
AT622 Section 13 
Elementary Dielectrics: Interaction with Condensed 
Matter 
 

The object of this section is to introduce elementary properties of dielectric materials that shape the 
properties of scattering from homogeneous slabs and particles. 
 
13.1 Polarization of Matter 
 

The polarization of matter, in contrast to the polarization of radiation, is a property that relates to the 
ability of the material to form dipoles. This polarization occurs either by mechanisms that are induced 
(Fig. 13.1) or when molecules possess a permanent electric dipole moment so that they align themselves 
with the dipole moment parallel to the applied electric field. As a consequence of either induced or 
permanent dipoles, a piece of matter placed in an electric field becomes electrically polarized and the 
material polarized in this way is called a dielectric. 

Fig. 13.1  Polarization of matter under the influence of an electric field. 
 
 

The polarization per unit volume of matter is defined as 
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where εo is the electric permittivity in a vacuum. This macroscopic expression states that the electric field 
and polarization are directly related and the proportionality constant, εr, is referred to as the relative 
permittivity or alternatively as the optical or dielectric constant. 
 

Various mechanisms cause displacement of charge in matter and therefore contribute to its 
polarizability. Under the influence of oscillatory fields of different frequency, the constituents of matter 
vibrate on different time scales and thus contribute to the observed properties in different portions of the 
electromagnetic spectrum. Figure 13.2 schematically depicts the three principal polarization mechanisms 
that are relevant to atmospheric radiation. Lightest parts (electrons) vibrate fastest (UV), the heavier parts 
(atoms and molecules) are more sluggish-IR and microwave. One of the mechanisms of interest involves 
oscillations and the other relaxation. 
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Fig. 13.2  The three main mechanisms of polarization under consideration are (a) electronic (b) atomic, 
and (c) orientation. 

 
 

Let us now consider what happens to an individual dipole when an electric field is applied to it. The 
dipole moment of an individual atom or molecule pr  can be related to the locally active electric field E′ 
by which α is the polarizability* of the material. If there are N of these molecules per unit volume of 
matter, then the polarization per unit volume of the material is pNP rr

= . 
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We cannot yet combine Eqns. (13.1) and (13.2) to establish the link between the macroscopic 

parameter εr to the microscopic parameter α. The problem is that in condensed matter, where molecules 
are tightly packed, the field E′ acting locally on the dipole is not the same as the external field E applied to 
the material. We will not discuss the way that we can express the local field in terms of the applied field 
here and references elaborating on this topic are given at the end of this chapter. Suffice to say that the 
field at the dipole may be derived by imagining that it sits in a spherical hole in a surrounding dielectric 
material. The field in such a hole is increased over a uniform static field E by an amount P/3εo. The same 
argument applies for an electric field in the form of a wave so long as the wavelength of the wave is much 
longer than the spacing between atoms and molecules. In this case, the field locally is increased by the 
fields associated with the neighboring dipoles such that 
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Combining Eqns. (13.1) and (13.3) produces 
 

                                                           
*There are different forms of polarizability that can be defined. The polarizability introduced later is referred to as the 
atomic polarizability, the ratio of P to E defines the volume polarizabilty (i.e., Nα) and the quantity Noα is the molar 
polarizability where No is Avocadro’s number. 
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which is known as the Clausius-Mosotti equation. 
 
13.2 Classical Theories 
 

The relative permittivity εr, a property relating the response of dense matter to the action of an electric 
field, is obviously related to the properties of atoms and molecules of the material as suggested by the 
discussion of Fig. 13.2. In this section, we provide a more quantitative, albeit phenomenological, account 
of how this quantity relates to these properties. 

 
Actual calculation of εr reduces to the calculation of the polarizability of atoms or molecules. This 

amounts to determining the effects of an external field on the motion of charge in the material following 
the laws of quantum mechanics. For our purposes, simplified mechanical models suffice to approximate 
the permittivity. 
 
