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Overview

This project is organized into two primary pieces.

Section 1: Construct a scalar (intensity-only) adding-doubling model with
only thermal sources This model will:

1. Take as input optical depth, single scattering albedo, and phase function expansion
coefficients for N layers in the atmosphere.

2. Take as input the surface reflectance, which is assumed to be Lambertian.

3. Take as input temperature at the N ` 1 layer boundaries. You will assuming tem-
perature varies linear with τ across a layer.

4. Calculate the downwelling radiance (or brightness temperature TB) at the surface,
and the upwelling radiance (or TB) at TOA, at a user-specified view zenith angle θu

5. Because of the azimuthal symmetry, we need not specify the viewing azimuth angle.
This will change in Part 2, when we add a solar source.

Section 2: Modify the RT model in Part I to include a solar source. To
accomplish this, two primary modifications are necessary:

1. Add an outer loop to the RT program to loop over azimuthal moments m.

2. Add a solar source to each initial thin layer before doubling.

3. Include additional doubling equations for the solar source.

4. Include additional surface solar source term
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1 Adding-Doubling Model with Thermal Sources

We will construct the model in pieces, then put them all together. When coding it, it is
recommended to make each piece be a module. For instances, modules will be used to:

1. Calculate the quadrature points and weights

2. Construct the phase function matrices

3. Doubling to determine the R& T matrices and source vectors for each layer.
- This requires thin layer initialization and doubling equations.

4. Adding to determine the R& T matrices and source vector for the entire atmosphere

5. Construct the surface reflectancematrix Rg and surface upwelling source vector s`g

6. Combine the atmosphere with the surface, plus the incoming CMB radiance.

7. Inverse Planck function Module to determine TB “ B´1λ pIλq

You must write a piece of code that will accept inputs and calculate outputs. You may
write this in any language you like, but something like C or Fortran will generally be
much faster than an interpreted language like MatLab or IDL.

1.1 Quadrature Points and Weights

The basic way quadrature schemes work is to calculate radiative transfer for specific up-
welling and downwelling zenith directions called streams. Usually, one would have to
interpolate to any desired zenith direction from the chosen streams. However, it is pre-
ferred to add a “stream with zero weight” to the list of streams, for the zenith angle
µu “ cos θu at the desired zenith angle θu. It will not affect the calculations for the
streams with weight, but it will provide a much more accurate radiance answer at the
desired zenith angle, without the need for any additional interpolation.

Begin by determining the quadrature points µ and weights w. Note that throughout
this document, we use the convention that a capital boldface letter (such as R) denotes
a matrix, whereas a lower-case boldface letter (such as w) denotes a vector. Use some
version of ”gauleg.f” or ”gauleg.pro” provided. I suggest you use a double-gauss quadra-
ture scheme. Call it on the range 0 . . . 1. This will produce µ1, µ2, . . . µNs , where Ns is the
number of streams in a hemisphere (sometimes called the number of “half-streams”). It
will also give you the corresponding weights w1, w2, . . . wNs .

Next, construct the quadrature points vector µ and weights vector w, including at the
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bottom the user-desired stream with zero weight:

µ “

¨

˚

˚

˚

˚

˚

˝

µ1

µ2
...
µNs
µu

˛

‹

‹

‹

‹

‹

‚

, w “

¨

˚

˚

˚

˚

˚

˝

w1

w2
...

wNs
0

˛

‹

‹

‹

‹

‹

‚

(1)

Notice each of these has Ns ` 1 elements. The weights vector w will have the property
that its elements sum to unity. In the next several sections, we will calculate many square
matrices that will be based on these, and will all have pNs`1, Ns`1q elements. Note that
in the usual nomenclature, Ns “ 1 corresponds to a 2-stream model, Ns “ 2 a 4-stream
model, etc, because usually one talks about the total number of streams (up plus down).

