
AT622 Section 9 
Models of Transmission 
 

The aim of this section is to introduce popular techniques used to model transmission through an 
absorbing layer of gas. We have already seen how the mathematical description of absorption by the 
gases of the atmosphere can be formulated in terms of transmission functions (Section 4). There are 
several types of transmission functions that must be learned and the connections to one another 
understood. The ultimate purpose, however is to be able to characterize the transmission averaged over 
many absorption lines (band transmission). Connections between different forms of transmission 
functions are shown in Fig. 9.1. There are transmission functions that apply to the transmission of 
intensity and the transmission of flux. Transmission can either be monochromatic (i.e., at a single 
wavelength) or broadband (i.e., an average over a band of several wavelengths), which is one of the goals 
of this section. These functions can either apply to homogeneous paths (i.e., applies to uniform path of 
fixed p and T such as encountered in the laboratory measurements) or to heterogeneous paths of varying p 
and T (such as in the atmosphere). We will see that the transformation from intensity to flux transmission 
is largely trivial and we will spend the most time discussing broadband transmission models and how we 
treat absorption along variable p and T paths. 
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Fig. 9.1 Connections between different forms of transmission functions. 
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9.1 Basic Definition of Transmission Functions 
 

The exchange of radiation with the gases of the atmosphere is described in terms of a transmission 
function. The concept of transmission follows directly from Lambert's law of extinction. 
 

dIν = −kνIνds                (9.1) 
 
where kν is the absorption coefficient (here we consider only absorption and ignore scattering), Iν the 
intensity of the radiation field, and ds is some measure of path, defined such that the quantity 

 
dτν  =  kνds 

 
is unitless. Solution of Eqn. (9.1) gives 
 

ντ
νννν ττ −== eII )0()(               (9.2) 

 
where 

 

ν
τ

ν
ν AT −== − 1e               (9.3) 

 
is the monochromatic "transmission" function and Aν is the monochromatic absorption. Since the re-
lationship between absorption and transmission is trivial, we will develop our models in terms of either 
absorption or transmission. 
 

The absorption coefficient (and for that matter the scattering coefficient) can be defined in a number 
of different ways according to how we measure the amount of matter along the path. Table 9.1 gives four 
more commonly used quantities together with the specification of the amount of matter. Note again that 
the product of extinction coefficient and amount of matter is unitless. 

 
Table 9.1 provides the conversion factors between the different forms of extinction coefficient (read 

extinction here as absorption). With volume extinction, the computations use distance as the independent 
variable. This is generally only used in calculations involving particle absorption (and scattering). For 
gases, the path length is usually defined in a way that reflects gaseous density and it is more convenient to 
use one of the other forms. Of these, es is the most popular choice by many spectroscopists and thus we 
see the path lengths per centimeter at STP often used in empirical transmission formulas like those 
presented later. 
 

Table 9.1  Dimensions and conversion factors for extinction coefficientsa. 
Symbol eν em en es

Name Volume e.c. Mass e.c. Molecular e.c. e.c. per 
cm s.t.p. 

Dimensions cm-1 g-1 cm2 cm2 cm-1

eσ  1 ρ-1 n-1 ns/n 

em  ρ 1 m ρs
en  n m-1 1 ns
es  n/ns

1−
sρ  1−

sn  1 

     a ρ = density of absorbing gas (g cm-3)     ns = molecular no. density at s.t.p. (Loschmidt no., cm-3) 
       ρs = density of absorbing gas at s.t.p. (g cm-3)   m = molecular mass (g) 
       n  = molecular number density (cm-3) 
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Example 9.1: Two specific examples of conversion highlight the advantage of en and 
the number of molecules per centimeter as the measure of attenuation gas over the 
other combinations. From Table 9.1 we deduce that 
 

,gcm
1024.2

STPat  gas of cm 1 2
4

−

×
=

M  

 
where M is the molecular weight of the gas 
 

1 cm − STP = 2.69 × 1019 molecules cm-2. 
 
The above expression is valid for all gases. It follows from these two examples that 
for water vapor 

1g cm-2 (H2O) = 3.34 × 1022 molecules cm-2. 
 
Thus, the unit “molecule cm-2” is independent of the nature of the absorbing gas and 
basic to all gases and offers a way of unifying absorber concentration units for all 
atmospheric constituents. 
 
