
 

AT622 Section 15 
Radiative Transfer Revisited: Two-Stream Models 
 

The goal of this section is to introduce some elementary concepts of radiative transfer that accounts 
for scattering, absorption and emission and introduce simple ways of solving multiple scattering 
problems. We introduce simple models to solve the relevant radiative transfer equation and demonstrate 
how they offer a glimpse at the intricate way in which the radiance field depends on the properties of the 
scattering and absorbing medium. 
 
15.1 Scattering as a Source of Radiation 
 

Photons flowing along a given direction are removed by single scattering as Beer's law predicts. 
However, these photons can actually reappear again along that same direction when scattered a multiple 
number of times. In fact, many of the scattering media of interest to studies of the atmosphere are multiple 
scattering media, that is media containing a sufficient number of scatterers that photons traversing it are 
likely to be scattered more than once. Multiple scattering of sunlight, for instance, gives rise to many 
observable phenomena that cannot be explained from single scattering arguments alone. For example, 
single scattering predicts a sky that is of uniform brightness and color contrary to what we observe. The 
whiteness and brightness of clouds is also a result of multiple scattering. Reflection of visible and 
microwave radiation from various surfaces is largely influenced by multiple scattering. Multiple 
scattering is thus relevant to many topics and we need to develop a mathematical description of how these 
photons reappear along the reference direction in order to account for it. 
 

Consider a beam of monochromatic radiation flowing along a direction defined by the vector ξ ′
r

 illu-
minating a small volume located at  and of length ds containing scattering particles (Fig. 15.1).  The 
volume is taken to be small enough that only single scattered photons emerge from it.  The incremental  

rr

Fig. 15.1  Geometry for scattering of diffuse light. ξ ′
r

is the unit vector that defines the direction of the 
flow and  is the vector that specifies the position of the volume element relative to an origin 
point. 

rr
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increase in intensity along the direction specified by ξ
r

due to the scattering of this incident beam is, by 
virtue of the definition of the phase function1 given in Section 13, 
 

 ( , , )( , ) ( , ) ( ) ,
4sca

P rI r ds I r dξ ξδ ξ σ ξ ξ
π

′ ′= ′Ω
r srr sr r s

 (15.1) 

 
where σsca is the volume scattering coefficient given earlier and the wavelength dependence on all 
quantities is understood. The total contribution to I( ,r ξ

rr ) by scattering of the complete diffuse field 
surrounding the volume is given by the integral of Eqn. (15.1), namely 
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which leads to the following definition 
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such that 
 
 ( , ) ( , ) .scadI r ds J rξ σ ξ=

r rr r  (15.4) 
 
The quantity J( ,r ξ

rr ) is the source of radiation due to scattering of diffuse light (sometimes this source is 
referred to as virtual emission) and  is the single scatter albedo defined as oω%
 

 sca
o

ext

σω
σ

=%  

 
and varies between zero for pure absorption and unity for pure scattering (the latter condition is known as 
conservative scattering) such that the quantity 1 -  is the fraction of the incident radiation that is 
absorbed by the small volume element under consideration. 

oω%

 
The monochromatic radiative transfer equation defines the net change in intensity of a beam as it 

traverses the path element ds through a small volume. The change in intensity as the beam traverses a 
volume of atmosphere that both absorbs and scatters {and emits} radiation is 
 

dI = dI(extinction) + dI(scattering) + {dI(emission)},        (15.5) 
 
or 
 

 ( , ) [ ( , ) ( , )] { ( )} ,ext
dI r I r J r dI emision

ds
ξ σ ξ ξ= − − +

r
r r       (15.6a) 

                                                           
1 The phase function is a bidirectional scattering function that is entirely analogous to the bidirectional functions. 
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after collecting the extinction term and Eqn. (15.4) for scattering. It is relevant to note the similarity of 
this equation to Eqn. (4.8a,b) except that the scattering source in Eqn. (15.6a) is replaced by the Planck 
function in (4.8b).2 
 

The radiative transfer equation relevant to a horizontally stratified atmosphere is 
  

 
4

( , , ) ( , , ) ( , , , ) ( , ) ( ) .
4

sca
ext abs

dI z I z P z I r d B T
dz π

σθ φµ σ θ φ θ φ θ φ θ φ σ
π

′ ′ ′ ′ ′= − + Ω +∫  (15.6b) 

 
where if it were not for the presence of the integral term, this equation would be a mere differential 
equation and the theory of multiple scattering would have been worked out and forgotten long ago. 
 