1.2 Calculation of Phase Function Matrices

In this section we’ll describe how to specify the phase function matrix for each layer.
This is simply a discretized form of the phase function, but after we have rewritten the
radiative transfer equation for each azimuthal moment m. Here we will set m “ 0, but
later we’ll need to write it for any m, so the in the formula below we’ll keep do it for arbi-
trary m ě 0. We’ll construct two matrices; one for radiation that gets scattered forwards,
P`

m, and one for radiation scattered backwards, P´
m. Note that from here on out, we’ll

generally think of all zenith angles as µ ě 0, and just remember to put in the ´ sign for
downwelling radiation only in those places where it is necessary. This will happen below,
and I’ll point out exactly where.

P` (P´) represents the intensity phase function matrix for scattering into the forward
(background) direction. P`

mpi, jq, which represents scattering from incident stream j into
emergent stream i in the forward direction for azimuthal mode m, is calculated according
to

P`mpi, jq “
L
ÿ

`“m

am` χ`P
m
` pµiqP

m
` pµjq (2)

where χ` is the `th phase function expansion coefficient, Pm
` pµq represents the associated

legendre polynomial, am` is a pre-factor defined as

am` “ p2´ δ0,mq
p`´mq!

p``mq!
. (3)

(Note that a0` “ 1.) Similarly, P´
m is calculated as P`

m upon substituting µi Ñ ´µi.
Noting that Pm

` p´µq “ p´1q``mPm
` pµq, we find that

P´mpi, jq “
L
ÿ

`“m

p´1q``mam` χ`P
m
` pµiqP

m
` pµjq . (4)

The choice of L is not straightforward. One has two choices: to set it to a large enough
value such that the expansion coefficients faithfully capture the full phase function be-
havior, or set it to some lower value. The reason for the latter are that a small number of
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hemispheric streams Ns cannot resolve the phase function anyway. A particularly useful
choice is L “ 2Ns´1; this choice does not require a renormalization step (see below), and
often provides better results, even though some elements of P`

m and P´
m may be negative.

Note that for m “ 0, all we have done is to calculate the azimuthally-averaged phase
function value, P̃ pµi, µjq, for scattering from incident zenith angle µj to emergent zenith
angle µi, assuming L is suitably large to capture the full phase function.

Both of these matrices P`
m and P´

m must be calculated for each layer in the model atmo-
sphere, where you have pre-calculated the phase function expansion coefficients from the
total phase function in each layer. Note that these matrices will be symmetric; that is,
P`mpi, jq “ P`mpj, iq and similarly for P´

m.

Note that it is a good idea to ensure normalization for m “ 0. This will not always
be the case, even with a properly normalized input phase function. We require that the
quadrature-weighted sum over outgoing angles i for a given incoming angle j add to 2:

Ns`1
ÿ

i“1

pP`0 pi, jq ` P
´
0 pi, jqqwi “ 2 . (5)

To ensure this normalization, one follows the following steps:

fnormpjq “
1

2

Ns`1
ÿ

i“1

pP`0 pi, jq ` P
´
0 pi, jqqwi (6)

P˘0 pi, jq “ P˘0 pi, jq{fnormpjq (7)

for each incoming direction j. Note that this is simply one form of a possible renormaliza-
tion - there are many other possibilities depending on how the corrections are distributed
within the elements of each column j of the phase matrix. Wiscombe (1976) discusses a
number of approaches. Regarding this “renormalization step”, I note two things. First,
if it requires this step, then the resulting matrix will no longer be symmetric in general,
though some methods will retain the symmetric shape, e.g. that of Grant (described in
Wiscombe (1976)). Second, the conditions under which it will be properly normalized
(and not require this extra step) are:

• L is set to something large, but the phase function expansion coefficients χ` have
basically died away by ` “ 2 ˚Ns. OR

• L is set to L “ 2Ns´ 1 in Equations (2) and (4), and Gaussian quadrature on (0,1)
is employed.

1.3 Doubling: Calculation of layer Reflection & Transmission
matrices and Source Functions

In this section we will describe how to calculate the reflectance matrix R for back-
scattering from an incident stream j to an emergent stream i, as well as the transmittance

4



Figure 1: Example of doubling: a layer with optical depth τ is divided into 8 identical
thin layers; in this case d “ 3 doublings will generate the full layer from the initial layers.

matrix T which describes both direct transmission as well as diffuse transmission. The
latter means forward-scattering from incident stream j to an emergent stream i. In the
same calculation, we can compute the upwelling and downwelling source functions of the
layer, s` and s´.

