
 

f + b = 1            (15.16) 
 

For a change in flux ΔF defined as positive upwards, then the change in flux on transfer through the 
layer Δz is 
 ( ) (abs sca scaF Dk s b F z s bF z Q z± ±Δ = + Δ ± Δ ± Δ## ±

                                                          

 (15.17) 

 
3 The relationship between radiative flux and intensity is explored in the Appendix. The derivation of the two-stream equations 
given here follows the more conceptual arguments of Schuster. The same equations can be derived directly from Eqn. (15.6b) 
given some assumption about the intensity field. This alternative derivation is left for later. 
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where the last term in parentheses represents internal sources of F± in the layer Δz4.  The first two terms 
on the right hand side and enclosed by parentheses describe the losses of radiation through the processes 
of absorption and scatter, respectively, while the middle terms represent the increase of flux by 
backscatter of the opposing stream. Introducing the definition of optical thickness as 
 

Δτ = −(kabs + ssca)Δz 
 
where the minus sign defines τ as increasing downwards from cloud base opposite to the change in z. On 
taking the limit Δz → 0, we obtain the two-flow radiative transfer equation 
 

 [ (1 ) ] ( )o o o
dF D b F bF Q
d

ω ω ω
τ

±
±= − − + + +#� � �# ±  (15.18) 

 
where  = soω� sca/(ssca + kabs ).  All two-stream methods described in the literature essentially reduce down 
to this equation. The only difference between the various methods lies in how D, b, and S± are specified. 
One example is to consider the simple phase function introduced in Section 13.7a, then it follows that 
 

b = (1 − g)/2 
 
where g is the phase function asymmetry. The radiative transfer equation then becomes 
 

 (1 ) (1 ) (1 ) ( ) .
2 2

o o
o

dF D g F g F
d

ω ω
ω

τ

±
±ª º

= − − + − + − +« »¬ ¼
#� �

�# Q±

                                                          

 (15.19) 

 
The general solution to Eqn. (15.19) for given sources can be complicated. Here we neglect this term 

and consider only solar radiation incident on cloud top assuming this incident flux is purely diffuse (as 
opposed to the more realistic case of a purely collimated incident flux). While the details of the solutions 
described below change with the addition of the source term for solar radiation, notably by introducing a 
solar zenith angle dependence to the solutions, the gross relationships between the optical properties of 
clouds (τ*, , and g) and the diffuse reflectance and transmittance does not change. oω�
 
 

 
4Two main sources of flux are usually considered in these models. One is the source of radiation due to thermal emission, which 
according to Kirchoffs law takes the form 

Q± = kabsπB(T) 
for emitting cloud particles of temperature T. The second is the source of diffuse radiation that results from the single scattering 
of a collimated flux F

�
 of sunlight. This source has the form 

¸̧
¹

·
¨̈
©

§
= −±

�

�
�

�

f
b

seFQ sca
µτ /  

where f
�

 and b
�
 are the forward and backward scattering fractions of the incident flux F

�
 and these fractions are functions of the 

cosine of the solar zenith angle µ
�
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Example 15.3: Solution for sourceless atmosphere, pure scattering 
 
Consider the example of a single layer of 'cloud' with S = 0. For pure 
scattering,  = 1, kabs = 0 
 

  (1 )F m m τ±
+ −= + �#

 
where m+ and m- are constants determined by boundary conditions and 

 
 *(1 )gτ τ= −�  
 

is the optical depth of the entire slab, τ*, scaled by the factor (1 - g).  The 
relevance of this scaled parameter becomes apparent by considering an 
isolated scattering and absorbing layer illuminated from above by flux F

�
 

overlying a dark surface. Under these conditions, the albedo of the cloud 
layer is 
 

τ
τ

~2

~)0(
+

==
+

�F
FR                                 (15.20a) 

 
and the transmittance 
 

τ
τ

~2
21)( *

+
=−==

−

R
F

FT
�

                    (15.20b) 

  
This result implies that two non-absorbing cloud layers with different optical 
thicknesses τ* and g reflect the same amount of radiation when the respective 
values of  are the same. This is referred to as a similarity condition and 
implies that it is not possible to infer τ* from a single reflection or a single 
transmission measurement without information about g. One of the problems 
associated with the remote sensing of ice crystal clouds is that g is neither 
well known nor well understood in how it varies with different crystal habits. 
This parameter is well known for water droplet clouds and is quasi-constant 
with a typical value in the range 0.8-0.85. 

