Stability and Cloud Development

Why is stability important?

- Vertical motions in the atmosphere are a critical part of energy transport and strongly influence the hydrologic cycle.
- Without vertical motion, there would be no precipitation, no mixing of pollutants away from ground level - weather as we know it would simply not exist.
- There are two types of vertical motion:
 - *forced motion* such as forcing air up over a hill, over colder air, or from horizontal convergence
 - *buoyant motion* in which the air rises because it is less dense than its surroundings - stability is especially important here.

Stability in the atmosphere

<table>
<thead>
<tr>
<th>An Initial Perturbation</th>
<th>Stable</th>
<th>Unstable</th>
<th>Neutral</th>
</tr>
</thead>
<tbody>
<tr>
<td>If an air parcel is displaced from its original height it can:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Return to its original height - Stable</td>
<td>Keep right on moving because it is buoyant - Unstable</td>
<td>Stay at the place to which it was displaced - Neutral</td>
<td></td>
</tr>
</tbody>
</table>

Buoyancy

- An air parcel rises in the atmosphere when it’s density is less than its surroundings.
- Let ρ_{env} be the density of the environment. From the Equation of State/Ideal Gas Law $\rho_{env} = \frac{P}{RT_{env}}$.
- Let ρ_{parcel} be the density of an air parcel. Then $\rho_{parcel} = \frac{P}{RT_{parcel}}$.
- Since both the parcel and the environment at the same height are at the same pressure:
 - When $T_{parcel} < T_{env}$, $\rho_{parcel} > \rho_{env}$.
 - When $T_{parcel} > T_{env}$, $\rho_{parcel} < \rho_{env}$.

What is lapse rate?

- The lapse rate is the change of temperature as a function of altitude.
- There are two kinds of lapse rates:
 - Environmental Lapse Rate
 - What you would measure with a weather balloon
 - Parcel Lapse Rate
 - The change of temperature that an air parcel would experience when it is displaced vertically.
 - This is assumed to be an *adiabatic process* (i.e., no heat exchange occurs across parcel boundary).

Rising Air Cools

- Rising air parcels expand.
- Work done by air molecules in the parcel pushing outward consumes energy and lowers the parcel temperature.

The lapse rate is the change of temperature with altitude.

The atmospheric dry adiabatic lapse rate is ~ 5.4°F/1000 ft or 10°C/1000 m. The actual environmental lapse rate may be greater or smaller than this.
Stability and the dry adiabatic lapse rate

- Atmospheric stability depends on the environmental lapse rate
 - A rising unsaturated air parcel cools according to the dry adiabatic lapse rate
 - If this air parcel is warmer than surrounding air it is less dense and buoyancy accelerates the parcel upward
 - Colder than surrounding air it is more dense and buoyancy forces oppose the rising motion

A saturated rising air parcel cools less than an unsaturated parcel

- If a rising air parcel becomes saturated condensation occurs
- Condensation warms the air parcel due to the release of latent heat
- So, a rising parcel cools less if it is saturated
- Define a moist adiabatic lapse rate
 - ~ 6°C/1000 m
 - Not constant (varies from ~ 3-9°C)
 - depends on T and P

Stability and the moist adiabatic lapse rate

- Atmospheric stability depends on the environmental lapse rate
 - A rising saturated air parcel cools according to the moist adiabatic lapse rate
 - When the environmental lapse rate is smaller than the moist adiabatic lapse rate, the atmosphere is termed absolutely stable
 - Recall that the dry adiabatic lapse rate is larger than the moist
 - What types of clouds do you expect to form if saturated air is forced to rise in an absolutely stable atmosphere?

What conditions contribute to a stable atmosphere?

- Radiative cooling of surface at night
- Advection of cold air near the surface
- Air moving over a cold surface (e.g., snow)
- Adiabatic compression due to subsidence (sinking)

Absolute instability

- The atmosphere is absolutely unstable if the environmental lapse rate exceeds the moist and dry adiabatic lapse rates
- This situation is not long-lived
 - Usually results from surface heating and is confined to a shallow layer near the surface
 - Vertical mixing can eliminate it
Conditionally unstable air

- What if the environmental lapse rate falls between the moist and dry adiabatic lapse rates?
 - The atmosphere is unstable for saturated air parcels but stable for unsaturated air parcels
 - This situation is termed conditionally unstable
- This is the typical situation in the atmosphere

What conditions enhance atmospheric instability?

- Cooling of air aloft
 - Cold advection aloft
 - Radiative cooling of air/clouds aloft
- Warming of surface air
 - Solar heating of ground
 - Warm advection near surface
 - Air moving over a warm surface (e.g., a warm body of water)
 - Contributes to lake effect snow
- Lifting of an air layer and associated vertical “stretching”
 - Especially if bottom of layer is moist and top is dry

Cloud development

- Clouds form as air rises, expands and cools
- Most clouds form by
 - Surface heating and free convection
 - Lifting of air over topography
 - Widespread air lifting due to surface convergence
 - Lifting along weather fronts

Fair weather cumulus cloud development

- Air rises due to surface heating
- RH rises as rising parcel cools
- Cloud forms at RH ~ 100%
- Rising is strongly suppressed at base of subsidence inversion produced from sinking motion associated with high pressure system
- Sinking air is found between cloud elements
 - Why?

What conditions support taller cumulus development?

- A less stable atmospheric profile permits greater vertical motion
Distributing Convective Cloud Bases

• Dry air parcels cool at the dry adiabatic rate (about 10 oC/km)
• Dew point decreases at a rate of ~ 2 oC/km
• This means that the dew point approaches the air parcel temperature at a rate of about 5 oC/km
• If the dew point depression were 8 oC at the surface, a cloud base would appear at a height of 1000 meters; 4 oC at 500 meters etc.
• Cloud base occurs when dew point = temp (100% RH)
• Each one degree difference between the surface temperature and the dew point will produce an increase in the elevation of cloud base of 125 meters

Drier air produces higher cloud bases; moist air produces lower cloud bases

Determining convective cloud top

• Cloud top will be defined by the upper boundary to air parcel rise
• The area between the dry/moist adiabatic lapse rate, showing an air parcel’s temperature during ascent, and the environmental lapse rate, can be divided into two parts
 – A positive acceleration part where the parcel is warmer than the environment
 – A negative acceleration part where the parcel is colder than the environment
• The approximate cloud top height will be that altitude where the negative acceleration area becomes nominally equal to the positive acceleration area

Orographic clouds

• Forced lifting along a topographic barrier causes air parcel expansion and cooling
• Clouds and precipitation often develop on upwind side of obstacle
• Air dries further during descent on downwind side

Lenticular clouds

• Stable air flowing over a mountain range often forms a series of waves
 – Think of water waves formed downstream of a submerged boulder
• Air cools during rising portion of wave and warms during descent
• Clouds form near peaks of waves
 – A large swirling eddy forms beneath the lee wave cloud
 – Observed in formation of rotor cloud
 – Very dangerous for aircraft