
AT622 Section 2 
Elementary Concepts of Radiometry 
 

The object of this section is to introduce the student to two radiometric concepts—intensity (radiance) 
and flux (irradiance). These concepts are largely geometrical in nature. Neither quantity varies as light 
propagates along. 
 
2.1  Frame of Reference 
 

Before considering how we might describe electromagnetic wave propagating in space in radiometric 
terms, it is necessary to consider ways of representing the geometry of the flow. We use a terrestrially 
based frame of reference such as a Cartesian coordinate system and select one of its axes to be anchored 
in some way according to some property of the terrestrial atmosphere. 
 

,ˆ,ˆ ji and are unit vectors that define three orthogonal axes. Examples of two sun-based frames of 
reference, where the x axis points to the sun (i.e., the azimuth angle is defined relative to the sun's 
azimuth), are shown in Fig. 2.1. A general reference point within a Cartesian frame of reference may be 
indicated by the position vector 

k̂

rv such that 
 

rv  = (x, y, z), 
 
where (x, y, z) defines the coordinates of the tip of this vector. 

 
Fig. 2.1  Sun-based terrestrial frames of reference for meteorologic optics and hydrologic optics. 
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We define a direction vector in terms of a unit vector (ξ
v

) whose base is at the origin point and whose 

tip is the point (a, b, c) on the unit sphere that surrounds the origin. In this case, 1222 =++ cba . The 
unit direction vector may also be defined in terms of a general point (x, y, z) by 
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A more trigonometrical interpretation of the direction vector follows by considering Fig. 2.2a. For a point 
(a. b, c) on the unit sphere, it follows that 
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where θ is the zenith angle and φ is the azimuth angle. The latter, in this case, is measured positive 
counterclockwise from the x axis. Since ξ

v
= (a, b, c), then 

 
                                             (2.1) )cos,sinsin,sin(cos θθφθφξ =

v

 
are the three components of the direction vector.  We will also use µ = cos θ throughout these class notes. 
 

 

ξ
v

ξ
vξ′

v

Fig. 2.2 (a) Angle and direction definitions defined with respect to a unit sphere.  (b) Scattering 
geometry and the scattering angle on the unit sphere. 
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ξ ξ ′

Example 2.1: Scattering angle 
 
Many problems of interest require the definition of the angle formed between two 
directions. For example, the scattering angle Θ is the angle between the direction 
of incident radiation and the direction of the scattered radiation. If the former 
direction is 

v
and the scattering direction is 

r
 then 

 
.ξξ ′⋅=Θ

vv
          cos
 
We can schematically represent Θ and the two directions in question on a unit 
sphere (Fig. 2.2b). It follows from the above equation and Eqn. (2.1) that Θ can 
be stated in terms of two pairs of angles ξ′ (µ', φ') and ξ(µ, φ) 
 

                 cos µ=Θ .)cos()1()1( 2/122/12 φφµµµ ′−′−−+′
 

Fig. 2.3 Illustration of a solid angle and its representation in polar coordinates.  Also shown is a pencil 
of radiation through an element of area dA in directions confined to an element of solid angle 
dΩ. 

Fig. 2.3 Illustration of a solid angle and its representation in polar coordinates.  Also shown is a pencil 
of radiation through an element of area dA in directions confined to an element of solid angle 
dΩ. 

  
2.2  Solid Angle and Hemispheric Integrals 2.2  Solid Angle and Hemispheric Integrals 
  

Many radiation problems, particularly those dealing with fluxes, require some type of integral over 
solid angle. A simple and convenient way to think about the solid angle is to imagine that a point source 
of light is located at the center of our unit sphere and that there exists a small hole of area A on its surface 
allowing light to flow through it. This light is contained in a small cone of directions, which is 
represented by the solid angle element Ω defined as 

Many radiation problems, particularly those dealing with fluxes, require some type of integral over 
solid angle. A simple and convenient way to think about the solid angle is to imagine that a point source 
of light is located at the center of our unit sphere and that there exists a small hole of area A on its surface 
allowing light to flow through it. This light is contained in a small cone of directions, which is 
represented by the solid angle element Ω defined as 
  

        2r
A=Ω                 (2.2) 

 
With this definition, one can easily show that the solid angle with all directions around a sphere equals 
4π.  Referring to Fig. 2.3, one can write the differential area of the opening as  
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   .sin φθθ ddd =Ω                (2.3) 
 
 Integrating dΩ over the entire sphere 
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yields the result we intuited earlier in Eqn. (2.2). 
 