Due to the variation of temperature (and potentially the solar source) across the layer,
the upwelling and downwelling sources will generally be different. However, because the
phase function and single-scattering albedo ω̃ are assumed to be constant across the layer,
the matrices R and T will be the same for incident radiation from above or below the
layer. Note that this generally will not be true once we add together layers with different
optical properties.

The method we will use to accomplish this is referred to as doubling. The modern doubling
method was laid out by Warren Wiscombe in the mid 1970s (Wiscombe, 1976, 1975,
1977a). It is accurate for fairly thin layers, but can be slow for layers with large scattering
optical thicknesses. In that case, alternate methods are preferred (see e.g. McGarragh and
Gabriel, 2010).
In doubling, we will begin with a small optical depth δτ which is obtained by d halvings
of the layer with initial optical depth τ : δτ “ τ{2d. Figure 1 shows an example of this
for d “ 3. I recommend choosing d for a given layer l such that δτ ă 0.01. It is good
to make this maximum initial layer thickness a free parameter to your RT model, so you
can easily vary it.

1.3.1 Thin-Layer initialization

Consider a very thin layer with optical thickness δτ single scattering albedo ω̃ and phase
function matrices given by P` and P´. The reflection and transmission matrices for
this thin layer will be denoted Rn and Tn, respectively, with upwelling and downwelling
source vectors s`0 and s´0, respectively. We will also assume that the planck function
BpT pτqq varies linearly in τ . This turns out to be a reasonably justified assumption in
many cases (and is much better than assuming that the temperature is constant across
the entire layer). Assume the layer has temperature T0 at the lower boundary and T1 at
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the upper boundary. Then it will have corresponding Planck functions B0 “ BλpT0q and
B1 “ BλpT1q. Next define Bd as the slope of B across the layer:

Bd ”
B0 ´B1

τ
. (8)

Wiscombe (1976) and Heidinger et al. (2006) explore different initialization schemes. Here,
we will use the simplest of all initialization schemes, called the infinitesimal generator
initialization scheme (IGI). Let the letter k correspond to the number of times our layer
has been doubled. When k “ 0, this is the initial layer of optical thickness δτ . The
reflection and transmission matrices for this thin layer are given by:

R0pi, jq “ p1` δ0,mq
ω̃

4

δτ

µi
P´mpi, jqwj (9a)

T0pi, jq “ p1` δ0,mq
ω̃

4

δτ

µi
P`mpi, jqwj ` δi,jp1´ δτ{µiq (9b)

where the second term on the right-hand side of (9b) accounts for the direct transmission
term. Again, for azimuthal symmetry (such as a pure thermal source or pure flux calcu-
lations), the azimuthal moment m will equal 0. In section 2, we’ll use these exact same
equations but with m ě 0.

Accounting for a varying linearly-varying thermal source term across the full layer is
slightly more complicated. The formulation for this is derived in Wiscombe (1975). For
each layer, there will be a term related to the mean layer source yB̄, and a term related
to the linear variation of the source across the layer zBd. Therefore, y and z can be
thought of as layer emissivity and emissivity slope in a given (outgoing) direction µi. For
the initial (very thin) layer at doubling k “ 0, they are given by

y0 “ p1´ ω̃q
δτ

µ
δ0,m (10a)

z0 “ 0 . (10b)

The Kronecker-delta δ0,m is included to make explicit that the thermal source only con-
tributes to the azimuthally-average source. For m ą 0, as will occur in section 2 with the
additional of a solar source, the thermal contribution is 0.

A note about the Planck function :
For microwave radiation, one can often get away with working in brightness temperature
space the entire time, rather than working in intensity and calculating brightness tem-
perature at the very end. However, the latter is generally safer unless you know that the
Rayleigh-Jeans approximation is valid.