(a)  The Lorentz Model 
 

We often picture in our minds a model of an atom represented by electrons whirling around a nucleus 
in a kind of fuzzy orbit. So far as problems involving nonresonant interaction with radiation, these 
electrons behave as though they are attached to springs producing a distortion of charge in response to an 
oscillating electric field. These electrons react to electromagnetic radiation in such a way that they vibrate 
just like a classical harmonic oscillator (Fig. 13.3). H.A. Lorentz introduced his model of electronic and 
atomic polarization around the beginning of the last century based on the principle of a classical harmonic 
oscillator. 

 

 
Fig. 13.3 The Lorentz model of matter. 

 
The equation of motion of such an oscillator is 
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where m is the mass of the oscillator, γdx/dt is the damping force exerted by neighboring dipoles, and k is 
the 'spring' constant. In this expression, qE' is the driving force produced by the local electric field E', and 
x is the displacement of the mass from its equilibrium position. This is not really a legitimate model of an 
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atom but simple cases of correct quantum mechanical theory gives results equivalent to this model. In a 
crude sense, the effects of quantum theory are accounted for by the appropriate choice of the properties of 
oscillators. 
 

If the electric field acting on the dipole vibrates with a frequency ω, the displacement x of the charge 
oscillates at the same frequency. Assuming that x = x0eiωt, then x can be solved for in terms of E′ 
producing 
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where γ = b/m and mko /=ω  is referred to as the resonant frequency of the oscillator. This 

displacement is complex and it is convenient to express it in the form AeiΦ(q/m)E′ where A(q/m)E′ is the 
amplitude of the oscillation and Φ is its phase relative to the driving force of the electric field. Simple 
algebra provides us with 
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which follow from Eqn. (13.6). An interpretation of these results is provided in Fig. 13.4a and b where A 
and Φ are shown as a function of frequency ω. How these properties of the oscillator vary with frequency 
depends on the value of ω relative to the resonant frequency ωo of the oscillator. For ω >> ωo, the 
nonresonant oscillations are weak and out of phase with the driving force of the light. The amplitudes of 
the oscillation for this range of frequencies, according to Eqn. (13.7a), decreases at a rate proportional to 
1/ω2 (Fig. 13.4b). In the spectral range of low frequencies ω << ωo, the nonresonant oscillations are 
again weak but, in this case, in phase with the driving force (Fig. 13.4a). In this spectral range, the 
amplitude approaches a constant value as ω is decreased from resonance. Only the resonance case (ω = ωo 
and Φ = 0) corresponds to a transition from one quantum state to another. 
 

Given the response of the single oscillator to a time-harmonic electric field, the relative permittivity 
can be derived using the definition of the dipole moment for a single oscillator as p = qx, and since p = 
αE′, then 
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and the polarization per unit volume, P for N oscillators in a unit volume follows as 
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Fig. 13.4 (a) The response of an oscillator to a periodic driving force serves as a model of how charges 

in matter react to an electromagnetic driving force.  The response of the oscillator depends 
on the frequency of the forcing ω to the oscillator’s resonant frequency ωo.  (b) The oscillator 
amplitude and phase as a function of the ratio between the frequency ω and the resonant 
frequency ωo.  The amplitude approaches a constant value when the frequency of the driving 
force is much below resonance as in the case of N2 and O2 molecules exposed to visible light. 

 
 
where is the plasma frequency. The difference between the local field and the external 
field is ignored since a proper treatment of local field effects only complicates matters without adding 
further insight. With this assumption, it follows by matching Eqn. (13.1) to Eqn. (13.8) that 
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which has the following real and imaginary parts 
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respectively. The frequency dependence of each of these components is schematically shown in Fig. 
13.5a. The complex component provides the dampening of the oscillations and is a maximum at 
resonance and coincides with the most rapid change of the real part of the relative permittivity with 
frequency. 
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Fig. 13.5  (a) The frequency dependence of the real and complex parts of the relative permittivity. Note 
that when the damping terms are neglected, γ = 0 and rε ′′  = 0 and the unphysical result 
occurs at the resonant frequency (dashed curve). Damping is not a result of the viscous 
movement of the oscillators but represents transitions from one state to another and therefore 
represents absorption processes.  (b) The frequency dependence of the real and complex 
parts of the refractive index. 