τ�
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Example 15.4: Solution for sourceless atmosphere, nonconservative 

scattering 

 

For this case, < 1, kabs > 0: The solution to Eqn. (15.19) for a sourceless, 

uniform medium has the form 

 

                         (15.21a) 

where 

                 (15.21b) 

and 

                             (15.21c) 

 

where as above the coefficients m± are determined from appropriate 

boundary conditions. Consider the same conditions applied to Eqns. 

(15.21a,b) 

F+ (τ*) = 0 

 

F- (0) = F
�

 
 

for an isolated layer of optical thickness τ*. With some manipulation of Eqn. 

(15.21a), the albedo and transmittance of the layer can be written as 

 

R = γ+ −[e-kτ*
 − e-kτ*

]/Δ(τ*)      (15.22a) 

 

                              (15.22b) 

where 

                          (15.22c) 

 

As τ* → ∞, R → R∞ = γ−/γ+ and this is referred to as the albedo of a 

semi-infinite cloud. This represents the upper limit to the albedo of a cloud 

and since T = 0 and A = 1 − R, this is also the upper limit to the absorption A∞ 

within the cloud. These upper limits are determined entirely by the optical 

properties , k, g, and D of the cloud. From the substitution of Eqn. 

(15.22b) in Eqn. (15.22c) together with the definition of R∞, it follows that 

 

                               (15.23) 

where 

 

 

 

is another similarity parameter (Fig. 15.4b). Equation (15.23) states that the 

reflection by two different optically thick clouds are equivalent when the 

similarity parameter s is equivalent. 
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Fig. 15.4 (a) The spectral reflectance from modeled clouds as a function of their particle size.  (b) The 
similarity parameter as a function of wavelength for different assumed values of the cloud 
droplet effective radious re. 
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Example 15.5: Pollution Susceptible Clouds 
 
The effect of ship stack effluents on cloud optical depth and cloud albedo is a topic of intensive 
interest. The simple two-stream model introduced previously now serves to emphasize how the 
scaled optical depth is the direct controlling parameter on the albedo of clouds. We can deduce that 
optical depth of clouds is 
 

  
 
for a cloud of depth h composed of No particles of a size  that exceeds the wavelength of 
radiation. Increased water content (occurring largely as an increase in ), for instance, can increase 
the optical depth of clouds. An increase in number concentration No can also increase τ* and the 
sensitivity of optical thickness τ* to No, for constant liquid-water content, is given by 
 

  

 
For cloud droplets under solar illumination, g is quasi-constant and ≈ 0.85.  Using this value in Eqn. 
(15.20a), one obtains the following simple approximate expression 
 

  

 
for the albedo of a cloud. We can readily derive the sensitivity of R to droplet number No from this 
relation and express it in terms of No and R. The result for fixed liquid water content w is 
 

  

 
Thus, for a given No, the most susceptible clouds are those with R ≈ 1/2, but the maximum of R is 
rather flat - for R = 1/4 or 3/4, dR/dNo is still three-fourths of its maximum value. For fixed R, 
(dR/dNo)w is inversely related to No, which in the real present atmosphere, can vary by more than 
two orders of magnitude. The susceptibility dRldNo (graphed in Fig. 15.5) reveals a considerable 
sensitivity for clean conditions—e.g., in oceanic and remote areas (where No is low). There 
(dR/dNo)w is seen to approach 1% (per cm-3); that value would mean a reflectance change of 0.01 for 
a concentration change of just 1 cm-3. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 15.5 Susceptibility for different conditions of No and R. 
(b)  The Two-Stream Equations—Analytic Approach: Eddington's Approximation as an Example 
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• If we assume that 
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which resembles the form used in our diffusion approximation, then 
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• The second approximation we introduce is the following 

 

 ( , ) 1 3P gµ µ µµ% %= +  

 

for the phase function expansion. If we consider our radiative transfer equation and integrate over 

each respective hemisphere, then we obtain the following two equations (ignoring sources for the 

moment): 
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Consider the first equation: 
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After collecting terms, we obtain  
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where we can readily identify 
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 (c)  Delta-Two Stream Models 
  

We have already remarked on the scaling associated with phase functions of the form 
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which reduces to the formal two-stream solutions when 
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are used directly in the solutions. It is usual to employ the second moment of the expansion, namely  
 

f = χ/5 = g2 

 
for the scaling factor. 