As a reminder, the Planck function is given by:

BλpT q “
2hc2

λ5pe
hc

λkBT ´ 1q
rWm´2µm´1sr´1s (11)
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where λ is the wavelength given in µm, T is given in K, and the following two constants
should be used:

hc2 “ 5.9552136 ¨ 107
rWm´2µm4

s (12a)

hc{kB “ 14387.752 rKµms (12b)

The inverse Planck Function (determining brightness temperature TB from a radiance Iλ)
is similarly given by:

TB “ B´1λ pIλq “
hc{kB

λ ln p 2hc
2

λ5Iλ
` 1q

. (13)

1.3.2 The Doubling Equations with a thermal source

Using the principle of interaction, it is straightforward to derive the equations to double
two adjacent layers with a linearly-varying thermal source (Wiscombe, 1975). To go from
doubling k to doubling k ` 1, they are:

Rk`1 “ TkΓkRkTk `Rk (14a)

Tk`1 “ TkΓkTk (14b)

zk`1 “ pTkΓk ´TkΓkRkqpzk ´ gkykq ` gkyk ` zk (14c)

yk`1 “ pTkΓk `TkΓkRk ` Iq yk (14d)

where I is the identity matrix, and gk ” 2k´1δτ (g0 “ 0.5δτ , g1 “ δτ , g2 “ 2δτ , etc), and

Γk ” pI´R2
kq
´1 . (15)

Equations (14a)-(14d) are to be repeated until the k “ d terms are obtained (that is, a
loop from k “ 0 to k “ d). To obtain the upwelling and downwelling thermal sources of
the layer s` = s`d and s´ = s´d , we must apply the calculated mean emissivity yd and
emissivity slope zd of the layer as follows:

s`d “ ydB̄ `Bdzd (16a)

s´d “ ydB̄ ´Bdzd (16b)

where B̄ “ pB0`B1q{2 is the mean planck function for the layer. Note that if the source
does not vary across the layer, then s` “ s´ as we know must happen.

1.4 Adding: Put together the whole atmosphere

At this point, we (should) know the Reflection matrix Rl, the transmission matrix Tl,
and the upwelling and downwelling thermal sources s`l and s´l for each layer l in the
atmosphere1. The adding formula are straightforward to derive for two layers with differ-
ent properties. They are very similar to the doubling formulae, but we have the added

1Note that l here is used to denote layer index, should not be confused with the cursive ` we used
early to sum over Phase function expansion coefficients.
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Figure 2: Representation of the adding process of two adjacent, inhomogenous layers.

complication that, for a layer in general, the matrices R and T may be different for light
incident from above vs. light incident from below. For our doubled layers, this is not
they case - R and T are the same whether light is incident from below or above. This
is because the optical properties were assumed to be unchanging throughout the layer.
This is represented in Figure 2, which depicts two adjacent inhomogenous layers. Layer
1 is the upper layer, and is bounded above by a and below by b. Layer 2 is bounded
above by b and below by c. The six optical property quantities of each are given in the
figure(reflection matrices for light incident above and below, transmission matrices for
light incident above and below, and upwelling source at the top and downwelling source
at the bottom of the layer). For example, Rab means the reflection matrix for layer ab for
light incident above (hence going in the direction from a to b). And so on.

In general we need 6 adding formulae, one for each of these six properties. These are
given below. Please note that in coding these, many of the calculations are repeated, and
the matrix inverse function is the more computationally expensive, so it is good to save
repeated intermediate calculations.