Example 15.1: Virtual Sources? 
 
The problem of solar radiation multiply scattered by cloud or aerosol is more 
conveniently posed in terms of a source of collimated light that enters the 
cloud and by scattering creates a virtual source of diffuse radiation. This 
leads to an additional source term in the equation of transfer, which may be 
derived as follows. Consider Eqn. (15.6b), and suppose that the global 
intensity I(z, θ, φ) may be expressed as two components: 
 

 *( , , ) ( , , ) ( , , )oI z I z I zθ φ θ φ θ φ= +  
 
one for the diffuse field I* and the second 
 

 )()()(),,(0 φφδθθδφθ −−= zIzI  
 

for a collimated beam of intensity I  along the solar direction θ = θ , φ = φ . 
Substitution leads to 
 

 * * *( ) ( )
4
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d I I I I P I I d
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σµ σ
π

′+ = − + + + Ω∫  
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 ∫ +Ω+−= ),,,(
4 **
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dI sca

ext  

and 

 µσσµ /)(0 )()(where, zz
rext

rextezIzII
dz
dI −−=−=  

                                                           
2 We can also follow the procedure of Section 4.3 to obtain an integral equation of transfer that is analogous to Eqn. 
(4.10). However, there is a fundamental difference between this and the equivalent integral equation that follows in 
this way. In Eqn. (4.10) the source function appearing in the integrand is known as a priori (assuming that the 
temperature distribution along the path is known) and the solution requires a straightforward integration of known 
functions. For scattering, the source function appearing in the integrand unfortunately contains the desired intensity 
and cannot be evaluated a priori unless some approximation is made. The presence of the intensity in the definition 
of J is what complicates the problem of multiple scattering and why a host of different approaches exist to 
overcome it. 
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15.2 Multiple Scattering: A Natural Method of Solution 
 

A natural solution to problems of multiply scattered light in the atmosphere is one that decomposes 
the light field into components that can be identified with the number of times a photon has been 
scattered. This is termed the method of orders of of scattering and Fig. 15.2 provides the general 
geometric setting for discussing this approach. Suppose light of intensity Io enters the medium along the 
direction ξ

r
 at the point . The amount of radiation leaving the distant point or

r
or
r  along ξ

r
 is 

 
 0 ( , ) ( , ) ( , , )o o oI r I r T r rξ ξ ξ=

r r rr r r r  (15.7) 
 
where ( , , )ot r r ξ

rr r is the transmission function defined by the path ro → rr r alongξ
r

)
as shown in Fig. 15.2.  

We refer to I0 as the reduced or unscattered intensity. When some light ( ,I ro ξ′ ′
rr at an intermediate point 

 undergoes a scattering event, a first order or primary scattered intensity is generated at that point by an 
amount defined by Eqn. (15.3). This amount of intensity per unit length of path is 
r′r

 
 
Fig. 15.2  Geometry for orders of scattering and geometry of a plane parallel atmosphere for 

computing the primary scattered intensity induced by a collimated source of solar radiation 
of intensity Io. 

 
 1 1

* ( , ) ( , ) extI r J rξ ξ σ′ ′=
r rr r  

 
where, according to Eqn. (15.3), J1 may be considered as the source associated with the primary scattering 
of I0. It therefore follows that the radiation from primary scattering of light from all directions is 
 

 1 0
* 4

( , , )( , ) ( , ) ( ) .
4sca

P rI r I r d
π

ξ ξξ σ ξ ξ
π

′ ′′ = ∫ ′ ′ ′Ω
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′

 (15.8) 

 
 
The amount of this primary scattered radiation that is accumulated along the path from r r is o →r r
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It is a simple and somewhat intuitive matter to show that construction of the intensities associated with 
higher order scattering then follows from the repeated application of Eqns. (15.8) and (15.9) such that 
 