 
Quantum mechanical solutions provide similar results but with the following modifications. Atoms 

and molecules have several natural frequencies and each has its own dissipation constant. The effective 
strength of each mode is also different and we represent this by the strength factor f. Summing over all 
modes leads to a modification of Eqn. (13.9) of the form 
 

∑ −−
=−

i ii

i

o
r i

f
m

Nq .1 22

2

ωγωωε
ε        (13.11) 

 
(b) Orientational Polarization-Debye Relaxation 
 
 Lorentz's classical model describes polarization arising from the distortion of charge in nonpolar 
molecules. In solids and liquids composed of polar molecules, the orientation of the dipoles with respect 
to an electric field produces an additional low frequency contribution to the polarization. The ability of a 
molecule to reorient depends on its shape and its interactions with the environment. The nearer to 
sphericity and the lower the dipole moment, the more easily and faster the molecule reorients itself in a 
changing electric field. An asymmetrical molecule like H2O has several stable orientations and changes 
direction relatively slowly from one stable orientation to another. The average time between these 
changes is the relaxation time. 
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The polarization that results via orientation of dipoles can be computed from methods of statistical 
mechanics. We consider only very simple aspects of these methods here. Consider a molecule with a 
permanent dipole moment po aligned at some angle θ to the electric field. The potential energy of the 
dipole is (e.g, Kittel, 1971) 
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Statistical mechanics tells us that in a state of equilibrium, the relative number of molecules with a 
potential energy U is 
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and the number of molecules oriented at an angle θo 
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where K is Boltzmann's constant and T is temperature. For normal temperatures and E fields, this 
approximates to 
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where no is N/4π (we find this by integrating n(θo) over θo and this should just be N, the total number of 
molecules). The net dipole moment per unit volume follows from the integration of the moment po cos θo 
over solid angle dΩ = 2π sin θodθo, 
 

∫=
π

θθθθπ
0

,sincos)(2 ooooo dpnP  

 
resulting in an average dipole moment 
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and by combining Eqns. (13.4) and (13.12) leads to 
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Debye (1929) has given an elegant discussion of dielectric relaxation of polar molecules in liquids. 

He supposed that dipoles initially aligned themselves in the direction of a field only to relax their 
orientations back to an equilibrium state as defined by the average dipole moment above relevant to a 
static field. This relaxation occurs on a time scale τ. The central result of Debye’s theory is that the 
orientational part of the polarizability depends on the applied frequency ω such that 
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Using the Mosotti field for E′, then 
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From this expression, the complex permittivity is given in terms of the permittivity defined at the limits 
ω→0 (εrs, the static permittivity) and ω→∞, the high frequency permittivity) and the effective relaxation 
time constant is, 
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and it follows that 
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This expression is the Debye relaxation formula for the permittivity of a friction-dominated medium in 
which the internal field is assumed to be the Clausius-Mosotti field. The relaxation time is lengthened 
from τ to τe due to the difference between the internal field and the applied field.  
 

The real and imaginary parts of εr follow from Eqn. (13.15) as 
 

22

22

1

1

e

e

e
rh

τω
ωτε

τω
εε

+
∆

=′′

+
∆+=′

         (13.16) 

 
where ∆ = εrs − εrh. The imaginary part of the dielectric function, according to Eqn. (13.16), is a maximum 
at ω = 1/τe , and its behavior with frequency is broadly similar to rε ′′  predicted for the Lorentz oscillator.  
The real part behaves quite differently: it has no maxima or minima but decreases monotonically with 
increasing frequency from a value of εrs at low frequencies to εrh at high frequencies. At low frequencies, 
permanent dipoles react to the more slowly oscillating electric field in enough time that they become 
aligned, producing a significant polarization and large values of . At higher frequencies, this part of the 
matter is unable to respond quickly enough to produce any polarization. 
 