Rac “ Rab `TbapI´RbcRbaq
´1RbcTab (17a)

Rca “ Rcb `TbcpI´RbaRbcq
´1RbaTcb (17b)

Tac “ TbcpI´RbaRbcq
´1Tab (18a)

Tca “ TbapI´RbcRbaq
´1Tcb (18b)

s` “ s`1 `TbapI´RbcRbaq
´1
ps`2 `Rbcs

´
1 q (19a)

s´ “ s´2 `TbcpI´RbaRbcq
´1
ps´1 `Rbas

`
2 q (19b)

The easiest is probably to start from the top of the atmosphere, and keep adding layers
below until you’ve gone all the way to the surface. In this way you’ll have added together
all the layers of the atmosphere into a single layer with known transmission & reflection
matrices and upwelling & downwelling source vectors.
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1.5 Construction of the surface reflectance matrix and upwelling
source

Similarly for the atmosphere, in general we can specify the optical properties of the surface
in this quadrature land with a reflectance matrix Rg and an upwelling source vector s`g .
We assume that photons transmitted through the surface interface never return. For
construction of these objects, the key quantity is the surface emissivity. In our simple
model we will assume either a specular or a Lambertian surface. For land, let us assume
Lambertian, and for ocean let us assume specular. In the microwave, the ocean is often
treated as specular, though it is typically treated as Lambertian in the thermal infrared.
Land surfaces in the thermal IR and microwave are virtually always treated as Lambertian,
and typically in the shortwave (UV-Vis-NIR) as well.

1.5.1 Lambertian surface optical properties

For a Lambertian surface with surface emissivity ε, the reflectance (or albedo) is given by
αLW “ 1´ ε. I’ve include the “LW” subscript to be clear that this is a longwave albedo,
which is specifically differentiated from a shortwave albedo. The surface reflectance matrix
Rg and surface source vector s`g are given by:

Rg “ 2αLW

¨

˚

˚

˚

˝

µ1w1 µ2w2 . . . µNwN
µ2w1 µ2w2 . . . µNwN

...
...

. . .
...

µ1w1 µ2w2 . . . µNwN

˛

‹

‹

‹

‚

, s`g “ εBλpTgq

¨

˚

˚

˚

˝

1
1
...
1

˛

‹

‹

‹

‚

. (20)

where Tg equals the surface or ground temperature. Note that this term will be negligible
for shortwave wavelengths.

1.5.2 Specular surface optical properties

For a specular surface, the surface emissivity is typically specified as a function of the
zenith angle, so ε “ εpµq, and the surface reflectance matrix will be diagonal:

Rg “

¨

˚

˚

˚

˝

1´ εpµ1q 0 . . . 0
0 1´ εpµ2q . . . 0
...

...
. . .

...
0 0 . . . 1´ εpµNq

˛

‹

‹

‹

‚

, s`g “ BλpTgq

¨

˚

˚

˚

˝

εpµ1q

εpµ2q
...

εpµNq

˛

‹

‹

‹

‚

. (21)

1.6 Adding in the surface and the upper boundary

Now we have reduced our problem to the reflection & transmission matrices for the full
atmosphere, and the upwelling and downwelling sources for the full atmosphere s` and
s´. The picture we have is a single (atmospheric) layer, with the surface below (poten-
tially emitting and reflecting radiation) and space above (emitting downwelling radiation
upon our atmosphere - the cosmic microwave background). Again using the interaction
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principle, but this time for a surface reflectance matrix Rg and surface upwelling source
s`g , we can find the upwelling radiance vector at TOA s`TOA and the downwelling radiance
vector at the surface s´g .

We can even include the incoming emission from cold space, which is essentially the
isotropically downwelling cosmic microwave background radiation. We’ll write this as
s´TOA

s´TOA “ BλpTcmbq

¨

˚

˚

˚

˝

1
1
...
1

˛

‹

‹

‹

‚

(22)

where Tcmb “ 2.625K. This term only need be included in the microwave; otherwise, it
will be completely negligible.