1
* 4

( , , )( , ) ( , ) ( ) ,
4

n n
sca

P rI r I r d
π

ξ ξξ σ ξ ξ
π
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          (15.10a) 
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rn n
or
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r

r

r r r r r             (15.10b) 

 
for each integer order n = 0, 1,… of scattering. The total intensity is therefore the sum of all orders of 
scattering, namely 
 
 0 1 2 ... ... ,n n

n
I I I I I I= + + + + + =∑   (15.11a) 

 
which is conveniently written as 

 
 I = I0 + I*               (15.11b) 

 
where I* in this case is the total diffuse intensity I* = ∑n=1 In. 
 

An obvious question to ask is how many orders of scattering are required to approximate the diffuse 
field to some given accuracy? The general answer to this question depends on how many particles there 
are in the volume and on how efficiently the particles scatter the radiation. A rough idea of the effect of 
the single scatter albedo on scattering is given by the following arguments. Suppose 0I  is an upper bound 
on I0. Then from Eqn. (15.8) 

 

 1 0
*

1( , ) ( , , ) ( )
4

0
sca scaI r I P r d Iξ σ ξ ξ ξ σ

π
′ ′ ′ ′≤ Ω∫
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by virtue of the phase function renormalization condition Eqn. (15.9) then becomes 
 

 | |1 1
*( , ) ( , ) ext r rI r I r e drσξ ξ ′− −′ ′= ∫

r rr rr r r  
 
where the exponential factor is the transmission function for the path of length .  From the 
condition on  it follows that 

| |d r r ′= −r r

1
*I

 
 1 0 0( , ) (1 ) .ext d

o oI r I e Iσξ ω ω−≤ − ≤
rr

%  
 
Repeating this procedure for the next order of scattering leads to 
 
 2 0( , ) oI r Iξ ω≤

rr
%  

 
and 
 

0( , )n
oI r I nξ ω≤

rr
%  (15.13)  
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for every scattering order n. With the following notation 
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it follows that the difference ( )( , ) ( , )kI r I rξ ξ∆ = −
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 (15.14) 

 
 
Example 15.2: How many times does a photon get scattered? 

 
Consider the example with  = 0.5 and suppose that we require Ioω% k to differ 
from the actual intensity by an amount no larger than 1% of 0I . It follows 
that 0/ I∆ ≤  0.01 and that 
 

 
10.50.01

0.5

j+

≤  

 
or j = 7 for the nearest integer value. Thus only 7 orders of scattering are 
required to model the diffuse intensity with a 1% accuracy when  = 0.5. 
This simple exercise offers a clear illustration of the significance of  to 
multiple scattering. We infer that the number of scatterings required to 
represent the total intensity decreases as the absorption by the particle 
increases (or as ). For example, many orders of scattering contribute 
to the total radiation field in clouds at solar wavelengths where  > 0.9 but 
relatively few scatterings contribute at the infrared wavelengths where  < 
0.5 

oω%

oω%

oω%

0oω →%

oω%

 
 
15.3 The Two-Stream Approximation 

 
 On examination of the equation of transfer, which includes scattering in either its interodifferential or 
its integral form, one is confronted with the complicating presence of the integral term that involves an 
integration over the direction variable. In fact if it weren't for this term, the equation of transfer would be 
but a mere differential equation and the theory of multiple scattering would have been worked out and 
forgotten long ago. Thus the essence of the simplification that is introduced by the class of simple models 
discussed here is to approximate, in some way, the angular shape of the radiance field so as to introduce 
some approximation to this integral term. To this end there is a property of the radiance field that is 
utilized to great benefit by these approximate methods although it is not often explicitly realized. This 
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property is illustrated in Figs. 15.3a and b in which the zenith radiance distribution is shown on descent 
into the sea (Fig. 15.3a) and deep in a thick cloud (Fig. 15.3b). It is apparent that this radiance structure 
approaches some sort of asymptotic form with increasing depth into the "medium". Eventually some 
steady distribution is reached and all radiances decrease at the same exponential rate with increasing 
depth ultimately shrinking down in size but preserving its shape. It is also apparent that this asymptotic 
distribution can be described as some simple function of zenith angle (this is the basis of the diffusion 
approximations, which we will not discuss here). 