The Debye relaxation model has been successfully used to describe measured values of the dielectric 
function at microwave frequencies as demonstrated in Fig. 13.6. Both the real and complex parts of εr for 
water at microwave frequencies are compared to the Debye theory on this diagram. The parameters εrs,  

εrh, and τ are chosen to provide the best fit to the data. An especially relevant consequence of the 
relaxation spectrum of H2O to remote sensing lies in the change of the spectrum of εr with the phase 
transition from liquid to solid water. To understand the differences in εr as this transition occurs it is 
helpful to consider the simple classical expression Debye derived for τ, namely 
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for a sphere of radius a in a fluid of viscosity η. This time constant is a ratio of the viscous-restoring 
torque applied to the sphere that maintains alignment to the thermal forces that act to disrupt this 
alignment. When numerical values are substituted into Eqn. (13.17), the derived relaxation time 
corresponds approximately to that estimated from measurement. A naive interpretation of the phase 
transition from liquid water to ice is to consider a large discontinuous increase in viscosity that occurs 
when water freezes. Thus, the permanent electric dipoles that were free to rotate in the liquid are now 
immobilized. The relaxation time for ice is significantly larger than it is for water leading to smaller 
values of rε ′′  and a dramatic shift in the maximum of rε ′  to smaller frequencies. The consequences of 
such large changes in εr as ice melts are observed when microwave radiation transmitted by a radar 
system is backscattered by melting ice particles producing the "bright band" in vertical profiles of radar 
reflectivity. 

 
 

Fig. 13.6  The dielectric function of water at room temperature calculated from the Debye relaxation 
model with τ = 0.8 × 10-11 sec, εrs = 77.5, εrh = 5.27. Data were obtained from three sources 
(after Bohren and Huffman 1993). 

 
(c) Summary 
 

We learn from both models that when a sunusoidal electric field acts on a dieletric material, there is 
an induced dipole moment that is proportional to the electric field. The proportionality constant εr − 1 
depends on the frequency of the oscillating field and is a complex number, which means that the 
polarization does not follow the electric field but is shifted in phase. A schematic diagram summarizing 
the frequency dependence of rε ′  and rε ′′  for an ideal nonconducting substance is shown in Fig. 13.7. At 
the low frequency end, rε ′  is composed of contributions by all three mechanisms with the largest 
contributions resulting from dipole orientation processes. As the frequency increases, the dipoles are 
unable to respond fast enough, and this mechanism ceases to contribute to rε ′ , instead the atomic 
polarization processes that produce vibrational motions contribute.  For the water molecule, the 
resonances associated with these processes are found at infrared wavelengths. At even higher frequencies, 
inter-atomic vibrations cannot respond fast enough to the applied field. At these frequencies, the 
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electronic oscillations that are induced by the electric field now contribute to rε ′  and the resonant 
frequencies associated with these oscillators are typically found at UV wavelengths. Finally, as the 
frequency increases beyond the point where all electronic modes are exhausted, rε ′  approaches unity. 
 

 
 
Fig. 13.7 Schematic diagram of the frequency variation of the dielectric function of an ideal 

nonconductor (Bohren and Huffman, 1983). 
 

Where rε ′  changes most dramatically with frequency there is an associated peak in rε ′′ , which 
characterizes the absorption of radiation by the substance. This absorption arises from the resonances 
associated with the vibrations of atoms and molecules of matter. In dense matter, the molecules are so 
tightly packed together that significant interactions exist between them. The internal modes of the 
oscillations are therefore modified and the natural frequencies of the atomic oscillations are spread out by 
the interactions producing a broadening of the absorption lines much in the same way as pressure 
broadening occurs in gases. In place of the precisely defined characteristic energy levels associated, for 
example, with the vibration and rotation states of the individual molecules, are energy bands composed of 
a continuum of levels. Thus the energy levels of the vibration and rotation states of, for instance, a water 
molecule, form a continuous absorption band resulting in a broad absorption spectrum as indicated in Fig. 
13.7. Figure 13.8 provides a schematic illustration of the electron energy bands of two different types of 
material. 
 