Letting the reflectance matrix for radiation incident from above the layer be denoted Rab

and from below the layer as Rba, and similarly for the transmission matrix, we have

s`TOA “ s` `Rabs
´
TOA `TbapI´RgRbaq

´1
ps`g `Rgps

´
`Tabs

´
TOAqq (23a)

s´g “ pI´RbaRgq
´1
ps´ `Tabs

´
TOA `Rbas

`
g q . (23b)

1.7 Final intensities & fluxes

For the purpose of calculating upwelling intensity at TOA and downwelling intensity at
the surface, we’re done. Remember we explicitly included a “stream with zero weight”
for the desired zenith angle in our µ vector, given by µu. Because we added it as the last
element of µ, the desired upwelling TOA intensity IÒTOApµuq is given by

IÒTOApµuq “ s`TOApNs ` 1q (24)

and the desired downwelling intensity at the surface is s´g pNs ` 1q. However, we can also
the corresponding upwelling TOA flux F`TOA and F´g . Again using our quadrature rule to
integrate over µ, it is easily shown that

F`TOA “ 2π
ÿ

i

s`TOApiqµiwi (25a)

F´g “ 2π
ÿ

i

s´g piqµiwi (25b)

2 Modifications to include a solar source

It may be that we would prefer to work in the shortwave (solar source) rather than in the
long wave (thermal) source, or that even we are interested in a wavelength where both
terms may be important. Luckily, if you have made it this far, you have done most of the
work, and only minor modifications are required to include a solar source.
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We will assume that the incoming spectral solar flux is given by F@, which is a function
of wavelength λ and has typical units of Wm´2µm´1. Note that this does not include the
cos θ0 term!!

2.1 Addition of the outer azimuthal moment loop

The addition of the solar source term breaks the azimuthal symmetry of the plane-parallel
radiative transfer problem. If your aim is only to calculate (spectral) fluxes, then what
I’m about to say is unnecessary, because up to this point we’ve explicitly calculated
azimuthally-averaged intensities only, and these are all that are required in a flux calcu-
lation. As shown in section 6.1.2 of Liou’s book, the plane-parallel RT equation can be
decomposed into M ` 1 independent RT equations, where the total intensity is given by:

Ipτ, µ, φq “
M
ÿ

m“0

Impτ, µq cosmpφ´ φ0q (26)

where φ0 is an arbitrary azimuth angle, but we’ll take it to equal the solar azimuth angle.
It is easily shown that I0pτ, µq is the azimuthally-averaged intensity at a given µ.

Therefore, what we did in section 2 was to solve only for I0pµq upwelling at TOA and
downwelling upon the surface. We want to expand this to solve for up to azimuthal
moment m “ M “ L where as before L is some maximum number of expansion coeffi-
cients needed to characterize the scattering phase function. Because L is related to how
forward-scattering the phase function is, the number of times through the loop is essen-
tially related to how large the particles are in the atmosphere. It is therefore fairly easy
for M to become prohibitively large. First it is important to note, however, that if one has
very poor angular resolution in the calculation via a relatively small number of streams,
then there is no use making M very large. In general, a good rule of thumb is to set
M=2 ˚Ns´ 1 (such that the number of calculated azimuthal moments, M ` 1, equals the
number of full streams, which is twice the number of half-streams). For example, in the
simplest case of a 2-stream model (Ns “ 1), one would only calculate for m “ 0 and m “ 1.

The second thing to note is that if one really does have large particles (i.e. large size
parameters) and hence highly forward peaked phase functions, it is very desirable to
employ some kind of similarity transformation on the atmospheric optical properties, such
as the δ-M scaling method of Wiscombe (Wiscombe, 1977b). In that method, L “ 2Ns,
i.e. the number of full streams.

2.2 Modification of layer doubling to include a direct solar source

In general, the direct-beam solar flux density at a vertical level τ “ τpzq in the atmosphere
is given by F@e

´τ{µ0 . This will create a “solar source” term inside every initial (very
thin) doubling layer, via local scattering. This solar source term will be in addition to the
thermal source term. However, because the solar source term decreases as exp´τ{mu0
throughout the layer, instead of linearly (like the thermal source term), we will treat it
completely separately.
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2.2.1 Solar source thin-layer initialization