 
 
Fig. 15.3  (a) The flux distribution on a clear sunny day at three indicated depths in Lake Pend Orielle, 

Idaho (adapted from Preisendorfer, 1976). These fluxes are defined for a collecting surface 
inclined at an angle θ as shown in the inset. (b) Measured intensity as a function of zenith 
angle obtained from a scanning radiometer on an aircraft as it flew through the center of a 
deep stratiform cloud. The lower curve is the difference between measurement and a simple 
cosine of zenith angle variation (King et al., 1990). 
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While we can approach the development of the two-stream equations in a number of different ways, 
the end result is always the same, namely that we arrive at equations of the form 
 

 
F t r F Qd

r tdt F F Q

+ +

− −

    − 
= +         −     

+

−





)

 (15.15) 

 
(a) The Two-Stream Equations—The Conceptual Approach 
 

The arguments formulated here are similar to those used in the pioneering work on radiative transfer 
by Schuster in 1905. Consider a parallel, horizontally uniform slab of cloud and consider the fluxes 
flowing in two opposing directions.3  We will use the + superscript to refer to quantities associated with 
flow in the upward direction and a – superscript on quantities relevant to downward flow. The two-
stream equations define the energy balance of this thin slab of thickness ∆z in exactly the same way as 
Eqn. (15.6b) describes an energy balance of a small volume of cloud. In order to express the radiative 
energy budget of a layer ∆z thick, it is necessary to define the following optical properties:  

 
• The proportion of the incident flux lost by absorption as the radiation flows through the layer of 

unit thickness is kabsD± where D± is a measure of the 'diffuseness' of the radiation field. This 
parameter more or less represents the mean extension of the path, relative to the vertical, that a 
diffuse radiation field travels as it penetrates the layer. It is a function of the angular properties of 
the intensity field among other parameters and represents one of the simplifications mentioned 
above. If we suppose that the angular distribution of radiation that produces the flux is the same 
in both directions (the magnitudes might be different), then 

 
D+ = D- . 

 
Although this assumption is questionable, it tends to be universally used in two-stream models.  

 
• The proportional loss of flux by scattering is sscab± per unit thickness. Here we note that the 

process of absorption is treated differently from scattering in that a measure of the path length is 
needed for estimating absorption but this measure is not needed for scattering. We will further 
suppose that this scattering is the same whether the radiation flows upward or downward, and 
thus 

 
b+ = b- . 

 
Another parameter of relevance is the fraction of radiation f that is scattered in the forward direction. This 
fraction is defined such that 
 

f + b = 1            (15.16) 
 

For a change in flux ∆F defined as positive upwards, then the change in flux on transfer through the 
layer ∆z is 
 ( ) (abs sca scaF Dk s b F z s bF z Q z± ±∆ = + ∆ ± ∆ ± ∆mm ±

                                                          

 (15.17) 

 
3 The relationship between radiative flux and intensity is explored in the Appendix. The derivation of the two-stream equations 
given here follows the more conceptual arguments of Schuster. The same equations can be derived directly from Eqn. (15.6b) 
given some assumption about the intensity field. This alternative derivation is left for later. 
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where the last term in parentheses represents internal sources of F± in the layer ∆z4.  The first two terms 
on the right hand side and enclosed by parentheses describe the losses of radiation through the processes 
of absorption and scatter, respectively, while the middle terms represent the increase of flux by 
backscatter of the opposing stream. Introducing the definition of optical thickness as 
 

∆τ = −(kabs + ssca)∆z 
 
where the minus sign defines τ as increasing downwards from cloud base opposite to the change in z. On 
taking the limit ∆z → 0, we obtain the two-flow radiative transfer equation 
 

 [ (1 ) ] ( )o o o
dF D b F bF Q
d

ω ω ω
τ

±
±= − − + + +m% % %m ±  (15.18) 

 
where  = soω% sca/(ssca + kabs ).  All two-stream methods described in the literature essentially reduce down 
to this equation. The only difference between the various methods lies in how D, b, and S± are specified. 
One example is to consider the simple phase function introduced in Section 13.7a, then it follows that 
 

b = (1 − g)/2 
 
where g is the phase function asymmetry. The radiative transfer equation then becomes 
 