Despite this benefit, absorption by gases is often expressed in terms of the mass 
absorption coefficient. For this case, the path element is expressed as  
 

du = ρgds 
 
and in terms of the mixing ratio (mass) 
 

r = ρg/ρair 

 

du = rρairds 
 
For vertical paths (together with the hydrostatic approximation), it follows that 

 

∫∫ ==
1

2

2

1

1),( 21

p

p

z

z air rdp
g

dzrzzu ρ          (9.4) 

 
This is a formula that should be learned and its derivation understood. 
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Example 9.2: Water vapor and sea surface temperature. Develop a relationship 
between the vertically integrated water vapor path through the entire vertical extent 
of the atmosphere (precipitable water) and the sea surface temperature. Assume 
 

(a) the vertical profile of specific humidity (expressed in terms of mass mixing 
ratio) has the following form r(p) = rs(p/ps)λ where rs is the surface mixing 
ratio. 

 
(b) the saturation vapor pressure at the surface is  such that  )]([ os TTa

s bee −≈
rs ≈ rh0.622es/ps. 

 
Derive your answer in terms of the surface relative humidity, λ and the SST. 
 
Answer: The column path follows from Eqn. (9.4) as 
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9.2  From Intensity (Beam) to Flux (Diffuse) Transmission  
 

Transmission along a slant path s1 → s2 
 

),,(),( 21
/

21 µ
µ

zzess
dzkm TT == ∫  
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Tr(zl, z2,,µ) is referred to as the beam (or intensity) transmission function for the path defined by (z1,z2,µ).  
 

The flux transmission function is defined as (assume azimuthal symmetry) 
 

∫∫=
1

0

1

0 2121 /),,(),( µµµµµ ddzzTzzfT            (9.5) 

 
which is a µ-weighted transmission function characterizing the transmission of the irradiance (flux) 
through the slab z1 → z2. 
 

As noted previously in section 4, we can write Eqn. (9.5) in the following way 
 

)],([2),( 21321 zzEzzf τ=T              (9.6) 
 
where E3 (x) is the nth exponential integral 
 

∫
∞ −=

1
/)( nx

n dexE ηηη  

 
(η = 1/µ, x = τ). To a high degree of accuracy, 
 

xexE β−≈)(2 3                (9.7) 
 
where β  = 1.66 (the so called diffusivity factor). Therefore, 
 

∫−
=

kdu
f ezz

β
),( 21T               (9.8) 

 
The important point here is that the flux transmission can be modeled using the transmission for intensity 
with the path merely increased by the diffusivity factor β. Thus in developing theories for broadband 
functions, we will consider intensity transmission and note that broadband flux transmission is given by 
this transmission function with the introduction of this diffusivity function. 
 
9.3 Frequency Integrated Absorption of a Single Line 
 

Most problems of interest require spectrally integrated transmission (or equivalently absorption) func-
tions over a variety of spectral scales varying from the scale defined by the line half width to scales 
attached to broad spectral regions 10's-100's cm-1 wide. Before understanding how we can do this 
complicated integration, it is useful to study the heuristic properties of the integrated absorption of a 
single line. 
 
 The quantity of main interest is the monochromatic absorption as defined by the frequency integrated 
absorption, namely 
 

( )∫ ∫ −−− −=−= uSfuk oededuW )(1)1()( νννν ν          (9.9a) 

 
where u replaces s as a symbol of the measure of path. This absorption is called the equivalent width W(u) 
since it measures the width of ν units of a hypothetical square shaped line that gives the equivalent 
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integrated absorption. It is crucial to recognize that for the developments here and in the next section, the 
absorption parameters (such as line half width α and intensity S) are constant and independent of path). 
This is obviously unrealistic and we will discuss later how the results below can be modified to treat this 
added complexity. 
 
(a) Limits to the Integrated Absorption of a Single Line 

 
There are two extremely useful asymptotic limits of W(u) that occur repeatedly in discussion of 

molecular absorption. 
 
• The weak line limit (linear limit) 
 

 
 

Fig. 9.2 Schematic interpretation of the equivalent width. 
 
 

Suppose u → 0, Sf (ν)u << 1, then 
 

uSfe uSf )(1~)( νν −−             (9.9b) 
 

and 
 

∫ == SudfSuW νν )(             (9.10) 

 
which is valid no matter what the line shape. 

 

• Strong line or square root limit: 
 

For this limit we consider the Lorenz line shape 
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.2)( LSuuW α=                  (9.11) 

 
Conditions of strong absorption occur either as a result of abundant u absorber and/or high 
pressure (i.e., large αL). Weak absorption is sensitive to abundance. A physical interpretation of 
these limits is afforded by reference to Fig. 9.3. In the linear region absorption occurs at the 
center of the line. A point is reached where all the energy is removed from the line center so that 
as u increases, the absorption increases through the wings (strong region).  