 
15.4 General Solutions 

 
The two-stream model and its general solution are briefly introduced here. We will consider two 

kinds of source functions to represent those described in footnote 2. In developing these solutions, it is 
useful to introduce two-stream equations (Eqn. (15.15)) as follows 

 
LFF = Q               (15.25a) 

where F is a flux vector 
F

F
F

+

−

§ ·
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of upwelling (F+) and downwelling (F-) flux at level z'. The dependence of each factor in Eqn. (15.25a) 
on z' is taken to be understood. The source function vector, 
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too depends on z'. The two-stream transport operator is 
 

 F ext

t rdL
r tdz

σ
−§ ·

= − ¨# −© ¹
¸

¸

)

 (15.25b) 

 
where we note the streaming term is defined relative to z rather than τ as in Eqn. (15.15), which means 
that the coefficients t and r differ from those of Eqn. (15.24) only by a factor of σext.  Although these 
define the flux equations, the form of this equation is generic in the sense that they also equally apply to 
radiance and the 'n stream' problem (e.g., Flatau and Stephens, 1988). 
 

The different forms of the equation coefficients in Eqn. (15.15), namely t and r, define different 
version of a two-stream model. The 2 x 2 matrix of coefficients defines the attenuation matrix 
 

  (15.26) ext

t r
r t

σ
−§ ·

= ¨−© ¹
A

 
and the 'solution' to the sourceless equation (i.e., Q = 0) can be expressed in terms of the matrix 
exponential 
 
 (( , ) z yz y e− −= AM  (15.27) 
 
where M is a mapping function.  By virtue of the block structure of A, this mapping matrix has a similar 
form 
 

  (15.28) 
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For the 2 x 2 matrix A of the two-stream equations, Eqn. (15.27) follows as 
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where 
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(a) The Interaction Principle 

 
Consider the two types of radiative transfer problem as posed in Fig. 15.6. The goal of the first is to 

deduce the fluxes at the upper boundary of an isolated layer at ZT in terms of the fluxes at the lower 
boundary z. Stated, this way the radiative transfer problem is an initial value problem. Its solution is as 
follows. First consider the sourceless equations for which the solution (assuming constant coefficients) is 
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Unfortunately, most problems of radiative transfer are posed as follows. Given fluxes incident on the 
boundaries, what are the emergent fluxes (Fig. 15.6). These are two point boundary value problems, 
which can be solved through rearrangement of Eqn. (15.30). The relationship between fluxes out in terms 
of fluxes in (and internal sources) is referred to as the interaction principle. In rearranging Eqn. (15.30) in 
the form of the interaction principle, we obtain the relation between the mapping functions above and the 
more classical properties of reflection and transmission. 

 
Fig. 15.6  Two types of transfer problems, the initial value problem at left and the more traditional two-

point boundary value problem defining the interaction principle. 
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Simple reorganization of Eqn. (15.30) in its interaction form gives the desired emergent fluxes F+(zT) 
and F-(z) in terms of input fluxes 
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where the notation indicating the mapping factors are defined for the layer (zT,z) is dropped for 
convenience. This identifies the layer diffuse reflection and transmission functions as 
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which are those of Eqn. (15.22). 
 
(b) Adding Sources - General Solution 
 

We proceed with Eqn. (15.25b) in Eqn. (15.25a) and multiplying both sides by the exponential of the 
matrix 
 

 ( ) ( )Az Az AzdFe e AF z e Q
dz

" " "− − −"− =
"

z"  (15.33) 

 
where we assume that the attenuation matrix (i.e., the optical properties r and t) is independent of z'. 
Integration of Eqn. (15.33) from (z → zT) yields 
 
 ( )( ) ( ) ( , )tA z z

T TF z e F z S z z− −= +  (15.34) 
 
by virtue of the property of the matrix exponential 
 
  1[ ]Az Aze e− − =
 
and where the vector 
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These resemble the more traditional integral form of the radiative transfer equation (Sections 4 and 10). 
However, it contains the desired emergent fluxes (i.e., the solution) on both sides of the equation as seen 
more clearly in the expanded form 
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A special solution arises for problems in which the medium is illuminated with zero incident fluxes 

(known as vacuum boundary conditions). Then we obtain 

  (15.37) 
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which are the particular solutions to Eqn. (15.25a) for general solutions. 
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AT622 Section 16 
Radiative Properties of Clouds 
 