Suppose we now wish to integrate some function, like the intensity, over a complete hemisphere of 
directions. To fix ideas, consider the intensity I(θ,φ) flowing to some point on a horizontal surface from 
the hemisphere above it. The hemispheric integral of this intensity is then 
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An even more important quantity in radiation studies is the hemispheric flux F defined as 

∫=
1

0
.),(2 µµφµπ dIF  

 
Note how this quantity differs from h above through the appearance of the factor µ in the integrand.  The 
hemispheric flux defined in this way is a measure of the energy flowing through a horizontal surface per 
unit area and per unit time (we will discuss this in a more formal way later). Recall from Section 1 that the 
intensity is a measure of the energy flowing though a surface normal to the flow per unit area, per unit 
time, and per unit solid angle. The cosine factor therefore accounts for the projection onto a horizontal 
surface of the area that is normal to the flow of photons. 
 
 

Example 2.2: Solid angle 
 
1) The solid angle of a spherical segment is 
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2) The solid angle of a spherical cap defined by the angle θ is 
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    For small θ, cos θ → 1− θ 2/2 + … and 
.)( 2πθ≈Ω D  

3) The solid angle of the sun is therefore 
2πθ=Ω  

    whereas we shall see later, θ  ≈ r / , and 
ESR

Ω = steradian4
2

8

6

10684.0
105.1
107.0 −×≈









×
×π  

 2-4



2.3     Basic Radiometric Concepts 
 

Radiation is a way of transferring energy from one point to another and we now formalize a way of 
describing this flow. From Section 1 we learn how the energy of an EM wave is associated with the 
square of the amplitude of the E field. Now we consider the geometrical constructs of this flow of energy. 
These considerations are known as radiometry: Radiation + Geometry. Radiometry has almost become a 
discipline in itself—a large variety of terminologies and symbolisms exist. However, we need only 
consider one basic quantity from which others follow. Another point is that once we have established the 
nature of radiant energy, radiometry is by and large geometrical in nature. 

 
The first basic quantity is the "radiant flux".  The definition for "radiant flux" of monochromatic 

radiation is 
 
                  (2.5) -1m)W(µ))(()( dAcvnhvvP ×××=
 
where n(v) is the phase space density = number of photons per unit frequency per unit volume; hv is the 
energy of each photon; and n(v)× c is therefore the number of photons per unit frequency crossing a unit 
area per unit time.   Two quantities that follow from P are: 
 

Fv = P(v)/A for the area density of radiant flux [Wm-2 µm-1] 
 

which is strictly known as the flux density but we will call it flux (or irradiance and shortly dispense with 
the quantity P), and the monochromatic, or spectral intensity, or radiance 
 

I = P(v)/Ω⋅A      [W m-1sr-1 µm-1]  (radiance) 
 

 
Example 2.3: Photon flow rate of Example 1.2 
 
Here we estimate the rate of photon flow required to deliver a given amount of 
flux at a specific wavelength.  We begin with Eqn. (2.5) 
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For F = 0.l Wm-2, λ = 0.5 µm, c = 3 x 108 m/s, and h = 6.6 x 10-34 Js, one obtains 
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photons of λ = 0.5 µm flow per sec through a unit area to produce 0.1 Watts of 
power per m2. 
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There are only two ways that we need to visualize the flow of radiant energy (Fig. 2.4)—the first is as a 
function of direction and the second is as a function of space: 
 

(1) For the first we imagine the radiant flux of energy P(s) passing through some area dA as in Fig. 
2.4a. 

 
(2)  For the second depiction, radiant flux of energy P(s) passes through a single point p through a 

small set of directions dΩ. 
 

 
Fig. 2.4 (a) and (b) two hypothetical modes of flow of radiant energy. 

 
 
(a) Spectral Intensity I 

 
Unfortunately, the flows shown in 2.4a and b are not practical since these flow types are not 

measurable: an instrument detector can neither sense radiation at an infinitesimal point, since detectors 
have some characteristic area, nor can a detector measure purely parallel flow as they also have a 
characteristic angle. Consider a simple radiometer as shown in Fig. 2.5a. The detector subtends a solid 
angle 
 

Ω = a/ℓ 2 

 
where a is the area of the detector and ℓ is the length of the collimating tube. What is measured is then the 
quantity 

 
                                                                        (2.6) ]msrWm[ 112 −−−

Ω⋅
= µ

da
PI

 
which we will refer to as either spectral radiance or spectral intensity. Radiance (intensity) is a 
fundamentally important quantity as it is directly measurable by instruments we call radiometers. The 
product of the area and solid angle aΩ is known as the 'throughput' T of the radiometer and the radiance is 
then P/T. 
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(b) Irradiance or Flux F 
 