 
Fig. 9.3 The physical interpretation of strong and weak line absorption. 

 
 
(b) Broadband Absorption by a Single Lorenz Line 
 

The equivalent width of a single Lorenzian line is expressed by the Ladenburg-Reiche function, 
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where 
L

Suy
πα2

= .  This can be usefully approximated by 
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        (9.11b) 

 
within 1% for all values of Su/αL..  Figure 9.3 (upper panel) provides a schematic demonstration of the 
strong and weak absorption and the L-R function. We call such plots 'the curve of growth' and these are 
fundamental to very important topics of atmospheric radiation.  
 
(b) Absorption by Lines with Distributed Line Intensities 
 

Here we consider the absorption averaged over lines that vary in intensities from line to line but not in 
their width and do not overlap in any way. Since the variation in line intensity over a band of thousands of 
lines is much more significant than is the variation of αL, this is a reasonable approximation. Furthermore, 
we will see how certain models of bands of overlapping lines reduce to this simple distribution of single 
lines. 

 
Figure 9.4 is a diagram of the line intensity distribution expressed as the function p(S) where p(S)dS is 

the fraction of lines having intensities between S and S + dS. There have been different models derived 
according to the assumed form of p(S)dS and we will now consider two specific examples: 

 

 
Fig. 9.4   A histogram (vertical bars) of all CO2 lines at wave numbers between 450 and 900 cm-1.  Each 

bar represents the number of lines in a given line group.  Lines with strengths within 20% of the 
mean strength of a given group are gathered into that group.  Analytic line-strength 
distributions obtained with the Goody (dotted line) and Malkmus (long-dashed line) models are 
also shown (after Crisp et al., 1986, with modifications). 

 
 

• Goody (1952) 
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• Malkmus (1967) 
 

⎥⎦
⎤

⎢⎣
⎡−=

σ
S

S
SP exp1)(  

 
where σ is the mean line intensity, 
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• Malkmus 
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9.4  Overlapping Lines: Band Models 
 

It is obvious that over some interval ∆ν, increasing the optical mass (u) cannot yield an increase in 
absorptance indefinitely if several overlapping lines are present in ∆ν. Thus the square root formula must 
fail. Attempts have been made to modify single line absorption theory to include line overlap—but these 
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on the whole are not fruitful. More successful are the approaches adopted based on treating the array of 
lines as a statistical entity rather than as a group of individual lines. Models of this type are referred to as 
statistical band models. 
 
(a) Regular Model 
 

Elsasser, 1938: Mean absorption and equivalent absorption coefficient of a band spectrum. Phys. 
Rev., 54, 126-129. Goody and Yung, 4.5. This model is most closely met for P + R branches of linear 
molecules. 
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The corresponding transmission for homogeneous paths is 
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where ∆ν = 6. This integral cannot be solved in terms of elementary functions. 
  

Consider two limits 
 

• ∞→
δ

α L , sin h2π/δ, cos h2πα/δ → ∞ and 

 
]/exp[ δSuE −=T  

 
Here lines strongly overlap and there is no line structure. Further increase of αL/δ (i.e., pressure) 
has no effect on the continuum. Transmission is independent of line shape. 
  

• sin h2παL ~ 2παL/δ., cos 2παL/δ ~ 1 (small αL/S) 
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where 
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The agreement with observation for this model is excellent when applied to an appropriate 
absorber (Fig. 9.5). 

 
(b) Random Models (G + Y, p. 158) 
 

Whereas the application of a regular band model to molecular absorption in the atmosphere has 
limited  scope,  use of  random  band  models  has  been  far  more  widely  used  and  validated  against  
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Fig. 9.5  (a) Line shape for the Elsasser model (after Goody, 1964). (b) Comparison of transmission 

for purely exponential type (single line) and the Elsasser band model of regularly 
overlapping lines, (c) Measured and fitted transmissions for a CO absorption band. 

 
observations. One approach to the development of a random model is to take an infinite array (like the 
Elsasser model) and then combine a number of these arrays by multiplication. Consider for illustration a 
band of constant line intensity, then 
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is the absorption coefficient at ν due to the superposition of N lines distributed randomly in the interval 
−Nδ/2 and Nδ/2 by lines located at νi. The transmission is 
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If the probability that a single line lies in the interval dνi is dνi/δ, then the joint probability that there are 
lines between ν1 and ν1 + dν1, ν2 and ν2 + dν2,, and so on is 
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For all possible arrangements of lines in the interval 
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with some approximation (n → ∞) 