Here we provide an overview of the properties of clouds that define how much radiation is absorbed 
in the atmosphere and how much radiation escapes through the boundaries of the atmosphere. The 
properties of relevance include: 

 
(1) The three dimensional distribution of the cloud. This influence is usually thought of in terms of 

separate vertical and horizontal effects. Vertical variability is dealt with in models by introducing 
cloud overlap assumptions (e.g., Geleyn and Hollingworth, 1979). Horizontal variability is dealt 
with using assumptions involving cloud amount (Stephens, 1988). Either is empirical and a 
critical assessment of the uncertainties associated, with assumptions of each, is lacking. Research 
is now beginning to demonstrate how the 3D nature of clouds is perhaps the most significant 
factor determining the radiative transfer. Hereafter the macroscopic cloud properties that 
determine this influence are referred to as extrinsic optical properties (EOP). We will consider 
only the most basic aspects of the effects of these properties on radiation. 

 
(2) The internal optical properties of the cloud. These properties are intrinsically defined by cloud 

microphysics (such as size and shape of particles). In the case of ice clouds, our understanding of 
the relationship between optical properties to ice particle microphysics is qualitative. Global 
climate models and most cloud resolving models do not predict the relevant microphysical 
properties even of water clouds. Most parameterizations are then carried out in terms of the 
predictable water or ice mass and a specified microphysical parameter (such as effective particle 
size). The optical properties of clouds defined by the intrinsic microphysics of clouds will 
hereafter be referred to as intrinsic optical properties (IOP). The single scatter albedo is an 
example of an IOP. As shown below, cloud optical depth is defined both by macroscopic 
properties (e.g., cloud depth) and microphysical properties (such as particle size) and thus is a 
combination of both. 

 
16.1 Intrinsic IR Optical Properties—Cloud Emissivity 
 

The effect of IOPs on IR radiative properties of clouds is generally thought to be negligible as it is 
commonly assumed that scattering by cloud particles at infrared wavelengths is negligibly small (despite 
the fact that ). Some support of this assumption is given in Fig. 16.1, which suggests that the 
longwave reflectivity of the thickest of clouds is only a few percent. However, even a relatively small 
amount of scattering has effects both on the emissivity of high clouds (Stephens, 1980) and subsequently 
IR heating rates of these clouds (discussed below). 

0.5oω ≈�

 
Ignoring at first the effects of scattering, we might deduce from Fig. 16.1 that the gray-body assump-

tion is reasonable (i.e., the properties of reflection and absorption are spectrally flat). If we work on the 
assumption that absorption is dominant, then 
 
  absτ τ≈
 
and 
  abs kWτ ≈
 
where k is an 'absorption' coefficient. We introduce the following for the cloud emissivity 
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 1 exp( )kWε β= − −  (16.1) 
 
where β is the diffusivity (β ≈ 1.66).  [Note how W for clouds is entirely analogous to u for gases.] 

 

 
Fig. 16.1 (a) Spectral transmittance of a cloud of various thickness.  Altostratus cloud with a liquid 

water content of 0.28 gm-3 (Yamamoto et al., 1970).  (b) Spectral reflectance of a cloud.  
Same characteristics as (a) (Yamamoto et al., 1970).  (c) Spectral emissivity of a cloud.  
Same characteristics as (a) (Yamamoto et al., 1970). 
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In this context, k is an inherent optical property and it is derived, or estimated, in the following way. 
Consider the emissivity form of flux equations 
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applicable to a single cloud layer from which 
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 (16.3) 

 
follows as an inversion. Observations of F↑,↓ , Tc (as best estimated) and W are used to derive ε↑,↓ and 
hence k↑,↓ from Eqn. (16.3). Table 16.1 summarizes various estimates of k published in the literature. 
Figures 16.2a,b show examples of longwave intensities and fluxes obtained from aircraft measurements in 
clouds and shows how Eqn. (16.3) fits these data. Figure 16.2c shows this relationship fitted against 
model simulations of broadband longwave fluxes. 
 