An even more important radiometric quantity, at least from the perspective of meteorology and 
climatology, is the quantity referred to as irradiance (or flux density or just flux, again remember that we 
will shortly dispense with P for the rest of this class). This quantity describes the total flow of radiant 
energy that flows onto or from a surface. For a general definition of this quantity, consider a surface of 
area dA and flow from two directions 

v
 and 1ξ 2ξ

v
, which make angles θ1, and θ2 with respect to the normal 

nv  to dA. The radiances I1, and I2 define the radiation field along each direction. The flux onto dA is then 
 

12
22221111 mWm))(())(()( −−Ω⋅+Ω⋅== µξξξξ dnIdnI

dA
Pnf vvvvvvv  

 
and in the limit that the number of sources → ∞, then 
 

                                                                          (2.7) ∫= IF θξ )(
v

Ωdn i cos()v
 
where F is defined with respect to the normal nv  (Note: it is only meaningful to talk of flux relative to 
the orientation of some surface...most of our interests are for horizontal surfaces and thus nv  
represents either the zenith or nadir). When the integration is carried out over the entire sphere of solid 
angles, this is the net flux that flows through the surface. It is more common to carry out this integral in 
two parts, one over a positive hemisphere (positive in the sense that 0>⋅nv

v
ξ , see Fig 2.5a) and one over 

the corresponding negative hemisphere (Fig. 2.5b). 
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 (b)  
 
 
 
 
 
 

Fig. 2.5 (a) A simple radiometer and  (b) hemisphere fluxes. 
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Example 2.4: Exploring the relation between radiance and flux 
 
1) Consider the situation where radiation flows onto a surface defined by a 

discontinuity in refractive index. At the surface 
 

 

 
Snell's law predicts that 

 

 

 
and it follows that 

 
 

 
where now we make use of our small cap approximation Ω = πθ 2.  Since 

 
 

we obtain 
 

 

 
Thus we take I/m2 as the intensity when we are interested in propagation 
through an m varying media. The radiance from one m environment to 
another m environment thus needs to be adjusted by refractive index. 

 
2)  Hemispheric fluxes on a horizontal surface. The upward flux may be 

defined as 
 

 

 
and the downward flux is 

 

 

 
and the net flux is F = F+ + F−. Often the limits of the θ integral for F− are 
flipped, which in turn defines a positive F− leading to an alternate 
definition F = F+ − F−. We will use this latter convention throughout. 
[Note also that the + sign on the upward flux means that the normal of the 
surface in question points upward along the vertical.] 
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Example 2.4: Continued. 
 
3) Consider a special case of isotropic radiation (i.e., I = I0 is constant), then it 

follows that 
 

 

 
and also F− = πIo, so that Fnet = 0. As much radiation flows onto the surface 
that leaves the surface. 

  
4) Flux of an isotropic source on a vertical surface. Let us consider the surface 

in the y-z plane 
4) Flux of an isotropic source on a vertical surface. Let us consider the surface 

in the y-z plane 
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where we make use of Eqn. (2.1). Also take special note of the limits of the 
integration and the hemisphere these limits define. 
where we make use of Eqn. (2.1). Also take special note of the limits of the 
integration and the hemisphere these limits define. 

  
5) The intensity and flux from the sun. We will see later how the sun radiates 

approximately as a blackbody of temperature T  = 5790 K. This radiation is 
emitted isotropically from the sun with a broadband intensity (i.e., at an 
intensity that has been integrated over all wavelengths) 

5) The intensity and flux from the sun. We will see later how the sun radiates 
approximately as a blackbody of temperature T  = 5790 K. This radiation is 
emitted isotropically from the sun with a broadband intensity (i.e., at an 
intensity that has been integrated over all wavelengths) 
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If we consider the geometry as shown, then the flux from the sun incident 
on a surface whose normal is along the direction from the point P on the 
earth's surface to the center of the sun is 
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Example 2.5: The black of night: Olbers' paradox 
 
An ancient astronomer, if asked why the night sky is black, probably would 
have answered that it was because the sun is absent. If we then ask why the 
stars don’t take the place of the sun, then the likely answer is because the stars 
are of limited number and individually dim. This last argument has lost its 
force over the centuries and astronomers tell us that the number of stars 
occupying the night sky is tremendous indeed. We are left with a paradox of 
sorts—why is not the night sky as brilliant as the daytime sky filled with the 
light from an almost infinite number of stars. Olbers pondered this paradox and 
approached it with the following assumptions: 
 

1. The universe is infinite in extent, 
2. The stars are infinite in number, and 
3. The stars are of uniform average brightness through all space. 