 9-11



]/exp[

]exp[11exp

δ

ν
δ ν

W

duk

−=

⎥⎦
⎤

⎢⎣
⎡ −−−→ ∫

∞

∞−
T

          (9.18) 

 
This states that the transmission through a random array of lines equals the exponential of the mean 
absorption (W/δ) 
 

Consider now M such arrays of random lines superimposed on one spectral interval Mδ wide, then 
 

]/exp[ δMWii −=T             (9.19) 
 
where Wi is the equivalent width of one line in the ‘ith’ array. Since transmission is exponential, 
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Now the average absorption W  was derived according to Eqns. (9.12a) and (9.12b) for Goody and 
Malkmus line intensity distribution. Thus: 
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        (9.21) 

 
Clearly lines are not randomly distributed (they are predicted by quantum mechanical formula) and so a 
random band model is just an approximation to the actual transmission by a band of overlapping lines. 
The viability of the model, however, can be tested against laboratory data—with very good agreement 
(Fig. 9.6). 
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Fig. 9.6  Comparison between the random model (full line and observation (points) for sections of the 

6.3 µm, 2.7 µm, 1.87 µm, 1.38 µm, and 1.1 µm band of water vapor. The different symbols 
represent absorptions by different bands. 
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(c) Band Parameter Fits (G + Y, p. 158) 
 

The idea of a band model is to use Eqn. (9.21) to fit actual spectroscopic data to deduce the band pa-
rameters, namely αL, δ, σ. We will not discuss the actual methods by which band models are matched to 
observations to provide these parameters.  It suffices to state that this is done by fitting in the strong and 
weak limits of absorption, using Eqns. (9.18a) and (9.18b) in the form 
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where we define the w (weak) and s (strong) parameters as 
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Table 9.2 

 
Band Interval (cm-1) δ/S  (cm2 g-1) πα/δ 

H2O rotational  40-160 7210.30 0.182 
 160-280 6024.80 0.094 
 280-380 1614.10 0.081 
 380-500 139.03 0.080 
 500-600 21.64 0.068 
 600-720 2.919 0.060 
 720-800 0.386 0.059 
 800-900 0.0715 0.067 
CO2 15 µm 582-752 718.7 0.448 
O3 9.6 µm 1000.0-1006.5 6.99 × 102 5.0 
 1006.5-1013.0 1.40 × 102 5.0 
 1013.0-1019.5 2.79 × 103 5.0 
 1019.5-1026.0 4.66 × 103 5.5 
 1026.0-1032.5 5.11 × 103 5.8 
 1032.5-1039.0 3.72 × 103 8.0 
 1039.0-1045.5 2.57 × 103 6.1 
 1045.5-1052.0 6.05 × 103 8.4 
 1052.0-1058.5 7.69 × 103 8.3 
 1058.5-1065.0 2.79 × 103 6.7 
H2O 6.3 µm 1200-1350 12.65 0.089 
 1350-1450 134.4 0.230 
 1450-1550 632.9 0.320 
 1550-1650 331.2 0.296 
 1650-1750 434.1 0.452 
 1750-1850 136.0 0.359 
 1850-1950 35.65 0.165 
 1950-2050 9.015 0.104 
 2050-2200 1.529 0.116 
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Fig. 9.7  Absorption in the spectral region from 4400-2800 cm-1 where CO2 and H2O overlap. 
 
 

Example 9.3: Transmission in the CO2-H2O overlap band. In the 15 µm region, the 
transmission associated with two overlapped absorption bands has the form 
 

2222 COOHCOOH TTT ×=+  
 
From the band parameters listed in Table 9.2, we have 

 
CO2  s/δ  = 718.7  πα/δ  = 0.448 
H2O  s/δ   = 2.919 πα/δ  = 0.06 

then 
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where uH2O and uCO2 are the respective path lengths of water vapor and carbon 
dioxide under consideration. A typical column value of water vapor (see Example 
9.2) is uH2O = 2.8 gcm-2 and a typical value of the column carbon dioxide path is uCO2 
= rsps/g ≈ 44 × 330 × 101300/(980 × 29) = 0.5 gcm-2. These values together with β = 
1.66 lead to  