Table. 16.1 Summary of the cloud mass absorption coefficients [mainly (k↑,↓)] in m2g-1

 for low-level water 
cloud and upper level cirrus cloud 

 
βkc Source Type of measurement 

Boundary layer cloud   
   0.13-0.16 Stephens (1978) Theoretical 
       0.13 Platt (1976) Vertical narrowband 

   (10-12 µm) radiance 
   0.11-0.15 Schmetz, et al. (1981) Vertical narrowband 

   (11 µm) radiance 
       0.13 Bonnel, et al. (1980) Vertical narrowband 

   (8-14 µm) radiance 
       0.08 Stephens, et al. (1978) Broadband hemispheric 

   irradiance 
Cirrus cloud   
       0.08 Paltridge and Platt (1981) Vertical narrowband 

   (10-12 µm) radiance 
       0.056 Ibid Broadband hemispheric 

   irradiance 
   0.076-0.096 Griffith, et al. (1980) Broadband hemispheric 

   irradiance 
 

Given a simple expression for cloud emissivity and the profile of cloud liquid (or ice) water content, 
it is a simple matter to derive the longwave flux profiles through a cloud layer using Eqn. (16.2). 
Examples of this kind of calculation are presented in Fig. 16.3a for F↑,↓ at 10 µm and in Figs. 16.3b,c for 
Fnet. The downward fluxes increase rapidly from cloud top (depending on the growth of ε) and the upward 
flux, which at cloud base exceeds the black body flux, decreases into the cloud. Both F↓ and F↑ approach 
the equivalent black body fluxes at the respective cloud boundaries where ε↑,↓ ≈ 1. 
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Fig. 16.2 Experimental values of 10-12 µm emissivity determined from nadir radiance measurements 

as a function of liquid water path.  The solid and open points are the measured values.  (b) 
Mean cloud emissivity versus total water path W to cloud top.  (c) Empirical presentation of 
downward (a) and upward (b) emissivity as a function of liquid water path.  The solid line is 
the least-squares best fit through the given points using the analytic form described in the 
text. 

 
The net flux profiles presented in Figs. 16.3b,c show how the changing F↓ at cloud top influences Fnet 

there and how the changing F↑ at cloud base governs the profile of the Fnet in the lower portions of the 
cloud. The contribution of both depends on the optical thickness (Fig. 16.3b) and the temperature 
difference between cloud and ground (Fig. 16.3c). These dependencies vary with wavelength. The results 
shown in Fig. 16.3 apply to a cloud overlying a surface with no atmosphere above or below it. Figures 
16.4a,b presents longwave flux profiles actually observed in clouds and features similar to those 
illustrated in Fig. 16.3 and are easily recognized. 
 
16.2 Intrinsic Solar Optical Properties 
 

The influence of cloud IOP on solar radiative transfer is complex and germane to a number of current 
cloud-radiation issues thought to be important to topics of climate and global change (e.g., the so-called 
Twomey effect). 
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Fig. 16.3 (a) The 10 µm flux profiles for an Sc cloud layer of optical thickness τN = 5.  (b) The 10 µm 

net flux profiles as a function of optical thickness, Tg = 30°.  (c) The 10 µm net flux profiles 
for an Sc cloud layer possessing three different cloud temperatures, Tg = 30°C and τN = 5. 

 
The relation between IOPs and solar transfer may be explored in the context of our simple two stream 

model solutions in the limit as τ* → 0 and τ* → ∞.  For optically thick, we deduce from Eqn. (15.22) that 
the albedo (and hence absorption) depends as follows 
 
 ( , ( ), ,oR R b g Dω )oµ∞ = �  (16.4a) 

 
 1  (16.4b) A∞ = − R∞

 
where R∞ and A∞ are respectively the albedo and absorption of this ‘semi-infinite’ cloud.  According to 
these simple relationships both the albedo and absorption approach fixed asymptotic limits as τ* 

increases. It is relatively straightforward to show that these limits may largely be considered to depend on 
 using Eqns. (15.22) and (15.21) as a guide. Stephens and Tsay showed that oω�
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  (16.5) 0.4constant (1 )oA ω∞ ≈ × − �

 

 
 

 
 

Fig. 16.4 The total longwave and shortwave flux profiles measured in three Sc cloud layers 
, ,s L

,F F↑ ↓ ↑ ↓ and FB are the shortwave and longwave fluxes, and black body flux, respectively.  
Each point is a 4 min average value.  (b) Comparison of the observed upward F↑, downward 
F↓ and the net Fnet longwave fluxes measured by the C-130 on profile C with the theoretical 
fluxes from the radiation scheme of Schmetz and Raschke (1981), shown as the dashed lines.  
The fluxes from the scheme of Roach and Slingo (1979) are within about 2 Wm-2 of these 
values, except above the cloud top where they are shown by the dotted lines. Slingo et al, 
1982: QJRMS, 108, 833-838. 