Since the energy bands in a solid form as a superposition of the energy levels of the individual 
molecules, the spectral positions of the more continuous absorption bands for solid matter more or less 
overlap the absorption spectrum of the individual molecules. Thus the infrared absorption spectra of 
liquid water and solid ice, for instance, occur at roughly the same wavelengths where absorption bands of 
water vapor lines are found. 

 
There are features of the energy bands that have a significant bearing on the way radiation interacts 

with condensed matter and which are therefore important to our understanding of particle scattering. The 
energy bands of certain materials overlap, as depicted in Fig 4.8, and the electrons in such a material have 
a continuous distribution of energy within these overlapped bands. If one of the overlapping bands is 
partially empty, application of an electric field readily excites electrons into adjacent unoccupied states 
and an electric current results. The material is said to be a good conductor of electricity and its electrical 
behavior is determined by both the energy band structure and how the bands are normally filled by 
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electrons. This is the case for metals that can absorb radiation at any wavelength. When a photon is 
absorbed in a metal, the electron jumps to an excited state. A photon of the same energy is immediately 
re-emitted and the electron returns to its original state. Because of this rapid and efficient reradiation, the 
surface of the metal appears reflective rather than absorbant. Another type of material is the 
nonconductor, which possesses energy bands that are separated by intervals referred to as forbidden 
bands; absorption of radiation by such material is therefore only likely for photons possessing energies 
greater than this energy gap. 

 
Fig. 13.8  Electron energy bands in nonconductors and conductors. The filled bands are shown hatched 

(Bohren and Huffman 1983). 
 
 
13.3 The Refractive Index 
 
 The two sets of quantities that are often used to describe optical properties of matter are the relative 
permittivity εr and the refractive index m†. Both are related according to 
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where n and κ are used here to denote the real and imaginary parts of the refractive index, respectively.  
The spectral variations of both n and κ from the near infrared to the microwave regions are depicted in 
Fig. 13.9. Certain features of the hypothetical spectra of rε ′  and rε ′′  shown in Fig. 13.7 can be identified 
in the refractive index spectra. Readily apparent are the relaxation spectra extending from about the 
millimeter wavelength range into the centimeter range. For water and ice, the values of κ lead to 
significant absorptions in clouds when wavelengths are greater than about about 1 µm. For ice, κ 
decreases again beyond wavelengths of about 100 µm. At microwave frequencies, ice particles in the 
atmosphere are more effective scatterers of radiation than absorbers, whereas the reverse is true of water 
drops. There are also significant differences between values of κ for water and ice in the near infrared 
especially around 1.6 and 3.7 µm, which also happen to be channels associated with radiometers flown 
(or to be flown) on meteorological satellites. The consequence of the different values of n to the transfer 
of solar radiation through clouds at these wavelengths has been proposed as a way discriminating ice 
clouds from water clouds. 
                                                           
† The refractive index is sometimes written as m = n + iκ and other times as m = n - iκ.. The latter applies when the time 
dependence of factor of the wave is exp(iωt) rather than exp(-iωt). Both will be used in these notes. 
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Fig. 13.9 Typical values of the refractive indices for water and ice. 
 
 
 Determining the refractive indices of atmospheric aerosol is quite a complex problem and a topic of 
apparent controversy. In Fig. 13.10, the spectra of the imaginary parts of the refractive index of several 
materials that exist in atmospheric particles are shown. Results are given for water, ammonium sulfate, 
crystalline quartz, sulfuric acid, carbon, sodium chloride, and hematite over selected spectral regions. As 
we have come to expect from our previous discussions, κ is large (around unity) in the infrared and 
ultraviolet spectral regions and small at visible wavelengths for all materials, except for carbon and 
hematite both of which significantly absorb visible light. To emphasize the transparency of the material in 
the visible region, the dashed line is the value of κ corresponding to a 1% transmission through a 1 cm 
thick homogeneous slab of material. Only carbon, which has metal-like overlapping electronic energy 
bands (e.g., Fig. 13.8), has high values of κ throughout most of the spectrum. The mineral hematite, 
although a very minor constituent of the atmospheric aerosol, is one of the few known materials that are 
also highly absorbing at visible wavelengths. 
 