 
He then considered space as divided into concentric shells about the observer 
that are large enough to be populated by stars. The amount of light that reaches 
us from each star (think of this as the product of I Ω ) varies inversely as the 
square of its distance from us. But as we look farther out in space the volume 
of the shell of space also expands (as the distance squared) in such a way that 
the increased number of stars in the farther shell cancels with the decreased 
brightness of these more distant stars. 
 
Thus the crux of the paradox is—if the universe is infinite in extent and thus 
consists of an infinite number of shells, the stars of the universe, however dim 
they may individually be, ought to deliver an infinite amount of light to Earth. 
Somewhere in Olbers' paradox there is some mitigating circumstance or logical 
error. It is commonly thought that the failure of the above arguments occurs 
with assumption (3). We know that the stars of distant galaxies are receding 
and this movement caused a red-shift in the spectrum. With the expansion of 
the universe each succeeding shell delivers less light as it is subject to a 
successively greater red shift. Thus we receive only a finite amount of energy 
from the universe and the night sky is black. 
 

 
2.4   Problems 
 
Problem 2.1 
 

Radiance of the moon and sun 
 

(a) Calculate the solid angle subtended by the sun, and the solid angle subtended by the moon as 
seen from the center of the Earth. 

 
(b) Calculate the radiance of the sun and the radiance of the moon as seen from the earth. Assume 

the following constants: 
 

 
SolarConstant = 1367 Watts m-2 
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SunDiameter = 1.39 X 106 km 
MoonDiameter = 3.48 X 103 km 

  Sun - EarthDistance = 1.49 X 108 km 
  Sun - MoonDistance = 1.49 X 108 km 

   Earth - MoonDistance = 3.8 X 105 km 
  Reflectivity of the Moon = 6.7% 

 
Assume that the reflectance from the moon is isotropic (i.e., the moon's surface is said to be a 
Lambertian reflector). 

 
Problem 2.2 
 

A small perfectly black spherical satellite is in orbit around the earth at a height of 200 km. What 
solid angle does the earth subtend when viewed from the satellite? Hint: Consider Fig. 2.6a and assume 
the Earth's radius to be 6370 km. 

 
 

Fig. 2.6  Deriving the irradiance distance-law for spheres and disks. 
 

Problem 2.3 
 

Irradiance Distance Law for Spheres. 
 

Consider a spherical surface S of radius a with uniform radiance distribution of magnitude I at each 
point. Suppose that S is viewed at a point x a distance r from the center y of S. The lines of sight lie in a 
vacuum and the background radiance of S is zero. See Fig. 2.6 (a). Derive the irradiance F(x, ξ) at point x 
in terms of the given variables. Here ξ is the normal at x in the direction from y to x. 
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Problem 2.4 
 

Irradiance Distance Law for Circular Disks 
 

Refer to Fig. 2.6 (b). That figure depicts a circular disk of radius a of uniform surface intensity I at 
each point. The disk is viewed at point x on the perpendicular through the center y of S at a distance r 
from the center. The set D of the lines of sight from x to S lies in a vacuum and the background radiance 
of S is zero. What is the irradiance F(x, ξ) at point x in terms of the given variables? Here ξ is the same as 
that in Eqn. (1.3). Compare your answer to that of problem 2.3 by determining the value of r (in units of 
radius α) such that the difference between the two irradiances is less than 1%. 
 
Problem 2.5 
 

If an incident azimuthally symmetric radiation field is described by I(θ) = Io tanθ, where θ is the 
zenith angle, briefly describe the visual appearance of such a field and derive an expression between F 
and Io.  
 
Problem 2.6  

 
Solve the following: 

 
(a) Using the cosine law and the definition of solid angle in the class notes, establish that the 

relationship between the hemispheric flux F on a horizontal surface and the intensity I flowing to 
that surface is 
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where θ is the zenith angle and φ is the azimuthal angle. 
 

(b) Calculate this flux when the intensity field is uniform (isotropic) and flows through a set of 
directions defined by the angle θ centered on the normal to the horizontal plane. Derive this flux 
as a function of θ. 

 
(c) Using your results of (b) above, show that the hemisphere flux is πIo for an isotropic intensity 

field of magnitude Io. 
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