 
For optically thin clouds with τ* → 0, it can also be shown (e.g., from Eqn. (15.22) and Stephens and 

Tsay, 1990) 
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and 
 

 
*
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Thus both the albedo and absorption of thin clouds vary linearly with optical thickness and, as expected, 
respectively depend on the backscatter and absorption properties of the individual cloud particles. 
 

These relations provide us with a way of deducing the effects of particle size on the albedo and 
absorption of solar radiation. Two factors that are important are: 

 
• The first is a reciprocal dependence of optical depth on particle size 

 

 3
2 water e

W
r

τ
ρ

=  (16.7a) 

 
where W is the liquid water path (LWP), re is the effective radius (the ratio of volume to area of 
the distribution) and ρwater is the density of water. The same sort of reciprocal relationship follows 
for ice clouds (e.g., Fu and Liou, 1993). An alternative relation is 

 
  (16.7b) 1/ 3 2 / 32 ohNτ π= "

 
where h is the cloud thickness, No is the number density of particles and  is the liquid water 
content (W ≈ Ɛh). Both relationships predict that for fixed liquid water content or path, the optical 
depth increases through increases in N

"

o or equivalently through decreases in re. Such an increase 
in optical depth implies increased albedo of clouds through Eqn. (16.6a) but not necessarily an 
increase in the albedo of thick clouds since the reflection of these clouds is largely insensitive to 
any changes in optical depth if deep enough. 
 

• The second factor involves the relationship between 1 − oω
~  and re, which Ackerman and 

Stephens (1987) simplify to 
 

 p
eo rκω ×≈− constant~1  (16.8) 

 
where κ is the bulk absorption by water and p < 1. 
 

From the relationships in Eqns. (16.7a) and (16.8), and the expressions for albedo in Eqns. (16.6a), 
(16.4b), and (16.5), it follows that the albedo of clouds increases as particle size decreases (Fig. 16.5a) 
through a combination of both decreasing in absorption (predicted from Eqn. (16.8)) and associated 
increases of optical depth, Eqn. (16.7a). The relationship between absorption and particle size as 
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highlighted in Fig. 16.5b is complex. The dependence on particle size is such that the absorption of thin 
clouds (i.e., small LWP) actually increases with decreasing particle size, while the reverse applies for 
thick clouds (or large LWP). This thick cloud dependence has been mistakenly interpreted to imply that 
indiscriminant increases of particle size enhances absorption in clouds explains discrepancies with 
observations. Marine boundary layer clouds typified by intermediate values of LWP (and optical depth) 
are characterized by a weak dependence on re. 

 
Fig. 16.5 Contributions to the (a) albedo and (b) absorptance by the three spectral absorption regimes 

introduced by Ackerman and Stephens (1987) as a function of re for specified values of LWP.  
The symbols refer to calculations using scattering properties from Lorenz-Mie theory (ignore 
differences between symbols and curves). 

In summary, we deduce that the albedo of clouds is sensitive to both particle size and LWP (or IWP) 
and varies in a systematic way with changes in these parameters. By contrast, the solar absorption 
depends on these parameters in a complex way. 
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A series of aircraft experiments that seek to confirm the relation between re and cloud albedo are 
those of the Southern Ocean Cloud Experiments (SOCEX) described by Boers et al. (1995). They find 
significant seasonal variations in re characteristic of marine layered cloud between summer and winter 
(Fig. 16.6a) with composite mean values of re = 19 µm in winter and re = 13 µm in summer. Since these 
measurements were carried out in baseline air (free of continental effects), these results are consistent 
with the seasonal variations of DMS and the subsequent influence of DMS on CCNs and thus cloud 
microphysics. These large measured seasonal changes in re translate to significant percentage changes in 
cloud albedo (refer to Fig. 16.5a). In Fig. 16.6b the profile of effect radius is shown when the measured 
drizzle component is added to the measured profiles of Fig. 16.6a. This drizzle contributes significantly to 
the particle size at cloud base but its direct effect on the albedo of clouds has not yet been determined. 
The indirect effects of drizzle on albedo, through its effect on cloud evolution, are thought to be 
significant (Stephens, 1994). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 16.6 (a) Vertical profiles of re from aircraft measurements of c

effective radius for selected values of ??  The solid curves represent the relationship 
described by Eqn. (??) for the values of p indicated and the open circles apply to the MADT 
theory.  The insert depicts the breakdown of the weak, moderate, and strong absorption 
regimes. 