88 1068.2106.6406.0
22

−−
+ ×=××=COOHT  

and for double the amount of CO2, 
1111 1084.2100.7406.0

22

−−
+ ×=××=COOHT  

We conclude that the CO2 portion of the band is highly opaque and increases in this 
absorber only marginally reduce the already small transmission. 
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9.5 The Method of k Distribution 
 

The k-distribution method for transmission is based on grouping of the absorption coefficients kν in 
some spectral interval (or band) (Fig. 9.8). In a homogeneous atmosphere, the spectral transmittance is 
independent of the ordering of k for a given spectral interval. Hence, the wave number integration may be 
replaced by an integration over the k space. If the normalized probability distribution function for kν in the 
interval ∆ν is given by f (k) and its minimum and maximum values are kmin and kmax , respectively, then 
the spectral transmittance may be expressed by 
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where kmin → 0 and kmax → ∞ 
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Fig. 9.8  The concept of the k-distribution approach.  Divide the plot into n horizontal slices, centered 

on values k1, k2,…, kn.  Fi denotes the area of the ν axis covered by points where 
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Moreover, a cumulative probability function may be defined in the form 
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where g(0) = 0, g(k → ∞) = 1, and dg(k) = f(k)dk. By definition, g(k) is a monotonically increasing and 
smooth function in k space. By using the g function, the spectral transmittance can be written 
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Since g(k) is a smooth function in k space, the inverse will also be true here: that is, k(g) is a smooth 
function in g space. Consequently, the integration in g space, which replaces the tedious wave-number 
integration, can be evaluated by a finite and relatively small number of exponential terms. 
 

The steps to implementing the k-distribution approach are highlighted schematically in Fig. 9.9. 
Figure 9.9(a) shows the spectrum of kν in a portion of the 9.6 µm O3 band at a pressure of 30 mb and a 
temperature of 220 K. Figure 9.9(b) shows the probability distribution f(k) as a function of k derived 
from this spectrum (we will not discuss the details of how this is done although it is portrayed in Fig 9.8 
and discussed further in G+Y). In Fig. 9.9(c) the cumulative probability function g(k) is shown as a 
function of k. We may then compute k(g) as a function of g from Eqn. (9.22). This curve is illustrated in 
Fig. 9.9(d). Since g is a smooth monotonic function, a few quadrature points suffice to achieve a high 
degree of accuracy in the transmittance computations. 

 
 
Fig. 9.9 (a) Absorption coefficient kν in units of cm-1atm-1 as a function of wave number with a 

resolution of 0.05 cm-1 in the 9.6 µm O3 band p = 30 mb and T = 220 K.  (b) The probability 
function f(k) of the absorption coefficient.  (c) The cumulative probability function of f(k) 
shown in (b), plotted as a function of k.  (d) Same as (c), except that values of the absorption 
coefficient are expressed as a function of g. 

 
The physical foundation for the k distribution is quite simple, but it offers clear advantages in the 

computation of broadband transmission. It has also been discussed by Domoto (1974) on some aspects of 
the theoretical foundation and the Laplace transforms for a number of band models. The idea of 
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scrambling and ranking absorption lines was described in the work of Ambartsumian (1936) of stellar 
atmospheres.   

 
There is a second way to approach the k distribution and it follows from a closer look at Eqn. (9.22). 

It follows by definition that the transmission can be expressed as 
 

)]([)( kfu LT =  
 
where L is the Laplace transform. Thus the transmission is the Laplace transform of f(k) and this 
distribution is obtained as the inverse transform 
 

)]([)( 1 ukf TL−=  
 
For some functions, this provides a convenient way to obtain the spectral function f(k). As it turns out, the 
inverse Laplace transform of the Malkmus model is obtained analytically as 
 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

k
k

k
ky

k
ykkkf 2

4
exp)(

2
1)(

2.1
π  

 
where δσ /=k  and δα /Ly = . 
 