 

The hatched region in Fig. 13.10 shows the values of κ obtained from remote measurements using a 
retrieval scheme based on the particle scattering theories discussed in the following chapter. Clearly these 
derived values of κ do not seem to match those of any of the pure materials that make up the particle, and 
are presumably some kind of average of a mixture containing a small amount of a highly absorbing 
material. The meaning of such an average value and its direct application to theories of particle scattering 
must be treated with caution. Measurement of the refractive index of a substance in a pure homogeneous 
slab form is difficult enough, and these results highlight the complexity of estimating the refractive index 
when such material is broken up into small particles of heterogeneous material. 
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F ig. 13.10  The imaginary part of the refractive index of several solids and liquids that are found as 
atmospheric particles (Bohren and Huffman, 1983). 

 
 
13.4 Dielectric Slab 
 

The formal analogy between scattering by a particle and by a slab is shown in Fig. 13.11 in its most 
general aspect. The wave scattered by a particle is analogous to the waves reflected and transmitted by a 
slab. However, there are important differences between these two cases that need to be noted. We will 
learn that particles scatter in complicated ways depending on the direction of scatter, whereas the 
scattering by a slab occurs through interference effects such that radiation is concentrated in only two 
directions. 

 
Fig. 13.11 A schematic depicting the analogy between scattering by a slab and by a particle.  The 

scattered wave by a particle is analogous to the wave transmitted and reflected by the slab 
(from Bohren and Huffman, 1983). 
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General expression for a propagating plane wave along the z axis is 
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where, in a slab of condensed matter of refractive index m, 
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which is defined relative to the wavenumber ko in a vacuum. In an absorbing slab, m is complex and thus 
k is complex. For the simplest case of plane wave propagation along the z direction, and with m = n + i in 
Eqn. (13.20), Eqn. (13.19) may be written as 
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The first of the exponential factors describes the rate at which the radiation is attenuated in the slab. The 
second exponential factor represents the oscillatory part of the wave and we observe that the real part of 
the refractive index determines the phase speed of the wave. The attenuation factor can be written in 
terms of a bulk absorption coefficient β = 4πk/λo such that the intensity of the radiation is attenuated 
according to the formula 
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A useful and convenient way of interpreting this attenuation is in terms of the penetration depth dI  = 1/β, 
which is the depth to which the intensity is reduced by 1/e of its incident value. 

 
Example 13.1: Depth of Penetration 

 
Water and ice possess refractive indices that are strongly frequency dependent 
and thus have a penetration depth that varies significantly from wavelength to 
wavelength. Calculate the depth of penetration dI in a water and ice slab for the 
following wavelengths and refractive indices. What inferences would you make 
about scattering versus absorption processes by water and ice particles at each 
wavelength? 

 
Refractive Index (n, κ) Wavelength Instrument 

water ice 
0.7 µm AVHRR (1.33, 0) (1.31, 0) 
1.6 µm AVHRR (1.317, 8 x 10-5) (1.31, 0.0003) 
3.7 µm AVHRR (1.374, 0.0036) (1.40, 0.0092) 
10.8 µm AVHRR (1.17, 0.086) (1.087, 0.182) 
0.8 cm k-band radar (8.18, 1.96) (1.789, 0.0094) 
10 cm S-band radar (5.55, 2.85) (1.788, 0.00038) 

 
The depths of penetration are listed on the table above. From these we can make 
a number of inferences about the difference between water and ice scattering at 
the wavelengths given. For example we expect that water surfaces and clouds 
will be relatively dark (relative to ice surfaces and clouds) at 3.7 µm, that ice 
particles are relatively transparent at 0.8 cm and more so at 10 cm, and that 1.6 
µm may be useful in discriminating ice properties in clouds from water 
properties (glaciated clouds will be darker, all things equal, than water clouds). 
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