Mie codes and their input / output

- Publicly available Mie codes:
 - http://www.giss.nasa.gov/staff/mmishchenko/t matrix.html (f77)
 - http://www.scattport.org/index.php/light-scattering-software/mietype-codes (Fortran, Python, Matlab, C++, ...)
 - BHMIE written by Born & Huffman, modified by Draine @ Princeton
- Typical inputs: wavelength, radius of the sphere, complex refractive index
- Example outputs: phase matrix elements, ϖ , g, coefficients of the scattered field (a,b)

Effective Radius & Variance

$$\left\langle r\right\rangle = \frac{\int\limits_{0}^{\infty} r \, n(r) \, dr}{\int\limits_{0}^{\infty} n(r) \, dr}$$

Mean particle radius – doesn't have much physical relevance for radiative effects

$$r_{eff} = \frac{\int_{-\infty}^{\infty} \pi r^3 n(r) dr}{\int_{0}^{\infty} \pi r^2 n(r) dr}$$

For large range of particle sizes, light scattering goes like πr^2 . Defines an "effective radius"

$$v_{eff} = \frac{\int_{0}^{\infty} (r - r_{eff})^{2} \pi r^{2} n(r) dr}{r_{eff}^{2} \int_{0}^{\infty} \pi r^{2} n(r) dr}$$
 "Effective variance"

$$n(r) = const \, r^{\frac{1-3b}{b}} e^{-\frac{r}{ab}}$$
 Modified Gamma distribution

a = effective radius

b = effective variance

Common Particle Size Distributions

Extinctions, absorptions and scatterings by all particles simply add-volume coefficents

$$\beta_{e,a,s}(\lambda) = \int_{0}^{\infty} n(r)\pi r^{2} Q_{e,a,s}(r,\lambda) dr$$

n(r)= the particle size distribution # particles per unit volume per unit size

$$n(r) = \frac{N}{r_m} e^{-r/r_m}$$
 Exponential distribution (rain)
$$n(r) = const \ r^{\frac{1-3v_e}{v_e}} e^{-\frac{r}{r_e v_e}} = const \ r^{\mu} e^{-\Delta r}$$
 Gamma distribution (clouds)

$$n(r) = \frac{N}{r\sigma\sqrt{2\pi}} \exp\left(-\frac{\left(\ln r - \mu\right)^2}{2\sigma^2}\right)$$
 Lognormal distribution (aerosols, sometimes clouds)

All PSDs are normalized (same area under curves)

- Lognormal & Exponential have long tails!
- (this is why their means are lower)

Effect on Phase Functions

- Smooths out wiggles
- Forward scattering peak slightly bigger!