9.6  Selected Empirical Transmission Functions 
 

A wide variety of empirical transmission models based on laboratory measurements have been em-
ployed in the literature. For example: 
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where A. B, C, Wo, and n are empirical constants.  is absorber mass, p is pressure (subscript "LAB" 
refers to laboratory conditions). Most only involve single path parameter u. All empirical models should 
be used with caution: unless based on theory, applicable only to a range of parameters for which they are 
fitted. 

u~

 
Two widely used empirical approximations to the solar weighted broadband absorption function 

 

Q

duAF
uA ∫=

λλλ )(
)(

,
 

 
for the path u were derived by Lacis and Hansen (1974) for UV and visible ozone absorption and near 
infrared water vapor absorption. (The transmission is just 1 − A ). The formulae are: 
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where X is the ozone amount for the slant path expressed in cm STP and X = Ωmr where Ω is the column 
ozone amount above some specified level 
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and µ  = cos θ . This factor (referred to as the relative airmass) differs only from sec θ  for θ  near 90° 
due to refraction effects of the solar beam at these glancing angles.  
 

The formula for water vapor is 
 

]925.5)5.1411[(
9.2)( 635.0 uu
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where u = wmr such that w is the column water vapor amount (precipitable water) in units of gcm-2 (this is 
equivalent to cm STP). The total broadband absorption with respect to the entire solar spectrum is 
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oz

uv
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given that the three absorptions occur in three different portions of the solar spectrum such that they 
overlap in a simple additive way. Figure 9.10a presents comparisons of the two formulae against actual 
spectrally integrated ozone absorptions. Figure 9.10b shows the broadband water vapor absorption 
derived from a number of different sources of both absorption data and spectral solar flux. Much of the 
difference can be explained by the actual choice of F ,λ for integrating the spectral absorption. These 
differences lead to significant differences in calculating the solar flux. 
 

Example 9.4: Broadband transmission of the direct solar beam. Consider the 
following 

 
Two overlying absorbing layers of path ul and u2. In the shaded upper layer, the 
absorbed flux is 

)( 11 rmuAQF µ=∆  
where mr ≈ 1/cos θ  The absorption in the lower layer is then 

)]())(([ 1212 rr muAmuuAQF −+=∆ µ  
The transmission through the two layers is ))((1 21 rmuuA +−=T  
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Fig. 9.10  (a) Percentage of the total solar flux absorbed as a function of ozone amount Ω..  (b) Same as 

(a) but as a function of water vapor amount. 
 
 
9.7    Transmission Along Inhomogeneous Paths (Section 6.4 Goody and Yung) 
 

So far all our discussion of transmission applies to the case of homogeneous paths (i.e., paths over 
which temperature and pressure and hence k(ν) are constant) such as might arise in the laboratory. We 
now must modify this view as 

 
• Most problems of transmission in the atmosphere apply to paths for which p and T vary. 

 
• Laboratory data are obtained for fixed p and T, which might not be representative of atmospheric 

conditions and some adjustment is needed. 
 
Figure 9.11 provides a schematic illustration of the consequence of transmission along a pressure varying 
path. The atmospheric line profile is no longer Lorenzian. 
 

 
Fig. 9.11  Schematic composite showing how an actual line profile over a variable pressure path forms 

as a composite of the individual Lorenz profiles. The atmospheric line profile is not Lorenz in 
general: it is more sharply peaked because of low-pressure contributions, with broader wings 
due to high-pressure contributions. 
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In treating inhomogeneous effects, the assumption is made that the absorption for paths along which p 
and T vary can be approximated by absorption expressed in terms of a homogeneous path with the 
parameters scaled in some way. Two principal forms of scaling are used. Before discussing these, it is 
worthwhile considering one case for which an analytic solution exists.  

 
(a) Constant Mixing Ratio, Isothermal Atmosphere—An Exact Solution  
 

There is one hypothetical case for which the algebra can be done. Consider a line centered at νo = 0 
for convenience, then τ(v) has the form 
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Also, assume the property 
 

rS  = constant            (9.26) 
 
such as occurs for an isothermal atmosphere (S constant) with a uniformly mixed absorber (r constant).  
Then 
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for ioi p~αα = .  Figure 9.12 in Example 9.5, shows the comparison between the transmission derived 
according to Eqn. (9.28) with -η = 1 and the transmission calculated assuming the mean pressure 
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(b)   Scaling Approximation 

 
The simplest and most common way of dealing with nonhomogeneous paths is the 'scaling' or one 

parameter approximation. Let us start with the assumption that pressure and temperature effects on the 
absorption are separable according to 
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)()()(),( TpTpku χν ΦΨ=            (9.29) 

 
Example of factorization: ν − νo > αL as occurs in line wings, then 
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∫ ≈
Φ
Φ

ΦΨ=
2

1

~),(
)(

)(
)(
)()()()(

),(
u

u oo
oo

Tpk

oo uTpk
T

duT
p
pTp

oo

νν χ
χχντ

ν 444 8444 76
        (9.30) 

 
where  
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It is generally assumed that 
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Table 9.3 provides some often used values of n and m for various absorbing gases. 
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Table 9.3: Generally accepted values of n and m for various absorbing species. 
 

