Colors and Brightness

- Approximately 50% of the sun’s energy enters our atmosphere as visible light.
- Visible light in the atmosphere can be reflected, refracted, scattered, absorbed, or transmitted.
- What we see, and what it looks like, depends on these phenomena.

Object Color

- White corresponds to similar amounts of all visible wavelengths striking eye cones.
- Objects that emit visible light can appear colored if some wavelengths are emitted more strongly.
- Spectrum depends on object temperature.
- Cooler objects can appear colored if they absorb selected visible wavelengths.
 - For example, a red object is absorbing all wavelengths except those in the red range.

Light Scattering

- Light can be thought of as a set of electromagnetic waves.
- Light is scattered when these waves interact with other objects. The nature of the scattering depends on the object properties, especially the size of the object.
- Three scattering types:
 - Rayleigh scattering: the object is much smaller than the wavelength of light (~0.4-0.7 µm).
 - Mie Scattering: The object is similar in size to the wavelength of light.
 - Most efficient scattering (light scattered from a cross-section up to several times the object cross-section).
 - Calculation of light scattering amount complex (Maxwell’s Equations).
 - Many air pollution particles are in this size range.
 - Geometric Scattering: The object is much larger than the light wavelength.
 - Cloud drops are geometric scatterers.
 - Visible wavelengths scattered with similar efficiency.
 - Object scatters a cross-section of incoming light equal to twice its own cross-section.
 - Consider the Extinction Paradox.

Why is the day sky blue?

- Sunlight is scattered by air molecules.
- Air molecules are much smaller than the light’s wavelength.
- Rayleigh scattering (proportional to 1/λ^4) occurs.
- Shorter wavelengths (green, blue, violet) scattered more efficiently.
- Unless we are looking directly at the sun, we are viewing light scattered by the atmosphere, so the color we see is dominated by short visible wavelengths.
 - Blue dominates over violet because our eyes are more sensitive to blue light.
What makes clouds white/grey/black?

- Cloud drops are ~ 5-50 µm
 - Geometric scatters
 - All visible λ’s scattered with similar efficiency
- When clouds are viewed from above they appear bright white
 - Backscattered sunlight
- When viewed from below, clouds can appear white, grey or black
 - Transmitted and forward-scattered light makes thin clouds appear white
 - Thicker clouds
 - Scatter and absorb more light
 - Can appear dark black
 - Large drops are better absorbers

Why are sunsets red?

- The sun appears fairly white when it’s high in the sky
- Near the horizon, sunlight must penetrate a much greater atmospheric path
 - More scattering
- In a clean atmosphere, scattering by gases removes short visible λ’s from the line-of-sight
 - Sun appears orange/yellow because only longer wavelengths make it through
- When particle concentrations are high, the slightly longer yellow λ’s are also scattered
 - Mie scattering
 - Sun appears red/orange

Blue sky summary

Other Atmospheric Scattering Examples

Refraction

- The speed of light changes as the light enters regions of different density
 - Speed slows/rises as density rises/falls
 - If entrance to the new range is made at an angle, the light bends (refraction)
 - Toward away from the normal for increasing/decreasing density

- Atmospheric refraction changes the apparent position of light sources (objects)
- How does this affect
 - Time of sunrise?
 - Twilight?

What are mirages?

- A mirage occurs when an object appears displaced from its true position
 - Mirages are not mind tricks
 - They are caused by light refraction associated with atmospheric density gradients
Rainbows

- Internal reflection of sunlight by raindrops
 - Light entering denser drop slows and bends
 - Short wavelengths refract the most
 - Most light passes through drop, but some strikes backside at critical angle (~42 degrees, depending on λ) and is reflected
- Light refraction experiment by Newton in 17th century provided first scientific explanation
- Occurs when sun is at our back
- Rainbow most likely when sun is close to the horizon
- Rainbow would form full circle if horizon were absent
- Different colors seen in rainbow come from drops at different heights
- Double rainbows possible when two internal reflections occur
 - Second rainbow weaker because it comes from two reflections
- Moonbows and fogbows also possible
Rainbow schematics

- Rainbow in morning, sailors take warning
 Rainbow at night, a sailor’s delight

The glory

- Aircraft above cloud layer
- Drops < 50 µm
- Refraction, internal reflection and surface skimming
- Slightly different departure angles for different λ’s produce colored rings

Questions for thought

- Why are star colors related to star temperatures while planet colors are not related to planet temperatures?
- How long does twilight last on the moon?
- What would the sky color be if air molecules scattered long λ’s more efficiently?
- Why does smoke arising from a cigarette often have a blue cast yet appear white when blown from the mouth?
- Why are stars more visible with no moon out?