 (1 ) (1 ) (1 ) ( ) .
2 2

o o
o

dF D g F g F
d

ω ωω
τ

±
± = − − + − + − +  

m% %
%m Q±

                                                          

 (15.19) 

 
The general solution to Eqn. (15.19) for given sources can be complicated. Here we neglect this term 

and consider only solar radiation incident on cloud top assuming this incident flux is purely diffuse (as 
opposed to the more realistic case of a purely collimated incident flux). While the details of the solutions 
described below change with the addition of the source term for solar radiation, notably by introducing a 
solar zenith angle dependence to the solutions, the gross relationships between the optical properties of 
clouds (τ*, , and g) and the diffuse reflectance and transmittance does not change. oω%
 
 

 
4Two main sources of flux are usually considered in these models. One is the source of radiation due to thermal emission, which 
according to Kirchoffs law takes the form 

Q± = kabsπB(T) 
for emitting cloud particles of temperature T. The second is the source of diffuse radiation that results from the single scattering 
of a collimated flux F  of sunlight. This source has the form 









= −±

f
b

seFQ sca
µτ /  

where f  and b  are the forward and backward scattering fractions of the incident flux F  and these fractions are functions of the 
cosine of the solar zenith angle µ  
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oω%

Example 15.3: Solution for sourceless atmosphere, pure scattering 
 
Consider the example of a single layer of 'cloud' with S = 0. For pure 
scattering,  = 1, kabs = 0 
 

  (1 )F m m τ±
+ −= + %m

 
where m+ and m- are constants determined by boundary conditions and 

 
 *(1 )gτ τ= −%  
 

is the optical depth of the entire slab, τ*, scaled by the factor (1 - g).  The 
relevance of this scaled parameter becomes apparent by considering an 
isolated scattering and absorbing layer illuminated from above by flux F  
overlying a dark surface. Under these conditions, the albedo of the cloud 
layer is 
 

τ
τ

~2

~)0(
+

==
+

F
FR                                 (15.20a) 

 
and the transmittance 
 

τ
τ

~2
21)( *

+
=−==

−

R
F

FT                     (15.20b) 

  
This result implies that two non-absorbing cloud layers with different optical 
thicknesses τ* and g reflect the same amount of radiation when the respective 
values of  are the same. This is referred to as a similarity condition and 
implies that it is not possible to infer τ* from a single reflection or a single 
transmission measurement without information about g. One of the problems 
associated with the remote sensing of ice crystal clouds is that g is neither 
well known nor well understood in how it varies with different crystal habits. 
This parameter is well known for water droplet clouds and is quasi-constant 
with a typical value in the range 0.8-0.85. 

τ%
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Example 15.4: Solution for sourceless atmosphere, nonconservative 
scattering 

 
For this case, < 1, kabs > 0: The solution to Eqn. (15.19) for a sourceless, 
uniform medium has the form 
 

                         (15.21a) 
where 

                 (15.21b) 
and 

                             (15.21c) 
 
where as above the coefficients m± are determined from appropriate 
boundary conditions. Consider the same conditions applied to Eqns. 
(15.21a,b) 

F+ (τ*) = 0 
 

F- (0) = F  
 
for an isolated layer of optical thickness τ*. With some manipulation of Eqn. 
(15.21a), the albedo and transmittance of the layer can be written as 
 

R = γ+ −[e-kτ* − e-kτ*]/∆(τ*)      (15.22a) 
 

                              (15.22b) 
where 

                          (15.22c) 
 
As τ* → ∞, R → R∞ = γ−/γ+ and this is referred to as the albedo of a 
semi-infinite cloud. This represents the upper limit to the albedo of a cloud 
and since T = 0 and A = 1 − R, this is also the upper limit to the absorption A∞ 
within the cloud. These upper limits are determined entirely by the optical 
properties , k, g, and D of the cloud. From the substitution of Eqn. 
(15.22b) in Eqn. (15.22c) together with the definition of R∞, it follows that 
 