The solar source term for the top-most very thin layer (before any doubling occurs) be
s`0,solar for upwelling and s´0,solar for downwelling. Again using the Infinitesimal Generator
Initialization, these are given by

s`0,solarpiq “
ω̃

4π

δτ

µi
p´mpiqF@e

´τl{µ0 (27a)

s´0,solarpiq “
ω̃

4π

δτ

µi
p`mpiqF@e

´τl{µ0 (27b)

where F@e
´τl{µ0 is the solar flux incident upon the top of layer l, and we have defined τl

to be the total zenith optical depth from TOA to the top of layer l. The terms p´m(i) and
p`m(i) represent the mth azimuthal moment of the phase function for scattering from solar
zenith µ0 to emergent direction µi:

p`mpiq “

L
ÿ

`“m

am` χ`P
m
` pµiqP

m
` pµ0q (28a)

p´mpiq “

L
ÿ

`“m

p´1q``mam` χ`P
m
` pµiqP

m
` pµ0q . (28b)

As usual we require normalization for m “ 0, such that
ř

ipp
`
mpiq ` p

´
mpiqqwi “ 2.

We note that we’ll also have to calculate the other initial layer quantities as before.

2.2.2 Doubling with thermal and solar sources

For doubling with a thermal and solar source, we begin by computing the thin layer re-
flectance and transmittance matrices R0 and T0 appropriate to the particular azimuthal
moment m and atmospheric layer l we’re currently on (equations 9). If m “ 0, from equa-
tion 10 we also compute the initial y0 and z0 vectors, which as stated before correspond
to emissivity mean and slope, respectively. We then must also compute the solar source
for the top-most initial (thin) layer of this full atmospheric layer, according to equation
28: s`0,solar (upwelling) and s´0,solar (downwelling).

Now that we have the thin-layer initializations of these six quantities, we are ready to
undergo our N doublings. For the four quantities R, T, y and z, we use equations (14)
as before. The value of m doesn’t affect the doubling formulae. The doubling formulae
for the upwelling and downwellnig solar source are given by:

s`k`1,solar “ TkΓkpRks
´
k,solar ` γks

`
k,solarq ` s`k,solar (29a)

s´k`1,solar “ TkΓkpγkRks
`
k,solar ` s´k,solarq ` γks

´
k,solar (29b)

where γk “ e´2
kδτ{µ0 is to account for attenuation of the direct beam as we go down

through the layer. As before, we perform our d doublings (such that the initial layer
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optical thickness δτ is rather small, such as 0.01 or less). After doubling, we’ll have the
total upwelling and downwelling sources from thermal sources (equation 16) and the solar
source from equation (29), i.e. s`d,solar and s´d,solar for each layer in the atmosphere, for a
given azimuthal moment m.

2.3 Addition of the solar ground source

After doubling, we can compute the full-atmosphere properties (reflectance and transmis-
sion matrices and upwelling and downwelling source vectors) as before, using the recipe
given in section 1.4. The formulae do not change, so the same module you made will work
again.

Next we must add in the boundary conditions: the surface reflectance matrix and source
vector. Because we’re still at the same wavelength λ, the surface reflectivity matrix
Rg remains the same. We now simple must add in the direct-beam solar source to the
ground’s thermal emission source. That is, a part of the solar beam may make it all the
way through the atmosphere and be reflected off the surface. Therefore, in general the
surface source has two terms: a thermal source s`g,thermal and a solar source s`g,solar. The
thermal term was given in equation (20). Assuming a Lambertian surface albedo of α,
the solar source is given by:

s`g,solar “
α

π
F@µ0e

´τ˚{µ0

¨

˚

˚

˚

˝

1
1
...
1

˛

‹

‹

‹

‚

(30)

where τ˚ is the TOA-to-surface zenith optical depth, and again µ0 is the cosine of the
solar zenith angle.

After this is done, the equations to combine the surface and atmosphere (section 1.6)
and calculating final intensities and fluxes (section 1.7) remain essentially the same. The
only difference is now we have calculated azimuthal moments of the intensity field for
m “ 0..M : I0pµq, I1pµq, etc. To construct the full total intensity for a given azimuth φ,
we must use equation (26) given earlier. As before, I0pµq (either upwelling at TOA or
downwelling at the surface) represents the azimuthally-averaged intensity, and equations
(25) can be used for calculation of the corresponding hemispheric fluxes.
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