Gas Spectral Region n m 
Water vapor  0.9-1 0.45 
Carbon dioxide Shortwave 1.75 11-8 
Ozone  0 0 
Water vapor Longwave 0.5-0.9 0.45 
Carbon dioxide  1.75 11-8 
Ozone  0.4 0.2 

 
It is generally assumed that there is no foundation for Eqn. (9.25) other than it seems to work. While 

this statement is generally true, we see in the strong absorption limit that the absorption coefficient 
actually factors in this way with n = 1. 
 
(c)   Two Parameter Approximations: The Van de Hulst - Curtis - Godson (VCG) Approximation 
 

The previous method relies only on a scaling of the absorber amount to correct for path inhomo-
geneities. In general n varies depending on the absorption regime (n = 1 strong, n = 0 weak) and so is 
poorly defined in general. Obviously, a better and more sophisticated approach would be to employ two 
disposable parameters to simulate the absorption (e.g., u and n in the scaling approximation). The most 
useful two-parameter method proposed is the Curtis-Godson approximation, which attempts to define a 
scaled absorber amount specified for a mean pressure. The approach was developed independently by 
Curtis (1952) and Godson (1954) and earlier by Van de Hulst (1945) in a rather intriguing article (unfor-
tunately in French)—thus I prefer to call the approximation VCG. The aim of the VCG approximation is 
to provide such a fit of the transmission. To discuss this approximation, consider isothermal paths (for 
convenience only). The criteria adopted are to match the absorptions exactly in the strong and weak 
limits. To proceed, we start with 
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• Weak limit 

 
We obtain the weak-line limit directly by considering the exponent in Eqn. (9.32) as it 
approaches zero 

 

[ ]∫ ∫∫ ∫ −≈−
∆

≈= ∫−
SdudduSfde

duSf
1)(11~ )(

νν
ν

ν
ν

T  

 
Since ∫ f(ν)dν = 1 for regular band models, αi and Si are constant over the interval chosen and 
thus the VCG approximation in this context states. 
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∫= duu~            (9.33a) 

 
 
• Strong limit 

 
The strong-line limit follows in an analogous way to the derivation of the strong limit for 
homogeneous paths. For the inhomogeneous case, in the strong limit where |ν - νo| >> αL then 
for a single line 
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and since ∆ν >> αL, the integral limits are effectively infinite. Thus 
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and by matching the equivalent homogeneous limit, we obtain 
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Example 9.5: Band model example revisited. Suppose that the vertical distribution of 
absorber has the form 3)( prpr s=  where sppp /= . Then under the VCG 
approximation, 
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and thus .  Now this may be simply applied to either the Goody or 
Malkmus band models in the following way. Consider the Goody band model: for a 
uniform path 
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where for a nonuniform path 
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where αL,s is the band line half width defined at pressure ps. Using the parameters 
from our earlier example, with u  = 2.8 gcm~ -2 then 
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compared to the homogeneous path value of 0.498. 
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Example 9.6: A test of the VCG. The accuracy of this approach can be tested for the 
hypothetical case considered above. Consider the atmospheric layer as shown below, 
which extends between pressure p1 → p2.  Set 

p2 = fp1 
then according to Eqn. (9.28) 
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where Lα  is the mean half width defined as 2/1)]2()1([ LLL ααα .  The VCG 
approximation expresses the optical thickness in the form 
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for the case considered here. Thus the optical thickness of the layer predicted by the 
VCG approximation in terms of f and Lα  is 
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Fig. 9.12  Percentage error of the VCG for a single line and a constant mixing ratio 

for f = 0. 
 



9.8  Problems 
 
Problem 9.1
 

Briefly explain or interpret the following: 
 

(a) Two sealed chambers contain the same amount of water vapor and are at the same temperature. 
One contains only water vapor, while the other holds a mixture of water vapor and air. Which has 
the smaller transmissivity averaged over a narrow spectral region containing a single water vapor 
absorption line? 

 
(b) The two sealed cells of (a) now both contain some amount of water vapor mixed in air. The 

concentration of water vapor in one cell is adjusted so that the transmission of 10 µm radiation 
through one cell matches the transmission of 6.3 µm radiation through the other cell. Which cell 
contains the most water vapor? 