                               (15.23) 

where 
 

 

 
is another similarity parameter (Fig. 15.4b). Equation (15.23) states that the 
reflection by two different optically thick clouds are equivalent when the 
similarity parameter s is equivalent. 
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Fig. 15.4 (a) The spectral reflectance from modeled clouds as a function of their particle size.  (b) The 
similarity parameter as a function of wavelength for different assumed values of the cloud 
droplet effective radious re. 
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Example 15.5: Pollution Susceptible Clouds 
 
The effect of ship stack effluents on cloud optical depth and cloud albedo is a topic of intensive 
interest. The simple two-stream model introduced previously now serves to emphasize how the 
scaled optical depth is the direct controlling parameter on the albedo of clouds. We can deduce that 
optical depth of clouds is 
 

  
 
for a cloud of depth h composed of No particles of a size  that exceeds the wavelength of 
radiation. Increased water content (occurring largely as an increase in ), for instance, can increase 
the optical depth of clouds. An increase in number concentration No can also increase τ* and the 
sensitivity of optical thickness τ* to No, for constant liquid-water content, is given by 
 

  

 
For cloud droplets under solar illumination, g is quasi-constant and ≈ 0.85.  Using this value in Eqn. 
(15.20a), one obtains the following simple approximate expression 
 

  

 
for the albedo of a cloud. We can readily derive the sensitivity of R to droplet number No from this 
relation and express it in terms of No and R. The result for fixed liquid water content w is 
 

  

 
Thus, for a given No, the most susceptible clouds are those with R ≈ 1/2, but the maximum of R is 
rather flat - for R = 1/4 or 3/4, dR/dNo is still three-fourths of its maximum value. For fixed R, 
(dR/dNo)w is inversely related to No, which in the real present atmosphere, can vary by more than 
two orders of magnitude. The susceptibility dRldNo (graphed in Fig. 15.5) reveals a considerable 
sensitivity for clean conditions—e.g., in oceanic and remote areas (where No is low). There 
(dR/dNo)w is seen to approach 1% (per cm-3); that value would mean a reflectance change of 0.01 for 
a concentration change of just 1 cm-3. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 15.5 Susceptibility for different conditions of No and R. 
(b)  The Two-Stream Equations—Analytic Approach: Eddington's Approximation as an Example 



 

 
 Suppose we consider azimuthally averaged quantities I , 
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• If we assume that 
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which resembles the form used in our diffusion approximation, then 
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• The second approximation we introduce is the following 

 
 ( , ) 1 3P gµ µ µµ′ ′= +  
 

for the phase function expansion. If we consider our radiative transfer equation and integrate over 
each respective hemisphere, then we obtain the following two equations (ignoring sources for the 
moment): 
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1 1 1 1
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2 ( ) 2 ( ) ( , ) ( )
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A
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ωπ dµ µ µ π µ µ µ µ µ µ µ
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′ ′ ′= −∫ ∫ ∫ ∫

%
1442443

123
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o
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A
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ωπ dµ µ µ π µ µ µ µ µ µ µ
τ

− − − +

−
′ ′

′

′ ′ ′= −∫ ∫ ∫ ∫
%

1442443
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Consider the first equation: 

Term 
1 1

10 0
2 2 [ ]o

dI d dA d I I d
d d d

π µ µ π µ µ µ
τ τ

+= = + =∫ ∫ F
τ

  

Term dA F
dτ

−′ =  

Term
1

1 10

12 ( ) ( )2
2o oB I I d I Iπ µ µ π= + = +∫  

Term 
1

1 10

12 ( ) ( )2
2o oB I I d I Iπ µ µ π

−
′ = + = −∫  

1 1 2
1 10 1

1 2 2
1 10

1

Term ( ) 3 ( )
2 2
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2 2 2
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o
o o

o
o o

o
o

C d I I g I I d

d I I g I g I

d I g I
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π

ω µ µ µ µ µ µ µ

ω µ µ

+

−

+
−

′ ′ ′= + + +

′ ′ ′ ′= + + +

= +

∫ ∫

∫

∫

%

%

%

3 1
1

µ′

  