16.3 Extrinsic Cloud Optical Properties 
 

The most dominant control on the infrared radiative transfer through clouds is the contrast between 
radiation emitted from the atmosphere to the cloud from above and below and the radiation emitted from 
the cloud. This influence is visible in the results shown in Figs. 16.2 and 16.3. Unlike for the clear sky, 
the net LW radiative energy budget is largely dominated by those spectral regions that are most 
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transparent to gas absorption—that is in the atmospheric window. The net LW budget of a cloud is one of 
a balance between emission from top (cooling) and absorption from the large flux below the cloud 
(warming). This balance changes sign as the altitude of the cloud layer changes—net warming by high 
cirrus in a tropical environment is expected, net cooling for lower cloud. This variation is evident in Fig. 
16.8, which shows the net longwave radiation budget of a 1 km blackbody cloud located at different 
levels in a standard atmosphere. This budget is defined as 
 

ΔF = Fnet (base) − Fnet (top) 
 

and this budget is more to be positive. Examples of the spectral disposition of ΔH for cirrus clouds of 
different thicknesses located in the tropical atmosphere and in the subarctic winter atmosphere are shown 
in Fig. 16.7. 
 

 
Fig. 16.7 Spectral distribution of ΔF for various cirrus clouds in (a) a tropical atmosphere and (b) a 

subarctic winter atmosphere. 
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Fig. 16.8 Net radiative loss from a thin “black” cloud inserted at various heights in the mean 

atmospheres of three latitude zones.  (After Paltridge, 1974d) 
 
 
16.4 Heating Rate Profiles in Clouds 
 

The radiative heating in clouds follows as 
 

dz
dF

Cdt
dT net

pρ
1

−=
 

 
and depends on the optical depth, cloud temperature, wavelength and all parameters that affect the fluxes 
(we get some sense of the effect of particle size from the above discussion). Examples of the longwave 
heating are given in Figs. 16.9a,b.  Figure 16.9c presents the first measured profiles of solar heating and 
IR cooling. Generally, these profiles are characterized by radiative cooling at cloud top and warming at 
cloud base, although the latter is strongly dependent on the temperature differential of the radiation 
incident from below and the cloud temperature. 
 

The spectral infrared heating of a cloud located in a tropical and subarctic winter atmosphere, 
respectively, is given in Fig. 16.10. High tropical clouds predominantly heat because the difference 
between emission at cloud base and absorption of radiation from below leads to a gain in radiative energy 
and thus a heating of high tropical clouds. This heating occurs principally in the more transparent regions 
of the spectrum where these differences are largest. The details of this heating and how it penetrates into 
the cloud also depend on the optical depth of the cloud, which under the Rayleigh assumptions, depends 
on the ice water path. For the lower cloud in the subarctic atmosphere, the lack of a distinct contrast 
between the emission from cloud base and the upwelling radiation from below leads to a much reduced 
heating at cloud base. These lower clouds predominantly cool at cloud top at most wavelengths. 
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(b) 

(c)

(a) 

 
Fig. 16.9 (a) Cooling profiles for various spectral regions through an isotropic cloud at approximately 

4 km altitude for a standard atmosphere with surface temepature equal to 22°C.  Cloud 
thickenss = 1.6 km, extinction coefficient (10 µm) = 27 km-1, oω

~ (10 µm) = 0.57.  (b) The IR 
cooling rate profile in a SC I cloud layer 500 m thick positioned at 1.5 km in the tropical 
atmosphere model.  The contributions by the three main spectral regions are displayed.  (c) 
The shortwave and longwave heating and cooling rate profiles measured in the cloud layer 
sampled on 13 May 1976.  The extent of the rms experimatnal error is shown by the 
horizontal lines.  The solid curve is the theoretically calculated profile. 

 
The important point to be drawn from this diagram is that the IR radiative properties of clouds, 

specifically the extent and magnitude of IR heating, is strongly dependent on the properties of the envi-
ronment around the cloud (such as the temperature contrast and the amount of water vapor above and 
below the cloud). What is not emphasized in these diagrams but is of equal importance is the effect of 
optical depth (or IWP) on the radiative heating of the cloud. 
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Fig. 16.10 The vertical profile of the spectral IR cooling rate for (a) an ice cloud located in a model 
tropical atmosphere and (b) for the same in a subarctic winter atmosphere (Edwards and 
Slingo, 1995). 
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