 
(c) The temperature of both cells is now increased thus raising the pressure within the cell but 

assume no other changes occur. At which wavelength is the transmission a maximum (ignore any 
temperature effects on absorption)? 

 
Problem 9.2
 

Develop a relationship between the vertically integrated water vapor path through the entire vertical 
extent of the atmosphere (precipitable water) and the sea surface temperature. Assume 

 
(a) The vertical profile of specific humidity has the following form qs(p/ps)λ where qs is the surface 

specific humidity. 
 
(b) es ≈ bexp[a(Ts − To)]. Derive your answer in terms of the surface relative humidity, λ, and the 

SST TS. 
 
Problem 9.3
 

Compute the optical path for: 
 

(a) Water vapor of a 100 mb thick homogeneous layer of mixing ratio r. 
 
(b) Total atmospheric CO2 if the mixing ratio is 330 ppm by volume. 

 
Problem 9.4
 

The following function 
 

22
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a
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reasonably resembles the vertical profile of ozone mixing ratio such that with a = 1600, the maximum 
occurs at ψ = p/ps = 0.025. Assuming a value rp = 1 x 10-5 kg/kg, derive the total column ozone and 
express your answer in Dobson units (the density of ozone at S.T.P. is 2.14 kgm-3). 
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Problem 9.5
 
The rationale for the surface pressure measurement using two frequencies in the O2 A band is 

discussed in Section 3.5. Given the definition of optical thickness, obtain an explicit form of the function 
t(ps) given in (3.41) assuming (1) a Lorenz line and frequencies at the line center (ν = νo), and (2) 
frequencies in the line wing | (ν − νo) | >> αL. Neglect the effects of atmospheric temperature on line 
intensity and half-width. Express your answers in terms of S, the line strength; αo the line half width 
defined at some reference pressure po the mixing ratio r of the gas, psat the satellite pressure, and the 
acceleration by gravity g. 

 
Problem 9.6
 

Absorption in the atmospheric window between 8 and 13 µm is represented by an absorption 
coefficient of the form k2e where e is the water vapor pressure (in kPa), k2 ≅ 10-1 (g cm-2)-1 kPa-1. If the 
water vapor pressure near the surface is 1 kPa, calculate (1) the transmission of a horizontal path l km 
long near the surface, and (2) the transmission of a vertical path of atmosphere assuming that the 
distribution of water vapor pressure is proportional to pressure units of atmospheres) raised to the fourth 
power. 
 
Problem 9.7
 

The absorption coefficient in the continuum has the form 
 

ekk νν ,2≈  
 
where e is the water vapor partial pressure in units of atmosphere. Assuming a hydrostatic atmosphere 
 

Hz
sepp /−=  

 
where ps = 1013.13 mb, and assuming that the mixing ratio profile of water vapor is similarly exponential 
with 
 

Hr = H/3 
 
where Hr is the scale height of vapor 
 

(a) Derive an expression for the optical mass u for the vertical path from 0~ =p  to p~  where 
 is the pressure in atmospheres. Express your answer in terms of rsppp /~ = s, the surface mixing 

ratio of water vapor, and p~ . 
 

(b) Assume that the temperature dependence of the absorption parameter k2,ν has the form 
 

pkk s
~/,,2,2 νν =  

 
show that 
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where 
 

g
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354.4
,,2

2
νβ =  

 
where 622.0/~pre = . 

 
Problem 9.8
 

Assume the following profile for water vapor mixing ratio:  
 

Hz
serr /3−=  

 
Calculate the broadband water vapor absorption of solar radiation in 10 adjacent 100 mb thick layers from 
the top of the atmosphere (0 mb) to 1000 mb and plot this absorption as a function of the mean layer 
pressure. 
 

(a) Contrast the vertical profiles of absorption assuming the following values of rs: 5.4, 10.2 and 18.4 
gkg-1. 

 
(b) Calculate the Planck weighted broadband flux absorption using a Goody band model and the 

parameters given in Table 4.4 (p. 11) for the rotation band and the vibration band. Calculate this 
transmission for a path extending through the column for the model atmosphere of 1 above (do 
only for rs = 10.2 gkg-1). Assume T = 270 K in calculating the Planck Function. 

 
(b) Calculate the broadband transmission as in (2) above but for a path extending up from a reference 

level located at 800 mb to the top of the atmosphere and for a path extending downwards from 
this reference level to the surface. Plot these transmissions as a function of either pressure or 
altitude (your choice). 
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