1( 1)

10

1 1

( )Term ( )
2

1 1[ ]( [
2 2

o o

o o o o

C C d I g I

I gI gI I

ω µ µ
π

ω ω

−′
= +

= + −

∫%

% % ])
  

 
After collecting terms, we obtain  
 

 

1 1
1 12 2
2 2

3 3( ) ( )
4 4

7 1(4 3 ) (4 3 )
4 4 4 4

o o o

o

o o

dF I I I gI
d

F F F F F F g F F

F g F F g F

π πω
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ω

ω ω
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   = + − +      
 = + + − − + + −  

= − + + − −

%

%

% %

 

 
or 
 

7 1(4 3 ) (4 3 )
4 4 4 4

o odF g F g
d

ω ω
τ

+
+ −  = − + + − −  

  

% %
F


 

 
Similarly 
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or 
 

 7 1(4 3 ) (4 3 )
4 4 4 4

o odF g F g
d

ω ω
τ

−
− +  = − − + − − −  

  

% %
F


 

 
where we can readily identify 
 

 

7 (4 3 )
4 4

(4 3 )
4

o

o

t g

r g

ω

ω

= − +

= − −

%

%
 (15.24) 

 
 (c)  Delta-Two Stream Models 
  

We have already remarked on the scaling associated with phase functions of the form 
 
 ( , ) 2 ( ) (1 )(1 3 )p f f gµ µ δ µ µ µµ′ ′= − + − + ′  
 
which reduces to the formal two-stream solutions when 
 

 
1
(1 )
(1 )
1

o

o
o

o

g fg
f

f
f
f

τ ω
ωω

ω

−′ =
−

′ = −
−′ =
−

%

%
%

%

τ  

 
are used directly in the solutions. It is usual to employ the second moment of the expansion, namely  
 

f = χ/5 = g2 

 
for the scaling factor. 

 
15.4 General Solutions 

 
The two-stream model and its general solution are briefly introduced here. We will consider two 

kinds of source functions to represent those described in footnote 2. In developing these solutions, it is 
useful to introduce two-stream equations (Eqn. (15.15)) as follows 

 
LFF = Q               (15.25a) 

where F is a flux vector 
F

F
F

+

−

 
=   
 

 

 
of upwelling (F+) and downwelling (F-) flux at level z'. The dependence of each factor in Eqn. (15.25a) 
on z' is taken to be understood. The source function vector, 
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Q

Q
Q

+

−

 
=   
 

  
too depends on z'. The two-stream transport operator is 
 

 F ext

t rdL
r tdz

σ
− 

= − ′ − 




)

 (15.25b) 

 
where we note the streaming term is defined relative to z rather than τ as in Eqn. (15.15), which means 
that the coefficients t and r differ from those of Eqn. (15.24) only by a factor of σext.  Although these 
define the flux equations, the form of this equation is generic in the sense that they also equally apply to 
radiance and the 'n stream' problem (e.g., Flatau and Stephens, 1988). 
 

The different forms of the equation coefficients in Eqn. (15.15), namely t and r, define different 
version of a two-stream model. The 2 x 2 matrix of coefficients defines the attenuation matrix 
 

  (15.26) ext

t r
r t

σ
− 

= − 
A

 
and the 'solution' to the sourceless equation (i.e., Q = 0) can be expressed in terms of the matrix 
exponential 
 
 (( , ) z yz y e− −= AM  (15.27) 
 
where M is a mapping function.  By virtue of the block structure of A, this mapping matrix has a similar 
form 
 

  (15.28) 
( , ) ( , )

( , )
( , ) ( , )

m z y m z y
z y

m z y m z y
++ +−

−+ −−

 
= 
 

M 

 
For the 2 x 2 matrix A of the two-stream equations, Eqn. (15.27) follows as 
 

 
( ) ( )

( , )
2 2

z y z ye em z y f f
κ κ− − −

++ + −= +  

 
( ) ( )

( , )
2 2

z y z yr e em z y
κ κ

κ

− − −

+−
 

= − 
 
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( ) ( )

( , )
2 2

z y z yr e em z y
κ κ

κ

− − −

−+
 

= − 
 

 

 
( ) ( )

( , )
2 2

z y z ye em z y f f
κ κ− − −

−− − += +  (15.29) 

  
where 
 

  
(1 / )
(1 / )

f t
f t

κ
κ

+

−

= +
= −

 
(a) The Interaction Principle 

 
Consider the two types of radiative transfer problem as posed in Fig. 15.6. The goal of the first is to 

deduce the fluxes at the upper boundary of an isolated layer at ZT in terms of the fluxes at the lower 
boundary z. Stated, this way the radiative transfer problem is an initial value problem. Its solution is as 
follows. First consider the sourceless equations for which the solution (assuming constant coefficients) is 
 

  (15.30) 
( , ) ( , )

( ) ( )
( , ) ( , )

m z y m z yF
z

m z y m z yF F

+ +
++ +−

−
−+ −−

    
=           

F
y

−

 
Unfortunately, most problems of radiative transfer are posed as follows. Given fluxes incident on the 
boundaries, what are the emergent fluxes (Fig. 15.6). These are two point boundary value problems, 
which can be solved through rearrangement of Eqn. (15.30). The relationship between fluxes out in terms 
of fluxes in (and internal sources) is referred to as the interaction principle. In rearranging Eqn. (15.30) in 
the form of the interaction principle, we obtain the relation between the mapping functions above and the 
more classical properties of reflection and transmission. 

 
Fig. 15.6  Two types of transfer problems, the initial value problem at left and the more traditional two-

point boundary value problem defining the interaction principle. 
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Simple reorganization of Eqn. (15.30) in its interaction form gives the desired emergent fluxes F+(zT) 
and F-(z) in terms of input fluxes 
 

  (15.31) 
1/ /( ) ( )

.
/ / ( )( )

T

T

m m mF z F z
m m m m m m F zF z

+ +
++ +− ++

−−
−+ ++ −− −+ +− ++

  − 
=    −   


 


 
where the notation indicating the mapping factors are defined for the layer (zT,z) is dropped for 
convenience. This identifies the layer diffuse reflection and transmission functions as 
 

 ( , )( , )
( , )

T
T

T

m z zR z z
m z z

+−

++

−=  (15.32a) 

 1( , )
( , )T

T

T z z
m z z++

=  (15.32b) 

 
which are those of Eqn. (15.22). 
 
(b) Adding Sources - General Solution 
 

We proceed with Eqn. (15.25b) in Eqn. (15.25a) and multiplying both sides by the exponential of the 
matrix 
 

 ( ) ( )Az Az AzdFe e AF z e Q
dz

′ ′ ′− − −′− =
′

z′  (15.33) 

 
where we assume that the attenuation matrix (i.e., the optical properties r and t) is independent of z'. 
Integration of Eqn. (15.33) from (z → zT) yields 
 
 ( )( ) ( ) ( , )tA z z

T TF z e F z S z z− −= +  (15.34) 
 
by virtue of the property of the matrix exponential 
 
  1[ ]Az Aze e− − =
 
and where the vector 
 

  (15.35) ( )( , ) ( )T
t

z A z z
T z

S z z e Q z dz− − ′= −∫ ′

 
These resemble the more traditional integral form of the radiative transfer equation (Sections 4 and 10). 
However, it contains the desired emergent fluxes (i.e., the solution) on both sides of the equation as seen 
more clearly in the expanded form 
 

 
( , ) ( , ) ( ) ( , )( )

.
( , ) ( , )( ) ( ) ( , )

T T T T

T T T T

m z z m z z F z S z zF z
m z z m z zF z F z

+ ++
++ +−

− −
−+ −−

     
=                S z z−


+ 


 (5.36) 
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A special solution arises for problems in which the medium is illuminated with zero incident fluxes 
(known as vacuum boundary conditions). Then we obtain 

  (15.37) 
( , ) / ( , )( )

( , ) ( , ) / ( , ) ( , )( )
T TT

T T T T

S z z m z zF z
m z z S z z m z z S z zF z

+
++

+−
−+ ++

−   
=     − +  

−

 
which are the particular solutions to Eqn. (15.25a) for general solutions. 
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